GEOMETRIC CONSIDERATION OF DUALITY IN MULTIOBJECTIVE OPTIMIZATION WITH SET FUNCTIONS

JUN YULL LEE

1. Introduction.

In ordinary scalar convex optimization, the Lagrange multiplier theorem asserts the existence of a supporting hyperplane for the epigraph of the primal map[5]. On the other hand, in multiobjective optimization, the corresponding theorem [7, Theorem 2.3] implies the existence of a conical variety (i.e., a translation of a cone) which supports the epigraph of primal map. In this paper, we show that a similar assertion is true for the multiobjective programming problem with set functions.

2. Multiobjective Programming Problem with Set Functions.

Let (X, \mathcal{A}, μ) be a finite, atomless measure space and $L^1(X, \mathcal{A}, \mu)$ be separable. Then,by considering characteristic function χ_{Ω} of Ω in \mathcal{A} , we can embed \mathcal{A} into $L^{\infty}(X, \mathcal{A}, \mu)$. In this setting for $\Omega, \Lambda \in \mathcal{A}$, and $\alpha \in I = [0, 1]$, there exists a sequence, called a Morris sequence, $\{\Gamma_n\} \subset \mathcal{A}$ such that

$$\chi_{\Gamma_n} \xrightarrow{w^*} \alpha \chi_{\Omega} + (1 - \alpha) \chi_{\Lambda},$$

where $\xrightarrow{w^*}$ denotes the weak*- convergence of elements in $L^{\infty}(X, \mathcal{A}, \mu)$ [6].

A subfamily S is said to be *convex* if for every $(\alpha, \Omega, \Lambda) \in I \times S \times S$ and every Morris sequence $\{\Gamma_n\}$ associated with $(\alpha, \Omega, \Lambda)$ in A, there exists a subsequence $\{\Gamma_{n_k}\}$ of $\{\Gamma_n\}$ in S. In [1], if $S \subseteq A$ is convex, then the $weak^*$ -closure cl(S) of χ_S in $L^{\infty}(X, A, \mu)$ is the $weak^*$ -closed convex hull of χ_S , and $\overline{A} = \{f \in L^{\infty} : 0 \leq f \leq 1\}$.

Received July 13, 1995.

DEFINITION 2.1. Let S be a convex subfamily of A. Let K be a convex cone of R^n . A set function $H: S \to R^n$ is called K-convex, if given $(\alpha, \Omega_1, \Omega_2) \in I \times S \times S$ and Morris-sequence $\{\Gamma_n\}$ in A associated with $(\alpha, \Omega_1, \Omega_2)$, there exists a subsequence $\{\Gamma_{n_k}\}$ of $\{\Gamma_n\}$ in S such that

$$\limsup_{k \to \infty} H(\Gamma_{n_k}) \leq_K \alpha H(\Omega_1) + (1 - \alpha) H(\Omega_2),$$

where \limsup is taken over each component. And $x <_K y$ denotes $y - x \in int(K), x \le_K y$ denotes $y - x \in K \setminus \{0\}$, and $x \le_K y$ denotes $y - x \in K$.

DEFINITION 2.2. A set function $H = (H_1, H_2, \ldots, H_n) : S \to \mathbb{R}^n$ is called weak*-continuous on S if for each $f \in cl(S)$ and for each $j = 1, 2, \ldots, n$, the sequence $\{H_j(\Omega_k)\}$ converges to the same limit for all $\{\Omega_k\}$ with $\chi_{\Omega_k} \xrightarrow{w^*} f$.

Now multiobjective programming problem with set functions can be described as follows:

which has been defined as the problem finding all feasible efficient D- or properly efficient D-solution with respect to the pointed closed convex cones D and Q of Euclidean spaces R^p and R^m with nonempty interiors, D^o and Q^o , respectively. That is, letting $S' = \{\Omega \in S : G(\Omega) \leq_Q 0\}$, we want to find $\Omega^* \in S'$ such that

$$(F(S') - F(\Omega^*)) \cap (-D) = \{0\}, \quad \emptyset \text{ if } 0 \notin D$$

or

$$cl(p(F(S') + D - F(\Omega^*))) \cap (-D) = \{0\}, \emptyset \text{ if } 0 \notin D,$$

where the set $p(S) = \{\alpha y : \alpha > 0, y \in S\}$ is the projecting cone for a set $S \subset \mathbb{R}^p$. We denote the set of efficient D-solutions by $\mathcal{E}(F(S'), D)$ and the set of properly efficient D-solutions by $\mathcal{PE}(F(S'), D)$.

