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AN ITERATIVE ROW-ACTION METHOD FOR
MULTICOMMODITY TRANSPORTATION PROBLEMS

Yong Joon Ryang

Abstract. The optimization problems with quadratic constraints

often appear in various fields such as network flows and computer to-

mography. In this paper, we propose an algorithm for solving those
problems and prove the convergence of the proposed algorithm.

1. Introduction

Consider the multicommodity transportation problem with convex
quadratic cost function

minimize
1
2
(x− x0)T Q(x− x0)

subject to γ ≤ Ax ≤ δ

(1.1)

where A = (aij) is a given m×n matrix whose ith row is aT
i , x0 ∈ Rn,

r, δ ∈ Rm are given vectors, Q is a given n × n symmetric positive-
definite matrix and the superscript T denotes transposition. We as-
sume that matrix A does not contain any row of which elements are
all zero. The pairs of inequality constraints in problem (1.1) are re-
ferred to as interval constraints. Interval constraints often appear in
optimization problems that arise in various fields such as network flows
and computer tomography.

Recently, various row-action methods [1,2,8], which originate from
the classical Hildreth’s method[4], have drawn much attention. Those
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methods are particularly useful for large and sparse problems, because
they act upon rows of the original coefficient matrix one at a time.
They are adaptations of coordinate descent methods such as Gauss-
Seidel method or its variants, for solving the dual of a given quadratic
programming problem. To obtain the solution of problem (1.1), it will
be helpful to consider the dual of problem (1.1).

minimize φ(z)
subject to z ≥ 0

(1.2)

where φ : R2m → R is a convex quadratic function defined by

(1.3) φ(z) =
1
2
zT ÂQ−1ÂT z + zT (b− Âx0),

Â is the 2m× n matrix

(1.4) Â = (a1,−a1, a2,−a2, · · · , am,−am)T ,

b is the 2m-vector

(1.5) b = (δ1,−γ1, δ2,−γ2, · · · , δm,−γm)T ,

and z is the 2m-vector

(1.6) z = (z+
1 , z−1 , z+

2 , z−2 , · · · , z+
m, z−m)T .

Note that (z+
i , z−i ) is a pair of dual variables associated with the ith

pair of the interval constraints of (1.1), i.e., z+
i and z−i correspond

to the constraints aT
i x ≤ δi and −aT

i x ≤ −γi, respectively. By taking
into account the special structure of problem (1.1), Herman and Lent[3]
extended Hildreth’s algorithm to deal with interval constraints directly,
thereby economizing the number of dual variables by half [2].

Ryang[7] have recently proposed a method that deal with the inter-
val constraints in a direct manner.

In this paper we propose a method for solving those problems, which
may be regard as the application of the Jacobi method to the dual
of the original problems. We prove the convergence of the proposed
algorithm. In section 2, a row-action method is presented. In section
3, the proposed algorithm is shown to converge to the solution of (1.1).
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2. Row-Action Method

In this section, we state an algorithm for solving the interval con-
straint problem (1.1).

Algorithm 2.1.
Initialization : Let (x(0), x(0)) := (x0, 0), k := 0 and choose a relax-

ation parameter ω > 0.
Iteration k :
(i) For i = 1, · · · ,m,

if z
+(k)
i ≥ z

−(k)
i then

c
+(k)
i := min{z+(k)

i , ω∆(k)
i },

c
−(k)
i := min{z−(k)

i ,−ωΓ(k)
i + c

+(k)
i }

else

c
−(k)
i := min{z−(k)

i ,−ωΓ(k)
i },

c
+(k)
i := min{z+(k)

i , ω∆(k)
i + c

−(k)
i }

endif

z
+(k+1)
i := z

+(k)
i − c

+(k)
i ,

z
−(k+1)
i := z

−(k)
i − c

−(k)
i ,

where

∆(k)
i :=

δi − aT
i x(k)

αi
,

Γ(k)
i :=

γi − aT
i x(k)

αi
.

