THE WEAK RADON-NIKODYM SETS IN C(K)

CHUN KEE PARK

1. Introduction.

The space $(X^*, \sigma(X^*, X))$ can be considered as a subspace of a $(C(K), t_p(D))$ space endowed with the topology $t_p(D)$ of pointwise convergence on a dense subset D of a compact Hausdorff space K. Riddle, Saab and Uhl have studied the weak Radom-Nikodym sets in dual Banach spaces ([3], [4], [5], [6]). In particular, Saab [6] showed that if a weak*-compact convex subset E of the dual X^* of a Banach space X has the WRNP then for any bounded linear operator T from a Banach space Y into X, $T^*(E)$ has the WRNP in Y^* .

In this paper, we investigate some properties of a P(D)-set in the C(K) space, which is a generalization of weak Random-Nikodym sets in dual Banach spaces, and we use these results to generalize the Saab's result [6].

2. Preliminaries.

Throughout this paper, K denotes a compact Hausdorff space and C(K) the Banach space of continuous real-valued functions on K endowed with the supremum norm. If F is a subset of K, we denote by $t_p(F)$ the topology in C(K) of pointwise convergence on F. If D is a dense subset of K, then $t_p(D)$ is a Hausdorff locally convex topology in C(K).

Note that if X is a Banach space and B is a norming subset of B_{X^*} , then the convex hull of B, D = co(B), is a dense subset of the compact space $K = (B_{X^*}, weak^*)$, and so considering X as a subspace of $C(B_{X^*})$ the topology $\sigma(X, B)$ is the one induced by $t_p(D)$. In particular, dealing with a dual Banach space X^* the $weak^*$ topology is obtained when we take $K = B_{X^{**}}$ and $D = B = B_X$.

Received June 30, 1995.

DEFINITION 2.1 [1]. Let K be a compact Hausdorff space, D a dense subset of K, and H a uniformly bounded $t_p(D)$ -compact subset of C(K). H is called a P(D)-set if every sequence $\{d_n\}$ in D has a subsequence $\{d_{n_i}\}$ such that $\{h(d_{n_i})\}$ converges for each $h \in H$.

A closed bounded convex subset H of a Banach space X is said to have the weak Radon-Nikodym property (WRNP) if for every complete probability space (Ω, Σ, μ) and every vector measure $m \colon \Sigma \to X$ such that the average range of m

$$AR(m) = \left\{ \frac{m(E)}{\mu(E)}; E \in \Sigma, \ \mu(E) > 0 \right\}$$

is contained in H, there exists a Pettis integrable function $f: \Omega \to X$ such that $m(A) = \int_A f d\mu$ for every A in Σ . Some relevant definitions are given in [1], [2] and [7].

The following theorem is useful to obtaining our results.

THEOREM 2.2 [1]. Let H be a uniformly bounded $t_p(D)$ -compact convex subset of C(K). Then H is a P(D)-set if and only if H has the WRNP.

3. Main results.

Throughout this section, K_1 and K_2 denote compact Hausdorff spaces and D_1 and D_2 denote dense subsets of K_1 and K_2 respectively. For a continuous mapping $T: K_1 \to K_2$, define $T^*: C(K_2) \to C(K_1)$ by $T^*f(x) = f(Tx)$ for every $f \in C(K_2)$ and $x \in K_1$.

LEMMA 3.1. Let $T: K_1 \to K_2$ be a continuous mapping such that $T(D_1) \subseteq D_2$. If H is a uniformly bounded $t_p(D_2)$ -compact convex subset of $C(K_2)$ then $T^{\wedge}(H)$ is also a uniformly bounded $t_p(D_1)$ -compact convex subset of $C(K_1)$.

Proof. It is clear that $T^{\wedge}(H)$ is uniformly bounded. Since T^{\wedge} is linear, $T^{\wedge}(H)$ is convex. To prove that $T^{\wedge}(H)$ is $t_p(D_1)$ -compact, it suffices to prove that

 $T^{\wedge}: C(K_2) \to C(K_1)$ is $t_p(D_2)$ - $t_p(D_1)$ -continuous. Let $f \in C(K_2)$ be arbitrary and let $\{f_{\alpha}\}$ be a net in $C(K_2)$ which converges to f

in $t_p(D_2)$ -topology. Then $\lim_{\alpha} f_{\alpha}(y) = f(y)$ for each $y \in D_2$. Since $T(D_1) \subseteq D_2$, $\lim_{\alpha} T^{\wedge} f_{\alpha}(x) = \lim_{\alpha} f_{\alpha}(Tx) = f(Tx) = T^{\wedge} f(x)$ for each $x \in D_1$. Therefore $\{T^{\wedge} f_{\alpha}\}$ converges to $T^{\wedge} f$ in $t_p(D_1)$ -topology. Hence $T^{\wedge} : C(K_2) \to C(K_1)$ is $t_p(D_2) - t_p(D_1)$ -continuous at f, and so T^{\wedge} is $t_p(D_2) - t_p(D_1)$ -continuous.