For the primal problem (P), we assume that $F: \mathcal{S} \to R^p$, $G: \mathcal{S} \to R^m$ are D-convex, Q-convex, respectively and $weak^*$ -continuous. Under this assumptions we have the Lagrange multiplier theorem as in usual multiobjective optimization problems. The set of $p \times m$ matrices $\{M \in R^{p \times m}: MQ \subset D\}$ is denoted by \mathcal{M} .

THEOREM 2.3. [3] Let Ω^* be a properly efficient D-solution to the problem (P). If there is $\Omega_o \in \mathcal{S}$ such that $G(\Omega_o) <_Q 0$, then there exists $M^* \in \mathcal{M}$ such that

- (1) $F(\Omega^*) \in Min_D\{F(\Omega) + M^*G(\Omega) : \Omega \in \mathcal{S}\}$
- (2) $M^*F(\Omega^*) = 0$.

In fact, $F(\Omega^*) \in Min_D cl(F(\Omega) + M^*G(\Omega): \Omega \in \mathcal{S})$.

The generalized Slater's constraint qualification in Theorem 2.3 that there exists $\Omega_o \in \mathcal{S}$ such that $G(\Omega_o) <_Q 0$ is assumed in the sequel.

The primal problem (P) is embedded into a family of perturbed problems:

$$\begin{array}{ccc} & Min_D & F(\Omega) \\ (\mathbf{P}_u) & \text{subject to} & \Omega \in \mathcal{S} \\ & \text{and} & G(\Omega) \leqq_Q u. \end{array}$$

We denote by S(u) the set $\{\Omega \in S : G(\Omega) \leq_Q u\}$, and by Y(u) the set F(S(u)).

DEFINITION 2.4. Perturbed (or primal) maps are defined on \mathbb{R}^m by

$$W(u) = Min_D F(\mathcal{S}(u))$$
 and $\overline{W}(u) = Min_D cl(F(\mathcal{S}(u)))$

The original problem (P) can be therefore regarded as determining $F^{-1}(W(0)) \cap S$. However, more satisfactory results are obtained if \overline{W} is used instead.

For each $M \in \mathcal{M}$, we define certain maps for (P) on \mathcal{M} by

$$\begin{split} &\Phi(M) = Min_D\{F(\Omega) + MG(\Omega) : \Omega \in \mathcal{S}\} \\ &\overline{\Phi}(M) = Min_D \ cl(\{F(\Omega) + MG(\Omega) : \Omega \in \mathcal{S}\}) \end{split}$$

The map Φ and $\overline{\Phi}$ are called dual maps for (P).

REMARK 2.5.

- (1) $MG(\cdot): \mathcal{S} \to \mathbb{R}^p$ is D-convex on \mathcal{S} .
- (2) $L(\cdot, M) = F(\cdot) + MG(\cdot)$ is D-convex and w^* -continuous.
- (3) $cl({F(S) + MG(\Omega)})$ is D-convex subset of \mathbb{R}^p
- (4) For each $M \in \mathcal{M}$, we have

$$cl(\{L(\Omega, M) : \Omega \in \mathcal{S}\}) + D = \overline{\Phi}(M) + D,$$

since $cl(\{L(\Omega, M) : \Omega \in S\})$ is compact and D-convex.

(5) For any u with $S(u) \neq \emptyset$, $[clY(u)] + D = \overline{W}(u) + D$.

The relationship between the primal map \overline{W} and the dual map $\overline{\Phi}$ now can be established.