(ii) Let

x(k+1) := x(k) + Q−1
m∑

i=1

(c+(k)
i − c

−(k)
i )ai.

where

(2.1) αi = aT
i Q−1ai, i = 1, · · · ,m.
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Note that αi are all positive, since Q is positive definite and ai 6= 0.
Note also that, since γi ≤ δi, the following inequalities are always
satisfied :

(2.2) Γ(k)
i ≤ ∆(k)

i , i = 1, · · · ,m.

Lemma 2.1. Let {x(k)} and {z(k)} be generated by Algorithm 2.1.
Then for all k, we have

(2.3) x(k) = x0 −Q−1ÂT z(k),

(2.4) z(k) ≥ 0,

(2.5) z
+(k)
i · z−(k)

i = 0, i = 1, · · · ,m.

Proof. (2.3) and (2.4) directly follow from the manner in which
{x(k)} and {z(k)} are updated in the algorithm. We prove (2.5) by
induction. For k = 0, it trivially holds. For each i, we assume
z
+(k)
i · z−(k)

i = 0 and show that it is also true for k + 1. Without
loss of generality, we may only consider the case where x

+(k)
i ≥ x

−(k)
i ,

because a parallel argument is valid for the opposite case. First note
that, when z

+(k)
i ≥ z

−(k)
i , (2.4) implies z

+(k)
i ≥ 0 and z

−(k)
i = 0.

Moreover, if z
+(k)
i ≥ ω∆(k)

i holds, then we have c
+(k)
i = ω∆(k)

i and
c
−(k)
i = min{0, ω(∆(k)

i − Γ(k)
i )} = 0, where the last equality follows

from (2.2). Therefore we must have z
−(k+1)
i = 0. On the other hand, if

z
+(k)
i < ω∆(k)

i holds, then we have c
+(k)
i = z

+(k)
i , which in turn implies

z
+(k+1)
i = 0. Thus (2.5) is satisfied for k + 1. � �

For each i, either z
+(k)
i = 0 or z

−(k)
i = 0 must always hold by (2.5).

Moreover, we can deduce the following relations :
If z

+(k)
i ≥ z

−(k)
i , i.e., z

+(k)
i ≥ 0, z

−(k)
i = 0, then

(2.6) (c+(k)
i , c

−(k)
i ) =


(ω∆(k)

i , 0), if z
+(k)
i ≥ ω∆(k)

i ,

(z+(k)
i , 0), if ω∆(k)

i ≥ z
+(k)
i ≥ ωΓ(k)

i ,

(z+(k)
i ,−ωΓ(k)

i + z
+(k)
i ), if ωΓ(k)

i ≥ z
+(k)
i .
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If z
+(k)
i ≤ z

−(k)
i , i.e., z

+(k)
i = 0, z

−(k)
i ≥ 0, then

(2.7)

(c+(k)
i , c

−(k)
i ) =


(0,−ωΓ(k)

i ), if z
−(k)
i ≥ −ωΓ(k)

i ,

(0, z
−(k)
i ), if − ωΓ(k)

i ≥ z
−(k)
i ≥ −ω∆(k)

i ,

(ω∆(k)
i + z

−(k)
i , z

−(k)
i ), if − ω∆(k)

i ≥ z
−(k)
i .

3. Convergence of Algorithm 2.1

In this section, we prove convergence of Algorithm 2.1. First, we con-
sider an algorithm for solving general linear complementarity problems.
Then we show that Algorithm 2.1 can be reduced to this algorithm.

Let us consider symmetric linear complementarity problem, which
is to find y ∈ Rl such that

(3.1) Mu + q ≥ 0, y ≥ 0, yT (My + q) = 0,

where M is an l × l symmetric matrix and q is a vector in Rl. If M is
positive semidefinite, then this problem is equivalent to the problem

minimize
1
2
yT My + qT y

subject to y ≥ 0.

