ON S-IDENTIFICATION MAPS

Won Keun Min

1. Introduction.

Let X and Y be topological spaces on which no separation axioms are assumed unless explicitly stated. A subclass $\tau^* \subseteq \wp(X)$ is called a supra-topology(Mashhour et al. 1983) on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X, τ^*) is called a supra-topological space (or supra-space). The members of τ^* are called supra-open sets. And $let(X, \tau)$ be a topological spaces and τ^* be a supra-topology on X. We call τ^* a supra-topology associated with τ if $\tau \subseteq \tau^*$. Let (X,τ) and (Y,τ_1) be topological spaces and let τ^* be an associated supra-topology with τ . A function $f: X \to Y$ is an S-continuous function if the inverse image of each open set in Y is τ^* -supra-open in X. And let τ_1^* be an associated supra-topology with τ_1 . A function $f:(X,\tau^*)\to (Y,\tau_1^*)$ is S^* -continuous if the inverse image of each τ_1^* -supra-open set is τ^* supra-open. Let f be S^* -continuous and g is S-continuous, then $g \circ f$ is S-continuous. But the inverse may not be true. In this paper, we get the following property: Let $f: X \to Y$ be an S-identification map and $g: Y \to Z$ be a map. Then g is $S(S^*)$ -continuous if and only if gof is $S(S^*)$ -continuous. Now we assume that τ^* is the fixed associated supra-topology with τ .

2. S-identification map.

2.1. DEFINITION.. Let (X, τ) be a topological space and τ^* be an associated supra-topology with τ . Let Y be an arbitrary set and $p: X \to Y$ be surjection. The identification supra-topology in Y determined by p is

$$\tau^*(p) = \{ U \subseteq Y | p^{-1}(U) \text{ is } \tau^* - \text{supra-open in } X \}.$$

Received December 7, 1994.

Then $\tau^*(p)$ is a supra-topology on Y, and B is supra-closed in $(Y, \tau^*(p))$ if and only if $p^{-1}(B)$ is τ^* -supra-closed in X.

2.2. THEOREM. $\tau^*(p)$ is the largest supra-topology in (Y, τ_1) for which $p: X \to Y$ is an S^* -continuous function.

Proof. If τ_2^* is any other associated supra-topology with τ_1 and $p:(X,\tau^*)\to (Y,\tau_2^*)$, then for U in τ_2^* , $p^{-1}(U)$ is a supra-open in X. Thus $U\in \tau^*(p)$.

2.3. DEFINITION.. Let (X,τ_1) and (Y,τ_2) be two spaces and τ_1^* and τ_2^* be two associated supra-topologies with τ_1,τ_2 , respectively. An S^* -continuous surjection $p: X \to Y$ is an S-identification map (or S-identification) whenever the associated supra-topology τ_2^* with τ_2 is exactly $\tau^*(p)$.

By the definition of S-identification, the S^* -continuous identity map $id:(X,\tau_1)\to (X,\tau_2)$ is an S-identification if and only if $\tau_1^*=\tau_2^*$. Although $\tau_1\neq \tau_2$, id may be an S-identification.

Example. Let $X = \{a, b, c\}$. Let $\tau_1 = \{\emptyset, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, \{b, c\}, X\}$. Consider $\tau_1^* = \tau_1 \cup \{\{b, c\}, \{a, c\}\}$ and $\tau_2^* = \tau_2 \cup \{\{a, b\}, \{a, c\}\}$. Although $\tau_1 \neq \tau_2$, id is an S-identification, since $\tau_1^* = \tau_2^*$.

2.4. THEOREM. If $p:(X,\tau^*) \to (Y,\tau_2^*)$ is an S^* -continuous S^* -open(S^* -closed) surjection, then p is an S-identification.

Proof. Since p is S^* -continuous, $\tau_2^* \subseteq \tau^*(p)$. Let $U \in \tau^*(p)$. Then $p^{-1}(U)$ is supra-open in X, and since p is S^* -open and surjective, $U = p(p^{-1}(U))$ is supra-open in τ_2^* . Therefore $\tau_2^* = \tau^*(p)$.

2.5. THEOREM. let $p:(X,\tau_1^*) \to (Y,\tau_2^*)$ be S^* -continuous. If there is an S^* -continuous map $q:(Y,\tau_2^*) \to (X,\tau_1^*)$ such that poq = id, then p is an S-identification.

Proof. Let $U \in \tau^*(p)$. Then $p^{-1}(U)$ is supra-open. $q^{-1}(p^{-1}(U)) = U$ is supra-open in (Y, τ_1) , and so p is an S-identification.

Recall that A is p-saturated if and only if $A = p^{-1}p(A)$, and the p-load of any $A \subseteq X$ is the p-saturated set $p^{-1}p(A) \supseteq A$.

2.6. THEOREM. Let $p:(X, \tau_1^*) \to (Y, \tau_2^*)$ be an S-identification Then p is S*-open if and only if the p-load of each supra-open in X is also supra-open in X.

Proof. Let U be supra-open in X. If p is S^* -open, then p(U) is supra-open in Y, Since p is S^* -continuous, $p^{-1}(p(U))$ is supra-open in X. For the converse, let U be supra-open in X. Since $p^{-1}p(U)$ is supra-open in X, we obtain that p(U) is supra-open in τ_2^* .

2.7. THEOREM. Let $p:(X, \tau_1^*) \to (Y, \tau_2^*)$ be an S-identification. Then p is S-open if and only if the p-load of each open in X is supraopen in X.

Proof. Obvious.

Remark. Let $f: X \to Y$ and $g: Y \to Z$ be two functions and f be S^* -continuous. If g is S-continuous, then $gof: X \to Z$ is S-continuous. In general, the converse is not true. But if f is an S-identification, we obtain the following property.

2.8. THEOREM. if $p:(X,\tau_1^*) \to (Y,\tau_2^*)$ is an S-identification and $g:(Y,\tau_2^*) \to (Z,\tau_3^*)$ is a function. Then g is $S(S^*)$ -continuous if and only if g of is $S(S^*)$ -continuous.

Proof. Since p is S^* -continuous, gop is $S(S^*)$ -continuous. For the converse, assume that (gop) is $S(S^*)$ -continuous and let U be any open(supra-open) in Z. Then $(gop)^{-1}(U) = p^{-1}(g^{-1}(U))$ is supra-open in X. Since p is S-identification, $g^{-1}(U)$ is supra-open in (Y, τ_2^*) . Thus g is $S(S^*)$ -continuous.

References

- 1. J.Dugundji, Topology, Allyn and Bason, Boston, 1966.
- O.Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- A. S. Mashhour, A. A. Allam, F, S. Mahoud and F. H. Khedr, On supratopological space, Indian J.Pure Appl. Math. 14(4) (1983), 502-510.
- 4. A. A.Mashhour, I. A. Hassnein and S. N. El-deeb, α-continuous and α-open mappings, Acta Math. Hung. 41(3-4) (1983), 213-218.

Department of Mathematics Kangweon National University Chuncheon, 200-702, Korea