THEOREM 2.6. [4] For any $M \in \mathcal{M}$, the following equalities hold.

$$\overline{\Phi}(M) = Min_D \bigcup_{u \in \zeta} (\overline{W}(u) + Mu) = Min_D \bigcup_{u \in \zeta^o} (\overline{W}(u) + Mu)$$

where $\zeta = \{u \in \mathbb{R}^m \colon \mathcal{S}(u) \neq \emptyset\}$ and $\zeta^o = \{u \in \mathbb{R}^m \colon \{\Omega \in \mathcal{S} \colon G(\Omega) <_Q u\} \neq \emptyset\}\}.$

COROLLARY 2.7. If Ω^* is a properly efficient D-solution to the problem (P) with generalized Slater's constraint qualification, then there exists an $M^* \in \mathcal{M}$ such that

$$F(\Omega^*) \in \overline{\Phi}(M^*) \cap \Phi(M^*) \subset Min_D[\bigcup_{u \in \zeta}(\overline{W}(u) + M^*u)].$$

proof. The proof is an immediate consequence of Theorems 2.3 and 2.6.

3. A Supporting Conical Variety.

All assumptions on F, G, D and Q of section 1 and 2 are inherited. Furthermore, D is assumed to be a polyhedral convex cone. Then D is the set of all solutions to some finite system of homegenous weak linear inequalities. Hence there exists an $s \times p$ matrix U_1 such that

$$(1) D = \{ y \in \mathbb{R}^p : U_1 \cdot y \ge 0 \},$$

where the row vectors of U_1 are generators of D^o . Since D is pointed, the $s \times p$ matrix U_1 has the full rank p. Here $\mathcal{M} = \{M \in \mathbb{R}^{m \times p} : MQ \subset D\}$.

DEFINITION 3.1. The D-epigraph of W is defined by

$$D\text{-epi }W = \{(u, y) \in \mathbb{R}^m \times \mathbb{R}^p : u \in \zeta, y \in W(u) + D\}.$$

Here $W(u) = Min_D Y(u)$ and $\zeta = \{u : \mathcal{S}(u) \neq \emptyset\}$ were introduced in section 2. The D-epigraph of \overline{W} is defined similarly. Unlike the case of ordinary convex multiobjective optimization problem, D-cpi W may not be a closed convex set in $R^m \times R^p$. But we can see that cl(D-epi W) is convex. The following lemma is similar to Lemma 2.4 [7].

LEMMA 3.2. For a given $M \in \mathcal{M}$, the following conditions are equivalent:

(i) $F(\Omega) + MG(\Omega) \nleq_D F(\Omega^*) + MG(\Omega^*)$ for any $\Omega \in S$;

(ii)
$$U_1F(\Omega) + U_1MG(\Omega) \not\leq_{R^*_+} U_1F(\Omega^*) + U_1MG(\Omega^*)$$
 for any $\Omega \in \mathcal{S}$.

Proof. Let $Y = \{F(\Omega) + MG(\Omega) : \Omega \in \mathcal{S}\}$. Let $y = F(\Omega) + MG(\Omega)$ and $y^* = F(\Omega^*) + MG(\Omega^*)$. Then $y^* \notin \mathcal{E}(Y, D)$ if and only if there is a $y \in Y$ such that $y^* - y \in D \setminus \{0\}$. This is so since $Ker \ U_1 = \{0\}, y^* - y \in D \setminus \{0\}$ if and only if $U_1(y^* - y) \geq 0$. That is, $U_1y^* \geq U_1y$ if and only if $U_1y^* \notin \mathcal{E}(U_1y, R_+^s)$.

Now we consider the above lemma for D-epi W.

LEMMA 3.3. For $M \in \mathcal{M}$, the following are equivalent:

(i) For some $(u^*, y^*) \in D$ -epi W and all $(u, y) \in D$ -epi W,

$$y + Mu \not\leq y^* + Mu^*$$
;

(ii) For some $\Omega^* \in \mathcal{S}$ and all $\Omega \in \mathcal{S}$,

$$F(\Omega) + MG(\Omega) \not\leq F(\Omega^*) + MG(\Omega^*).$$

Proof. It is similar to that of [7, Lemma 2.5].

Following Nakayama [7], we define a supporting conical variety as follows: For $M \in \mathcal{M}$, let $U_2 = MU_1$ and define a cone K in $\mathbb{R}^m \times \mathbb{R}^p$ by

(2)
$$K = \{(u, y) : U_1 y + U_2 u \le 0, u \in \mathbb{R}^m, y \in \mathbb{R}^p\}.$$

Let us define the lineality space of K, $K \cup (-K)$, by $\ell(K)$. Since the $s \times p$ matrix U_1 has the maximal rank p,

$$\ell(K) = \{(u, y) : U_1 y + U_2 u = 0\}$$
$$= \{(u, y) : y + U_1 u = 0\}.$$

Since row vectors of U_1 are generators of D^o , $MQ \subset D$ implies that every row vector of M_2 is in Q^o .

DEFINITION 3.4. We say that K supports D-epi W at (u^*, y^*) if $K \cup [cl(D\text{-epi }W) - (u^*, y^*)] \subset \ell(K)$. We call (u^*, y^*) the supporting point of D-epi W. The set $\tilde{K} = K + (u^*, y^*)$ is called a conical variety of K. We also say that \tilde{K} supports D-epi W at (u^*, y^*) .

The existence of a supporting conical variety of D-epi W at a properly efficient point is guaranteed by the following theorem.

THEOREM 3.5. Assume Slater's constraint qualification on (P). If Ω^* is a properly efficient D-solution to (P), then there exists a supporting conical variety K of D-epi W at $(G(\Omega^*), F(\Omega^*))$.

Proof. Since Ω^* is properly efficient, from Theorem 2.1, there exists an M^* such that

(3)
$$F(\Omega) + M^*G(\Omega) \not\leq_D F(\Omega^*) + M^*G(\Omega^*)$$
 for all $\Omega \in \mathcal{S}$.

If $(u,y) \in D$ -epi W, then $y \in W(u) + D$ so that for some $\Omega' \in S(u), F(\Omega') \subseteq_D y$ and $G(\Omega') \subseteq_Q u$. Let $K = \{(u,y) : U_1y + U_1M^*u \subseteq 0\}$, where U_1 is given in (1). Then from (3) and $F(\Omega') + M^*G(\Omega) \not\leq_D y + M^*u$, we have

$$y + M^*u \not\leq_D F(\Omega^*) + M^*G(\Omega^*).$$

Therefore, by Lemma 3.2,

(4)
$$U_1(y - F(\Omega^*)) + U_2(u - G(\Omega^*)) \nleq 0.$$

Since $(u, y) \in D$ -epi W was arbitrary, (4) holds for all $(u, y) \in D$ -epi W. Then, equivalently, K supports D-epi W at $(G(\Omega^*), F(\Omega^*))$.

We consider a relationship between a conical variety and supporting hyperplanes. First we define several kinds of half-spaces associated with a hyperplane. Let $H(\lambda, \mu: r)$ be a hyperplane in $R^m \times R^p$ with the normal (λ, μ) such that

$$H(\lambda, \mu : r) = \{(u, y) \in \mathbb{R}^m \times \mathbb{R}^p : \langle \mu, y \rangle + \langle \lambda, u \rangle - r = 0\}.$$

Associated with the hyperplane $H(\lambda, \mu: r)$, half-spaces are defined as follows:

$$H^+(\lambda, \mu : r) = \{(u, y) \in \mathbb{R}^m \times \mathbb{R}^p : <\mu, y>+<\lambda, u>-r\geq 0\}$$

$$H_+^o(\lambda, \mu : r) = \{(u, y) \in \mathbb{R}^m \times \mathbb{R}^p : <\mu, y>+<\lambda, u>-r>0\}$$

Similarly, H_{-} and H_{-}^{o} are defined by replacing \geq (respectively, =) with \leq (respectively, =).

LEMMA 3.6. [7,Lemma 2.6] The lineality space of the cone K defined in (2) with $U_2 = U_1 M$ is included in the hyperplane $H(\lambda, \mu : 0)$ if and only if the matrix satisfies $M^t \mu = \lambda$.

Let $H(\lambda, \mu)$ denote the supporting hyperplane [8, pp.99-100] for Depi W with the inner normal (λ, μ) , that is $H(\lambda, \mu) = H(\lambda, \mu : \tilde{r})$,
where $\tilde{r} = \sup\{r : H(\lambda, \mu : r) \supset D$ -epi W.

