SOME NOTES ON THE EXTENSION OF B-VALUED INNER PRODUCT

An-Hyun Kim

1. Introduction.

B-valued inner product has been studied by Paschke([1],[4],[5],[6]), Arveson. It is different from inner product in that codomain is a C^* -algebra and its axioms are compatible with module action.

In particular, Paschke investigated the dual space X' which is composed of bounded module maps of pre-Hilbert B-module X into a C^* -algebra B(this has similar properties with dual space of a Banach space). He has lifted the B-valued inner product on a pre-Hilbert space X to a B-valued inner product on X' and connected with representation theory with respect to completely positive map([5],[6]).

In this setting, there are two ways of norming X', as bounded operators from X into B, and inner product norm $||\cdot||_{X'}$ on the other. In fact, these norms are identical([5],[Corollary 2.8]). Also we can conjecture problems that the B-valued inner product on X can be lifted to a B-valued inner product on X'' (the bidual of X).

After appropriate identification, we can regard X as a submodule of X''([Remark 2]), and this note is the investigation of the above conjecture and structural relations of X, X', X'', (X'')'([Lemma 3.2], [Theorem 3.6], [Theorem 3.7]).

2. B-valued inner product and its Extension to X'.

Let B be a C^* -algebra and X a right B-module. We will denote the action of an element $b \in B$ on $x \in X$ by $x \cdot b$; it is assumed that X has a vector space structure compatible with that of B in the sense that $\lambda(x \cdot b) = (\lambda x) \cdot b = x \cdot (\lambda b)$ for all $x \in X, b \in B, \lambda \in C$.

Received November 2, 1994.

This work was supported by the Changwon University Research Fund, 1994.

Definition 2.1. A pre-Hilbert B-module is a right B-module Xequipped with a conjugate-bilinear map $\langle \cdot, \cdot \rangle : X \times X \longrightarrow B$ satisfying

 $(1) \langle x, x \rangle \geq 0$ $\forall x \in X$:

only if x = 0; (2) $\langle x, x \rangle = 0$

(3) $\langle x, y \rangle^* = \langle y, x \rangle \quad \forall x, y \in X$;

(4) $\langle x \cdot b, y \rangle = \langle x, y \rangle b$ $\forall x, y \in X, b \in B.$

The map $\langle \cdot, \cdot \rangle$ will be called a *B-valued inner product* on *X*.

EXAMPLE 2.2. If H is a Hilbert space, then the algebraic tensor product $H \otimes B$ becomes a pre-Hilbert B-module. For, defining by $(\xi \otimes a, b) \to \xi \odot ab$, then $H \odot B$ becomes a right B-module.

Define $\langle \cdot, \cdot \rangle : H \otimes B \times H \otimes B \longrightarrow B$ by $\langle \xi \otimes a, \eta \otimes b \rangle = (\xi, \eta)b^*a$. Then $(\xi, \xi)a^*a \ge 0$, and $(\xi, \xi)a^*a = 0 \Leftrightarrow (\xi, \xi) = 0$ or $a^*a = 0 \Leftrightarrow \xi = 0$ or a=0.

Also, $\langle \xi \otimes a, \eta \otimes b \rangle^* = (\xi, \eta)^* (b^* a)^* = (\eta, \xi) a^* b = \langle \eta \otimes b, \xi \otimes a \rangle$. $\langle (\eta \otimes b) \cdot c, \xi \otimes a \rangle = \langle \eta \otimes bc, \xi \otimes a \rangle = (\eta, \xi)a^{\star}(bc) = (\eta, \xi)(a^{\star}b)c =$ $\langle \eta \otimes b, \xi \otimes a \rangle c$.

For a pre-Hilbert B-module X, define $\|\cdot\|_X$ on X by $\|x\|_{X}$ $\|\langle x, x \rangle\|^{1/2}$.