(3.2)

Mangasarian [5] proposes the following algorithm for problem (3.1).

Algorithm 3.1.
Initialization : Let y(0) := 0 and k := 0.
Iteration k : Choose an l×l diagonal matrix E(k) and an l×l matrix

K(k), and let

(3.3) y(k+1) := (y(k) − ωE(k)(My(k) + q + K(k)(y(k+1) − y(k))))+,

where, for any vector y, y+ denotes the vector with elements (y+)i =
max{0, yi}.

Various choices for {E(k)} and {K(k)} are possible and each partic-
ular choice yields a different algorithm [5]. In the following, we show
that Algorithm 2.1 is a particular realization of Algorithm 3.1.
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First observe that problem (1.2) can be written as problem (3.2)
with l = 2m by setting

(3.4) M = ÂQ−1ÂT ,

(3.5) q = b− Âz0,

(3.6) y = z.

Note that the positive definiteness of Q implies that the matrix M
defined by (3.4) is positive semidefinite. We will show that Algorithm
2.1 can be reduced to Algorithm 3.1 by choosing matrices E(k) and
K(k) appropriately.

Specifically, let E(k) and K(k) be 2m× 2m matrices such that

(3.7) E(k) =

D−1
1 0

. . .
0 D−1

m

 ,

(3.8) K(k) =

K
(k)
1 0

. . .
0 K

(k)
m

 ,

where

(3.9) D−1
i =

1
αi

(
1 0
0 1

)
,

(3.10) K
(k)
i =



(
0 0

−αi

ω
0

)
, if z

+(k)
i ≥ z

−(k)
i ,(

0 −αi

ω
0 0

)
, otherwise,

and αi are defined by (2.1) for all i = 1, · · · ,m. Since matrix K(k)

given by (3.8) are block diagonal, the pair (y(k+1)
2i−1 , y

(k+1)
2i ) of variables

in problem (3.1), which corresponds to (z+(k+1)
i , z

−(k+1)
i ) in problem

(1.2) by (1.6) and (3.6), can be updated separately from each other,
that is, in parallel for i = 1, · · · ,m [6].
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Theorem 3.1. Let M, q and y in problem (3.1) be defined by (3.4)-
(3.6). Then the sequence {z(k)} generated by Algorithm 3.1 with E(k)

and K(k) given by (3.7)-(3.10) is identical with the sequence {z(k)}
generated by Algorithm 3.1 for problem (1.2).

Proof. The formula (3.3) may be written componentwise as follows
: For i = 1, · · · ,m, if z

+(k)
i ≥ z

−(k)
i then

(3.11) z
+(k+1)
i :=

(
z
+(k)
i − ω

αi
(aT

i Q−1ÂT z(k) + δi − aT
i x0)

)
+

,

z
−(k+1)
i :=

(
z
−(k)
i − ω

αi

(
− aT

i Q−1ÂT z(k)

−γi + aT
i x0 − αi

ω
(z+(k+1)

i − z
+(k)
i )

))
+

(3.12)

otherwise

(3.13) z
−(k+1)
i :=

(
z
−(k)
i − ω

αi
(−aT

i Q−1ÂT z(k) − γi + aT
i x0)

)
+

,

z
+(k+1)
i :=

(
z
+(k)
i − ω

αi

(
aT

i Q−1ÂT z(k)

+δi − aT
i x0 − αi

ω
(z−(k+1)

i − z
−(k)
i )

))
+

.