LEMMA 3.7. [7, Lemma 2.7] For any supporting hyperplane $H(\lambda, \mu)$ for D-epi W at some $(u, y) \in D$ -epi W, we have that $\lambda \in Q^{\circ}$ and $\mu \in D^{\circ}$.

The next two theorems clarify the relationship between supporting hyperplanes and supporting conical varieties. Note that similar results of Nakayama [7] are not applied directly because the D-epi W is not guaranteed to be convex in the programming problem with set functions. Thus we assume more restriction on the perturbed feasible set $\{\Omega \in \mathcal{S}: G(\Omega) \leq_Q u\}$ in the second theorem.

THEOREM 3.8. Let $H(\lambda, \mu)$ be the supporting hyperplane for D – epiW with supporting point (u^*, y^*) . Assume that μ is in D^o . Let K be a cone defined in (9) for some $M \in \mathcal{M}$, and let $\ell(\tilde{K})$ be the linear

variety of $\ell(K)$ passing through (u^*, y^*) . If $\ell(\tilde{K})$ is included in $H(\lambda, \mu)$, then K supports D-epi W at (u^*, y^*) .

Proof. It is similar to that of [7, Lemma 2.8]. Conversely, given a conical variety of a cone K, we have a supporting hyperplane of D - epiW.

THEOREM 3.9. Assume that $\zeta^o = \zeta$ in the problem (P). If some conical variety \tilde{K} of a cone K supports D-epi W at (u^*, y^*) , then there exists a hyperplane $H(\lambda, \mu : r)$ with $\mu \neq 0$ supporting D-epi W at (u^*, y^*) such that

$$\ell(\tilde{K}) \subset H(\lambda, \mu : r).$$

Proof. Suppose that $K = \{(u,y) \in \mathbb{R}^m \times \mathbb{R}^p : U_1 + U_1 M u \leq 0\}$ for some M and that its conical variety K supports D-epi W, at (u^*, y^*) . Then $U_1(y-y^*) + U_1 M (u-u^*) \not\leq 0$ for all $(u,y) \in D$ -epi W, or $y + M u \not\leq_D y^* + M u^*$ for all $(u,y) \in D$ -epi W. Note that $\{U_1y + U_1 M u : (u,y) \in D$ -epi $W\}$

(5) $\subset \{U_1y + U_1Mu : (u,y) \in D\text{-epi }\overline{W}\}$ where $\overline{W}(u) = Min_D cl(F(S(u)))$ and $S(u) = \{\Omega \in S : G(\Omega) \leq_Q u\}$. Since ζ^o is convex and \overline{W} is D-convex, since \overline{W} is a D-convex point -to-set map on the convex set ζ^o , it follows that the set defined in (5) is a convex set. Using Lemma 3.7 for $D\text{-epi }\overline{W}$, we obtain the result. The rest of the proof is similar to that of [7, Lemma 2.8].

References

- J.H.Chou, W.S.Hsia, and T.Y.Lee, Epigraphs of Convex Set Functions, Journal
 of Mathematical Analysis and Applications 118 (1986), 247-254.
- W.S.Hsia, T.Y.Lee, Lagrangian Functions and Duality Theory in Multiobjective Programming with Set Functions, Journal of Optimization Theory and Applications 57 (1988), 239-241.
- W.S.Hsia, T.Y.Lee, and J.Y.Lee, Lagrange Multiplier Theorem of Multiobjective Programming Problems with Set Functions, Journal of Optimization Theory and Applications 70 (1991), 137-155.
- J.Y.Lee, Weak Duality in Multiobjective Optimization with Set Functions, Kangweon-Kyungki Mathematical Journal 1 (1993), 65-70.
- 5. D.G.Luenberger, Optimization by Vector Space Method, Wiley, New York, 1969.
- 6. R.J.T.Morris, Optimal Constraind Selection of a Measurable Subset, Journal of Mathematical Analysis and Applicationa 70 (1979), 546-562.

- 7. H.Nakayama, Geometric Consideration of Duality in Vector Optimaization, Journal of Optimization Theory and Allpications 44 (1984), 625-655.
- 8. R.T.Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
- 9. Y.Sawaragi, H.Nakayama and T.Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, 1985.

Department of Mathematics Education Kangwon National University Chunchon, 200-701, Korea