PROPOSITION 2.3([5],[6]). $\|\cdot\|_X$ is a norm on X and satisfies:

 $(1) \parallel x \cdot b \parallel_{X} \leq \parallel x \parallel_{X} \parallel b \parallel \qquad \forall x, \in X, \quad b \in B;$ $(2) \langle y, x \rangle \langle x, y \rangle \leq \parallel y \parallel_{X}^{2} \langle x, x \rangle \qquad \forall x, y \in X;$

(3) $\|\langle x, y \rangle\| \le \|x\|_X \|y\|_X$ $\forall x, y \in X$.

REMARK 1. Because of (1), X is a normed B-module, and a pre-Hilbert B-module X which is complete with respect to $\|\cdot\|$ will be called a Hilbert B-module. For a Hilbert B-module X, we let X' denote the set of all bounded B-module maps (i.e, B-linear maps) of X into B. Then X' becomes a vector space if we define scalar multiplication on X' by $(\lambda \tau)(x) = \overline{\lambda} \tau(x)(\tau \in X', x \in X, \lambda \in C)$ and addition maps in X' pointwise. Also,

X' becomes a right B-module if we set $(\tau \cdot b)(x) = b^*\tau(x)$ for $\tau \in$ $X', b \in B, x \in X.$

PROPOSITION 2.4([5]). Let X,Y be pre-Hilbert B-modules. For a linear map $T: X \longrightarrow Y$, the following are equivalent: (1). T is bounded and $T(x \cdot b) = (Tx) \cdot b \quad \forall x \in X, b \in B$. (2). There is a real number $K \geq 0$ such that $\langle Tx, Tx \rangle \leq K \langle x, x \rangle \quad \forall x \in X$.

REMARK 2. From the above proposition, for a bounded B-module map T,

 $\parallel T \parallel = \inf\{K^{1/2} : \langle Tx, Tx \rangle \leq K\langle x, x \rangle \quad \forall x \in X\}$ and X' is precisely the set of linear maps $\tau : X \longrightarrow B$ such that for some real $K \geq 0$, $\tau^*\tau(x) \leq K\langle x, x \rangle \quad \forall x \in X$. Each $x \in X$ gives rise to a map $\hat{x} \in X'$ defined by $\hat{x}(y) = \langle y, x \rangle (y \in X)([\text{Proposition 2.3}])$. The map $x \to \hat{x}$ is an isometric module map of X into X'. We may thus regard X as a submodule of X' by identify X with \hat{X} .

THEOREM 2.5([5]). Let X be a pre-Hilbert B-module. The B-valued inner product $\langle \cdot, \cdot \rangle$ extends to $X' \times X'$ in such a way as to make X' into a Hilbert B-module.

By the above theorem, since X' becomes a pre-Hilbert B-module, we can consider the following example:

EXAMPLE 2.6. Consider the right *B*-module $B \times X$ for any pre-Hilbert *B*-module *X*. Take $\tau \in X'(\tau \neq 0)$ and $t > \parallel \tau \parallel_{X'}$. Define $[\cdot, \cdot]_{\tau,t} : (B \times X) \times (B \times X) \xrightarrow{} B$ by $[(a, x), (b, y)]_{\tau,t} = t^2 b^* a + b^* \tau(x) + \tau(y)^* a + \langle x, y \rangle$. Then

$$\begin{split} [(a,x),(b,y)]_{\tau,t} &= t^2 b^\star a + \tau(y)^\star a + b^\star \tau(x) + \langle x,y \rangle \\ &= \left[a^\star b + a^\star \tau(y) + \tau(x)^\star b + \langle y,x \rangle \right]^\star \\ &= \left[(b,y),(a,x) \right]_{\tau,t}^\star, \end{split}$$

$$\begin{split} [(a,x)\cdot k,(b,y)]_{\tau,t} &= [(ak,x\cdot k),(b,y)] \\ &= t^2b^\star(ak) + b^\star\tau(x\cdot k) + \tau(y)^\star(ak) + \langle x\cdot k,y\rangle \\ &= t^2(b^\star a)k + b^\star\tau(x)k + \tau(y)^\star ak + \langle x,y\rangle k \\ &= [(a,x),(b,y)]k. \end{split}$$

Taking $(a, x) \in B \times X$, then,

$$[(a,x),(a,x)]_{\tau,t} = t^2 a^* a + a^* \tau(x) + \tau(x)^* a + \langle x, x \rangle$$

$$\geq t^2 a^* a + a^* \tau(x) + \tau(x)^* a + \|\tau\|_{X'}^{-2} \tau(x)^* \tau(x)$$

$$= t^2 a^* a + a^* \tau(x) + \tau(x)^* a + t^{-2} \tau(x)^* \tau(x)$$

$$= \left(ta + t^{-1} \tau(x)\right)^* \left(ta + t^{-1} \tau(x)\right) \geq 0.$$

If $[(a, x), (a, x)]_{\tau, t} = 0$,

$$[(a,x),(a,x)]_{\tau,t} = t^2 a^* a + a^* \tau(x)^* a + \langle x, x \rangle$$
$$= \left(ta + t^{-1} \tau(x) \right)^* \left(ta + t^{-1} \tau(x) \right) = 0$$

(i.e. equality holds in each above step). In particular, $\left(\parallel\tau\parallel_{X'}^{-2}-t^{-2}\right)\tau(x)^{\star}\tau(x)=0, \text{ and so } (a,x)=(0,0), \text{ thus } [\cdot,\cdot]_{\tau,t} \text{ is a } B\text{-valued inner product on } B\times X.$

LEMMA 2.7. Let $\|\cdot\|_{\tau,t}$ be a norm on $B \times X$ gotten from the above inner product. Then $\|\tau \cdot b + \hat{y}\| \le \|(b,y)\|_{\tau,t} \quad \forall x \in X, \ b \in B$.

Proof. For all $x \in X$,

$$\| (0,x) \|_{\tau,t} = \| [(0,x),(0,x)] \|^{1/2} = \| \langle x,x \rangle \|^{1/2} = \| x \|_{X}.$$

For $x, y \in X$, $b \in B$, we have

COROLLARY 2.8([5]). The operator norm and inner product norm in X' are identical.

Proof. By the above theorem, $X^{'}$ is a Hilbert B-module. Letting $\|\cdot\|_{X^{'}}$ denote the operator norm on $X^{'}$, we have, for $\tau \in X^{'}$ and $x \in X$, $\tau(x)^{\star}\tau(x) = \langle \tau, \hat{x} \rangle \langle \hat{x}, \tau \rangle \leq \|\tau\|_{X^{'}}^{2} \langle x, x \rangle ([\text{Proposition 2.3}])$, therefore $\|\tau\| \leq \|\tau\|_{X^{'}}$ ([Remark 2]). On the other hand, $\|\tau\|_{X^{'}}^{2} \leq \|\tau\|^{2}$, forcing $\|\tau\|_{X^{'}} = \|\tau\|$.

3. The extension of B-valued inner product to X''.

LEMMA 3.1. If X is a normed B-module, there exists an module map of X into X''.

Proof. For $x \in X$, define $\phi : X \longrightarrow X''(x \to \dot{x})$ by $\dot{x}(\tau) = \tau(x)^*(\tau \in X')$. Then $\dot{x}(\tau \cdot b) = [(\tau \cdot b)x]^* = [b^*\tau(x)]^* = \tau(x)^*b = \dot{x}(\tau)b$, $\|\dot{x}(\tau)\| = \|\tau(x)^*\| = \|\tau(x)\| \le \infty$,

 $\|\dot{x}(\tau)\| = \|\tau(x)^*\| = \|\tau(x)\| \le \infty,$ and so $\dot{x} \in X''$. Also, $(\hat{x} \cdot b)(\tau) = \tau(x \cdot b)^* = [\tau(x)b]^* = b^*\tau(x)^* = b^*\hat{x}(\tau) = (\hat{x} \cdot b)(\tau).$

Thus $\phi(x \cdot b) = \phi(x) \cdot b$ (i.e. module map).

LEMMA 3.2. If X is a normed B-module, then there is a bounded module map of X'' into X'.

Proof. For $\Gamma \in X''$, define $\tilde{\Gamma}$ on X' by $\tilde{\Gamma}(x) = \Gamma(\hat{x})(x \in X)$, then

$$\tilde{\Gamma}(x \cdot b) = \Gamma[(\hat{x \cdot b})] = \Gamma(\hat{x} \cdot b) = \Gamma(\hat{x}) \cdot b = \tilde{\Gamma}(x) \cdot b (\ i.e \ \tilde{\Gamma} \in X').$$

Now define a map $\Psi: X^{"} \longrightarrow X^{'}(\Gamma \to \tilde{\Gamma})$, then since

$$(\Gamma_1 + \Gamma_2)(x) = (\Gamma_1 + \Gamma_2)(\hat{x})$$
$$= \Gamma_1(\hat{x}) + \Gamma_2(\hat{x}) = \tilde{\Gamma_1}(x) + \tilde{\Gamma_2}(x)$$

and

$$(\Gamma \cdot b)(x) = (\Gamma \cdot b)(\hat{x})$$

= $\Gamma(\hat{x}) \cdot b = \tilde{\Gamma}(x) \cdot b$,

 $\parallel \widetilde{\Gamma}(x) \parallel_B \ = \ \parallel \Gamma(\widehat{x}) \parallel_B \ \leq \ \parallel \Gamma \parallel_{X^{\prime\prime}} \cdot \ \parallel \widehat{x} \parallel.$

Thus Ψ is a bounded module map (in fact, Ψ is an isometry [Lemma 3.4]). \square

Now we introduce the concrete extension of B-valued inner product on X to X''.

As a previous statement, the method of extension is similar to that of Paschke's.

Define $\langle \cdot, \cdot \rangle : X'' \times X'' \longrightarrow B$ by $\langle \Gamma, \Phi \rangle = \Phi(\tilde{\Gamma})$. Then it is clear that this map is conjugate bilinear and will be a B-valued inner product on X'' ([Lemma 3.5],[Theorem 3.6]). For $x, y \in X$, $\langle \dot{x}, \dot{y} \rangle = \dot{y} \left((\tilde{\dot{x}}) \right) = \dot{y}(\hat{x}) = \hat{x}(y)^* = \langle y, x \rangle^* = \langle x, y \rangle$.

So $\langle \cdot, \cdot \rangle$ is an extension of the original inner product on X.

LEMMA 3.3. Let Y be a submodule of X' containing \hat{X} . For any $F \in Y'$, we have $||F||_{Y'} = ||F|_{X}||$.

Proof. We may assume without loss of generality that $||F||_{Y'}=1$. Define $\tau \in X'$ by $\tau(x) = F(\hat{x})(x \in X)$. We have $||\tau||_{X'} \le 1$ and must establish the reverse inequality. Take $\psi \in Y$ with $||\psi||_{X'} < 1$ and set $c = F(\psi)$. For brevity, let $[\cdot, \cdot]$ denote the *B*-valued inner product $[\cdot, \cdot]_{\psi, 1}$ on $B \times X$ defined in Example 2.6 and let $||\cdot||$ be the corresponding norm on $B \times X$. For $a \in B, x \in X$, we have, using Lemma 2.7,

$$||ca + \tau(x)|| = ||F(\psi \cdot a + \hat{x})|| \le ||\psi \cdot a + \hat{x}||_{X'} \le ||(a, x)||,$$

so the map $(a, x) \to ca + \tau(x)$ of $B \times X$ into B is a bounded module map of norm ≤ 1 with respect to the inner product $[\cdot, \cdot]$. By Remark 2, we have $(ca + \tau(x))^*(ca + \tau(x)) \leq [(a, x), (a, x)]$ for all $a \in B, x \in X$. That is,

$$a^{\star}c^{\star}ca + a^{\star}c^{\star}\tau(x) + \tau(x)^{\star}ca + \tau(x)^{\star}\tau(x) \leq a^{\star}a + a^{\star}\psi(x) + \psi(x)^{\star}a + \langle x, x \rangle.$$

Setting $a = -2\psi(x)$ and collecting terms, we obtain, for all $x \in X$.

$$4\psi(x)^*c^*c\psi(x) + \tau(x)^*\tau(x) \le \langle x, x \rangle + 2(\psi(x)^*c^*\tau(x) + \tau(x)^*c\psi(x)).$$

But
$$\psi(x)^*c^*\tau(x) + \tau(x)^*c\tau(x) \le \tau(x)^*c^*c\tau(x) + \tau(x)^*\tau(x)$$
,

$$2\psi(x)^{\star}c^{\star}c\psi(x) \leq \langle x,x\rangle + \tau(x)^{\star}\tau(x) \leq (1+\parallel\tau\parallel_{X'}^2)\langle x,x\rangle \quad \forall x \in X.$$

Hence $\parallel \psi \cdot c^{\star} \parallel_{X'} \le 2^{-1/2} (1+ \parallel \tau \parallel_{X'}^2)^{1/2}$ and consequently, using $\parallel F \parallel_{Y'} = 1$,

$$\begin{split} \parallel F(\psi \cdot c^{\star}) \parallel = \parallel cc^{\star} \parallel = \parallel c \parallel^{2} \leq \parallel F \parallel_{Y'} \parallel \psi \cdot c^{\star} \parallel_{X'} \\ = \parallel \psi \cdot c^{\star} \parallel_{X'} \leq 2^{-1/2} (1 + \parallel \tau \parallel_{X'}^{2})^{1/2}. \end{split}$$

This holds for any $\psi \in Y$ with $\|\psi\|_{X'} < 1$; since $\|F\|_{Y'} = 1$, we must therefore have $1 \leq 2^{-1/2}(1+\|\tau\|_{X'}^2)^{1/2}$, which forces $\|\tau\|_{X'} \geq 1$. This completes the proof. \square

Lemma 3.4. The map Ψ in Lemma 3.2 is an isometry.

Proof. For any $F \in X''$, $\parallel F \parallel_{X''} = \parallel F \mid_{\tilde{X}} \parallel (Y = X' \text{ in Lemma 3.3})$. Since $\tilde{\Gamma}(x) = \Gamma(\hat{x})(x \in X)$ for $\Gamma \in X''$, $\parallel \Gamma \parallel_{X''} = \parallel \Gamma \mid_{X} \parallel = \parallel \tilde{\Gamma} \parallel_{X'}$. \square

By elementary calculation, we can get the following Lemma.

Lemma 3.5.
$$\langle \Gamma, \Gamma \rangle \geq 0$$
 and $\|\langle \Gamma, \Gamma \rangle\| = \|\Gamma\|_{X''}^2$ for all $\Gamma \in X''$.

THEOREM 3.6. Let X be a pre-Hilbert B-module. Then the B-valued inner product $\langle \cdot, \cdot \rangle$ on X extends to $X'' \times X''$ in such a way as to make X'' into a Hilbert B-module.