THEOREM 3.2. Let $T: K_1 \to K_2$ be a continuous mapping such that $T(D_1) \subseteq D_2$ and H a uniformly bounded $t_p(D_2)$ -compact subset of $C(K_2)$. If H is a $P(D_2)$ -set in $C(K_2)$ then $T^{\wedge}(H)$ is a $P(D_1)$ -set in $C(K_1)$.

Proof. Suppose that H is a $P(D_2)$ -set in $C(K_2)$. By Lemma 3.1, $T^{\wedge}(H)$ is a uniformly bounded $t_p(D_1)$ -compact subset of $C(K_1)$. Let $\{d_n\}$ be a sequence in D_1 . Then $\{Td_n\}$ is a sequence in D_2 because $T(D_1) \subseteq D_2$. Since H is a $P(D_2)$ -set in $C(K_2)$, $\{Td_n\}$ has a subsequence $\{Td_{n_j}\}$ such that $\{h(Td_{n_j})\}$ converges for each $h \in H$. Hence $\{T^{\wedge}h(d_{n_j})\}$ converges for each $h \in H$. This implies that $T^{\wedge}(H)$ is a $P(D_1)$ -set in $C(K_1)$.

Combining Theorem 2.2 and Theorem 3.2 we obtain:

COROLLARY 3.3. Let $T: K_1 \to K_2$ be a continuous mapping such that $T(D_1) \subseteq D_2$ and H a uniformly bounded $t_p(D_2)$ -compact convex subset of $C(K_2)$. If H has the WRNP in $C(K_2)$ then $T^{\wedge}(H)$ has the WRNP in $C(K_1)$.

LEMMA 3.4. Suppose that $T: K_1 \to K_2$ is continuous and $C(K_2)$ is equicontinuous. If H is a uniformly bounded $t_p(D_2)$ -compact convex subset of $C(K_2)$ then $T^{\wedge}(H)$ is also a uniformly bounded $t_p(D_1)$ -compact convex subset of $C(K_1)$.

Proof. It is clear that $T^{\wedge}(H)$ is uniformly bounded and convex. To prove that $T^{\wedge}(H)$ is $t_p(D_1)$ -compact, it suffices to prove that $T^{\wedge}: C(K_2) \to C(K_1)$ is $t_p(D_2) - t_p(D_1)$ -continuous. Let $f \in C(K_2)$ be arbitrary and let $\{f_{\alpha}\}$ be a net in $C(K_2)$ which converges to f in $t_p(D_2)$ -topology. Then $\lim_{\alpha} f_{\alpha}(y) = f(y)$ for each $y \in D_2$. Since D_2 is dense in K_2 , for each $x \in D_1$ there exists a net $\{y_{\beta}\}$ in D_2 such that $\lim_{\beta} y_{\beta} = Tx$. Therefore $\lim_{\alpha} f_{\alpha}(y_{\beta}) = f(y_{\beta})$ for each β and $\lim_{\beta} f(y_{\beta}) = f(Tx)$. We

will show that $\lim_{\alpha} f_{\alpha}(Tx) = f(Tx)$.

Let $\varepsilon > 0$ be given. Since $\lim_{\beta} f(y_{\beta}) = f(Tx)$, there exists a β_1 such that $\beta \geq \beta_1$ implies $|f(y_{\beta}) - f(Tx)| < \frac{\varepsilon}{3}$. Since $\{f_{\alpha}\}$ is equicontinuous, there exists an open neighborhood U of Tx such that $|f_{\alpha}(y) - f_{\alpha}(Tx)| < \frac{\varepsilon}{3}$ for each α and $y \in U$. Since $\lim_{\beta} y_{\beta} = Tx$, there exists a β_2 such that $\beta \geq \beta_2$ implies $y_{\beta} \in U$. Hence $\beta \geq \beta_2$ implies $|f_{\alpha}(y_{\beta}) - f_{\alpha}(Tx)| < \frac{\varepsilon}{3}$ for all α . Choose a β_0 such that $\beta_1 \leq \beta_0$ and $\beta_2 \leq \beta_0$. Since $\lim_{\alpha} f_{\alpha}(y_{\beta_0}) = f(y_{\beta_0})$, there exists an α_0 such that $\alpha \geq \alpha_0$ implies $|f_{\alpha}(y_{\beta_0}) - f(y_{\beta_0})| < \frac{\varepsilon}{3}$. Therefore