(3.14)

For simplicity, let

(3.15) x̄(k) := x0 −Q−1ÂT z(k),

(3.16) ∆̄(k)
i :=

δi − aT
i x̄(k)

αi
,

(3.17) Γ̄(k)
i :=

γi − aT
i x̄(k)

αi
.
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Then (3.11)-(3.14) are rewritten as follows : For i = 1, · · · ,m, if
z
+(k)
i ≥ z

−(k)
i then

z
+(k+1)
i =

(
z
+(k)
i − ω

αi
(δi − aT

i x̄(k))
)

+

(3.18)

= max{0, z
+(k)
i − ω∆̄(k)

i }

= z
+(k)
i −min{z+(k)

i − ω∆̄(k)
i },

z
−(k+1)
i =

(
z
−(k)
i − ω

αi

(
γi + aT

i x̄(k) − αi

ω

(
z
+(k+1)
i − z

+(k)
i

)))
+

(3.19)

= max{0, z
−(k)
i + ωΓ̄(k)

i + (z+(k+1)
i − z

+(k)
i )}

= z
−(k)
i −min{z−(k)

i ,−ωΓ̄(k)
i − (z+(k+1)

i − z
+(k)
i )}

otherwise

z
−(k+1)
i =

(
z
−(k)
i − ω

αi
(−γi − aT

i x̄(k))
)

+

(3.20)

= max{0, z
−(k)
i − ωΓ̄(k)

i }

= z
−(k)
i −min{z−(k)

i − ωΓ̄(k)
i },

z
+(k+1)
i =

(
z
+(k)
i − ω

αi

(
δi − aT

i x̄(k) − αi

ω

(
z
−(k+1)
i − z

−(k)
i

)))
+

(3.21)

= max{0, z
+(k)
i − ω∆̄(k)

i + (z−(k+1)
i − z

−(k)
i )}

= z
+(k)
i −min{z+(k)

i ,−ω∆̄(k)
i − (z−(k+1)

i − z
−(k)
i )}.

Besides, define c̄
+(k)
i and c̄

−(k)
i as follows : For i = 1, · · · ,m, if z

+(k)
i ≥

z
−(k)
i then

(3.22) c̄
+(k)
i := min{z+(k)

i , ω∆̄(k)
i },
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(3.23) c̄
−(k)
i := min{z−(k)

i ,−ωΓ̄(k)
i + c̄

+(k)
i }

otherwise

(3.24) c̄
−(k)
i := min{z−(k)

i ,−ωΓ̄(k)
i },

(3.25) c̄
+(k)
i := min{z+(k)

i , ω∆̄(k)
i + c̄

−(k)
i }.

It then follows from (3.18), (3.19), (3.22) and (3.23) that, if z
+(k)
i ≥

z
−(k)
i , we have

(3.26) z
+(k+1)
i = z

+(k)
i − z

+(k)
i ,

(3.27) z
−(k+1)
i = z

−(k)
i − z

−(k)
i .

On the other hand, if z
+(k)
i < z

−(k)
i , then (3.20), (3.21), (3.24) and

(3.25) imply that the same relations (3.26) and (3.27) also hold.
Moreover note that

x̄(k+1) = x0 −Q−1
m∑

i=1

(z+(k+1)
i − z

−(k+1)
i )ai

= x0 −Q−1
m∑

i=1

(z+(k)
i − z

−(k)
i )ai + Q−1

m∑
j=1

(c̄+(k)
i − c̄

−(k)
i )ai

= x̄(k) + Q−1
m∑

i=1

(c̄+(k)
i − c̄

−(k)
i )ai,

where the first and the third equalities follow from (3.24), while the
second follows from (3.26) and (3.27). Since both Algorithms 2.1 and
3.1 start with z(0) = 0, we can inductively show that

(3.28) x̄(k) = x(k),

(3.29) ∆̄(k)
i = ∆(k)

i , Γ̄(k)
i = Γ(k)

i , i = 1, · · · ,m,

(3.30) c̄
+(k)
i = c

+(k)
i , c̄

−(k)
i = c

−(k)
i , i = 1, · · · ,m,

for all k, where {x(k)}, {∆(k)
i }, {Γ(k)

i }, {c+(k)
i } and {c−(k)

i } are the se-
quences generated by Algorithm 2.1. Thus the sequence {z(k)} gener-
ated by Algorithms 2.1 and 3.1 are identical. � �
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