Proof.

$$\langle \Gamma \cdot b, \Phi \rangle = \Phi \Big((\tilde{\Gamma} \cdot b) \Big) = \Phi (\tilde{\Gamma} \cdot b)$$

= $\Phi (\tilde{\Gamma}) b = \langle \Gamma, \Phi \rangle b$

Also, $\langle \Gamma + \Phi, \Gamma + \Phi \rangle \ge 0$, $\langle \Gamma + i\Phi, \Gamma + i\Phi \rangle \ge 0$ ([Lemma 3.5]).

$$\begin{split} \langle \Gamma + \Phi, \Gamma + \Phi \rangle &= \langle \Gamma + \Phi, \Gamma + \Phi \rangle^* \\ &= \langle \Gamma, \Gamma \rangle + \langle \Gamma, \Phi \rangle^* + \langle \Phi, \Gamma \rangle^* + \langle \Phi, \Phi \rangle. \end{split}$$

Thus

$$\langle \Gamma, \Phi \rangle + \langle \Phi, \Gamma \rangle = \langle \Gamma, \Phi \rangle^* + \langle \Phi, \Gamma \rangle^* \quad (\star),$$
$$\langle \Gamma, \Phi \rangle - \langle \Phi, \Gamma \rangle = -\langle \Gamma, \Phi \rangle^* + \langle \Phi, \Gamma \rangle^* \quad (\star\star).$$

Adding (*) and (**), $\langle \Gamma, \Phi \rangle = \langle \Phi, \Gamma \rangle^*$. Thus \langle , \rangle becomes a B-valued inner product on X'' with aid of Lemma 3.5. Also, by Lemma 3.5, since norm on X'' gotten from this inner product coincides with the operator norm $\| \cdot \|_{X''}$, X'' is a Hilbert B-module with respect to the inner product we have introduced. \square

Theorem 3.7. Under the same situation, there exists a module isomorphism of $(X^{''})^{'}$ onto $X^{'}$.

Proof. For $F \in (X'')'$, define $\tau_F \in X'$ by $\tau_F(x) = F(\dot{x})$ $(x \in X)$ and for $\tau \in X'$, define $F_{\tau} \in (X'')'$ by $F_{\tau}(\Gamma) = \Gamma(\tau)^*$ $(\Gamma \in X'')$. i.e.,

$$\Psi_1:(X^{''})^{'}\longrightarrow X^{'}(F\to \tau_F)$$

$$\Psi_2: X' \longrightarrow (X'')'(\tau \to F_{\tau})$$

Then

$$\Psi_1(F \cdot b)(x) = \tau_{F \cdot b}(x) = (F \cdot b)(\dot{x})$$
$$= F(\dot{x})b = \tau_F(x) \cdot b = \Psi_1(F)(x) \cdot b.$$

Also

$$\| \Psi_1(F) \| = \| \tau_F \|_{X'} = \sup\{ \| \tau_F(x) \|_B \colon \| x \| \le 1 \}$$

$$= \sup\{ \| F(\dot{x}) \|_B \colon \| \dot{x} \| \le 1 \}$$

$$= \| F|_{\dot{X}} \| = \| F \|_{(X'')'} ([Lemma \ 3.4]).$$

For Ψ_2 , the same are true, and we have $\Phi_1(\Psi_2(\tau))(x) = \Psi_2(\tau)(\dot{x}) = \dot{x}(\tau)^* = \tau(x)$, $\Psi_2(\Psi_1(F))(\dot{x}) = \dot{x}(\Psi_1(F))^* = \Psi_1(F)(x) = F(\dot{x})$. Thus they are inverses of each other. \square

References

- [1] W.Z. Arveson, Subalgebras of C*-algebras, Acta Math 123 (1969), 141-224.
- [2] S. K. Berberian, Lectures in Functional Analysis and Operator Theory Springer-Verlag, 1974.
- [3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, 1985.
- [4] W. L. Paschke, Completely Positive Maps on U*-algebras, Proc. Amer. Math. Soc. 34 (1972), 412-416.
- [5] W. L. Paschke, Inner product module over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-4468.
- [6] W. L. Paschke, Inner product modules arising from compact automorphism groups of Von Neumann Algebras, Trans. Amer. Math. Soc. Soc. 224 (1976), 87-102.
- [7] W. F. Steinspring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 221-216.

Department of Mathematics Changwon National University Changwon, 641-773, Korea