$$\alpha \ge \alpha_0 \Rightarrow |f_{\alpha}(Tx) - f(Tx)|$$

$$\le |f_{\alpha}(Tx) - f_{\alpha}(y_{\beta_0})| + |f_{\alpha}(y_{\beta_0}) - f(y_{\beta_0})| + |f(y_{\beta_0}) - f(Tx)|$$

$$< \varepsilon$$

This implies that $\lim_{\alpha} f_{\alpha}(Tx) = f(Tx)$. Thus $\lim_{\alpha} T^{\wedge} f_{\alpha}(x) = T^{\wedge} f(x)$ for each $x \in D_1$, and so $\{T^{\wedge} f_{\alpha}\}$ converges to $T^{\wedge} f$ in $t_p(D_1)$ -topology. Therefore $T^{\wedge} : C(K_2) \to C(K_1)$ is $t_p(D_2) - t_p(D_1)$ -continuous at $f \in C(K_2)$, and so T^{\wedge} is $t_p(D_2) - t_p(D_1)$ -continuous.

THEOREM 3.5. Suppose that (K_2, ρ) is a compact metric space, $T: K_1 \to K_2$ is a continuous mapping and $C(K_2)$ is equicontinuous. If a uniformly bounded $t_p(D_2)$ -compact subset H of $C(K_2)$ is a $P(D_2)$ -set in $C(K_2)$ then $T^{\wedge}(H)$ is a $P(D_1)$ -set in $C(K_1)$.

Proof. By Lemma 3.4, $T^{\wedge}(H)$ is uniformly bounded $t_p(D_1)$ -compact in $C(K_1)$. Let $\{d_n\}$ be a sequence in D_1 , and let $\varepsilon > 0$ be given. Since H is uniformly bounded and equicontinuous, H is relatively compact in norm topology by Arzela-Ascoli theorem. Hence there exists a $\delta > 0$ such that $\rho(s,t) < \delta$ implies $\sup_{h \in H} |h(s) - h(t)| < \frac{\varepsilon}{2}$. Since D_2 is dense in K_2 , for each $n \in \mathbb{N}$ there exists $e_n \in D_2$ such that $\rho(Td_n, e_n) < \delta$. Since H is a $P(D_2)$ -set in $C(K_2)$, $\{e_n\}$ has a subsequence $\{e_{n_j}\}$ such that $\{h(e_{n_j})\}$ converges for each $h \in H$. Let $\lim_j h(e_{n_j}) = a_h$ for each $h \in H$. Then for each $h \in H$ there exists $N_h \in \mathbb{N}$ such that $j \geq N_h$ implies $|h(e_{n_j}) - a_h| < \frac{\varepsilon}{2}$. Therefore

$$j \ge N_h \Rightarrow \left| h(Td_{n_j}) - a_h \right|$$

$$\le \left| h(Td_{n_j}) - h(e_{n_j}) \right| + \left| h(e_{n_j}) - a_h \right|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $\lim_{j} h(Td_{n_j}) = a_h$ for each $h \in H$. That is, $\lim_{j} T^{\wedge} h(d_{n_j}) = a_h$ for each $h \in H$. Therefore $\{T^{\wedge} h(d_{n_j})\}$ converges for each $h \in H$. This implies that $T^{\wedge}(H)$ is a $P(D_1)$ -set in $C(K_1)$.

Combining Theorem 2.2 and Theorem 3.5 we obtain:

COROLLARY 3.6. Suppose that (K_2, ρ) is a compact metric space, $T: K_1 \to K_2$ is a continuous mapping and $C(K_2)$ is equicontinuous. If a uniformly bounded $t_p(D_2)$ -compact convex subset H of $C(K_2)$ has the WRNP in $C(K_2)$ then $T^{\wedge}(H)$ has the WRNP in $C(K_1)$.

References

- [1]. B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl., 182 (1994), 41-68.
- [2]. J. Diestel and J. J. Uhl Jr., Vector measures, Math. Surveys., Vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [3]. L. H. Riddle, The geometry of weak Radon-Nikodym sets in dual Banach spaces, Proc. Amer. Math. Soc., Vol. 86, No. 3 (1982), 433-438.
- [4]. ———, Dunford-Pettis operators and weak Radon-Nikodym sets, Proc. Amer. Math. Soc., Vol. 91, No. 2 (1984), 254-256.
- [5]. L. H. Riddle, E. Saab and J. J. Uhl Jr., Sets with the weak Radon-Nikodym property in dual Banach spaces, Indiana Univ. Math. J., Vol. 32, No. 4 (1983), 527-541.
- [6]. E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc., Vol. 86, No. 2 (1982), 307-311.
- [7]. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. Vol. 307, 1984.

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea

