
EXAMPLES IN ERGODIC THEORY

Kyewon Koh Park∗and Seungseol Park

Abstract. In ergodic theory cutting and stacking constructions have been used

to obtain a variety of important examples of transformations on the unit interval.
We examine the example constructed by J. von Neumann and Kakutani and then

apply the method used in the construction of Chacon’s transformation to make

examples that are weakly mixing but not mixing.

1. Preliminaries

Our discussion will take place on the unit interval X = [0, 1) with B its family
of Lebesgue measurable sets. All sets and functions discussed will be assumed
measurable.

Let T be an invertible transformation X onto X. Given a set B and an integer
i, let T i(B) = {T i(x) : x ∈ B} and BT = ∪∞i=−∞T i(B). We refer to BT the set
swept out by B.

A transformation T is measurable if B ∈ B implies T (B) ∈ B and T−1(B) ∈ B.
All transformations are assumed measurable. Hence B ∈ B implies T i(B) ∈ B for
each integer i and therefore BT ∈ B.

Definition 1.1. A transformation T is nonsingular if m(B) = 0 if and only if
m(T (B)) = 0.

That is, T preserves sets of measure zero.

Definition 1.2. A transformation T is measure preserving if for all B ∈ B,
m(T (B)) = m(B).

Definition 1.3. A measure preserving transformation is ergodic if each set of
positive measure sweeps out X.

That is, T is ergodic if m(B) > 0 implies m(BT ) = 1. A set is T -invariant if
TA = A in which case AT = A. It is clear that a transformation is ergodic if and
only if invariant sets have either measure zero or one.

Definition 1.4. A transformation T is called a σ-translation if there exist dis-
joint intervals In, n ∈ N and disjoint intervals Jn, n ∈ N such that X = ∪∞n=1In =
∪∞n=1Jn, In and Jn have the same length and T translates In onto Jn, n ∈ N .

Lemma 1.5. All σ-translations are measure preserving.
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2. Ladders

The ergodicity of the examples will follow from viewing the construction of the
examples via ladders. A ladder L of height h and width w is an ordered set of h
disjoint subintervals Ii contained in the unit interval [0, 1) such that all h intervals
have width w and are left-closed and right-open.

Thus L = {Ii : 1 ≤ i ≤ h} and we can view this as a ladder. We refer to Ii as
the ith rung, 1 ≤ i ≤ h.

The rung I1 is the base of L and Ih is the top of L. Since all rungs in L are
left-closed, right-open, and have the same length, we can define a map TL that
translate Ii−1 onto Ii, 2 ≤ i ≤ h. Since Ii is directly above Ii−1, 2 ≤ i ≤ h, so TL

simply maps a point to the directly above. Let L∗ denote the union of the rungs
in L, hence TL is defined on L∗ − Ih and T−1

L is defined on L∗ − I1.
Given a transformation T , a ladder L is a T -ladder if T = TL on L∗ − Lh. In

this case iterates of T move a rung up and down the ladder, hence IT = L∗ if I is
a rung in L. In particular, if L∗ = [0, 1), then a rung sweeps out the whole space.

Suppose we start with a ladder L and the partially defined mapping TL. If Ii is
the ith rung in L, as in Figure 2.1, ∪h−i

j=−i+1T
j
LIi = L∗. Thus we can say rungs in

L sweep out L∗ under the action of TL. Now we can extend TL so that bisected
rungs of L also sweep out L∗. This is accomplished by cutting L in Figure 2.1 in
half by a vertical cut down the middle of L. We then obtain two ladders of length
h and width w

2 each. Let L1 be the left half and L2 be the right, as in Figure 2.1.
We assume the rungs in L1 are right-open and the rungs in L2 are left-closed. We
now stack L2 on top of L1 to obtain a new ladder L3 of height 2h and width w

2 , as
in Figure 2.2.

Figure 2.1. Figure 2.2
Note that TL3 extends TL to map the left half I of the top of L onto the right

half J at the base of L, as indicated by the heavy arrows in Figure 2.2. Thus the
construction of TL3 extends TL to I which is half of where TL was not defined.

The extension of TL is measure preserving since I and J have the same length.
Now L3, ∪2h−i

j=−i+1T
j
LIi = L∗3, that is, each rung in L3 sweeps out L∗3 = L∗.

The preceding construction of cutting in halves and stacking the right half above
the left can be repeated inductively. Thus the construction consists of a sequence
of ladders Ln cutting in halves and stacking the right above the left half.
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3. von Neumann-Kakutani Transformation

The first ladder L1 is constructed to guarantee that the two binary intervals of
length 1

2 sweep out. Cut [0, 1) in half and define L1 = ([0, 1
2 ), [ 12 , 1)) as in Figure

3.1.
Now L2 is formed to guarantee that the four binary intervals of length 1

4 sweep
out. Cut L1 in half and stack the right half above the left to form L2. In general,
denote Tn = TLn , n ≥ 1. The T2 extends T1 by mapping [ 12 , 3

4 ) onto [ 14 , 1
2 ) which is

induced by the heavy arrow in Figure 3.1
The induction step starts with a ladder Ln of height 2n whose rungs are binary

intervals of length 2−n and the top of Ln is [1− 2−n, 1).
Thus Ln guarantees that the binary intervals of length 2−n sweep out. Now

Ln+1 formed to guarantee that the binary intervals of length 2−n−1 sweep out.
Cut Ln in half and stack the right above the left half to obtain Ln+1. If In = [1−
2−n, 1− 2−n−1) and Jn = [2−n−1, 2−n), then Tn+1 extends Tn by mapping In onto
Jn which is indicated by the heavy arrow in Figure 3.2. Thus Tn+1(In) = Jn, n ≥ 1
by induction.

Figure 3.1 Figure 3.2
If I0 = [0, 1

2 ) and J0 = [ 12 , 1), then [0, 1) = ∪∞n=0In = ∪∞n=0Jn and Tn+1(In) =
Jn, n ≥ 0. If x ∈ [0, 1), then x ∈ In for some n ≥ 0 and we define T (x) = Tn+1(x).
Since Tk extends Tn for k ≥ n, we have Tk(x) = Tn+1(x), k ≥ n, x ∈ In. Therefore
we can write T (x) = limn→∞ Tn(x), x ∈ [0, 1). The transformation T extends
Tn, n ≥ 1, hence Ln is a T -ladder, n ≥ 1 and T (In) = Jn, n ≥ 0. Thus T is a
σ-translation.

Theorem 3. The von Neumann-Kakutani transformation T is measure preserv-
ing and ergodic.

Proof. Since T is σ-translation, T is measure preserving. Before verifying ergod-
icity for T in the general case, first note IT = [0, 1) if I is a rung in Ln, n ≥ 1. Since
Ln consists of the 2n binary intervals of length 2−n, n ≥ 1, we have IT = [0, 1)
if I is a binary interval. Since every interval contains a binary interval, we have
IT = [0, 1) if I is any interval.

In general, let m(B) > 0 and choose a point x ∈ B such that the Lebesgue
density of B at x is 1. This means that given ε > 0 there exists δ > 0 such that if
I is any interval with x ∈ I and m(I) < δ, then m(B ∩ I) > (1 − ε)m(I). Choose
n so large that 2−n < δ and let h = 2n. There is a binary interval I in Ln with
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x ∈ I. Suppose I is the rth rung in Ln, then T−r+1(I), · · · , Th−r(I) are mutually
disjoint, we have

m(BT ) ≥ m((B ∩ I)T )

= m(
∞⋃

i=−∞
T i(B ∩ I))

≥ m(
h−r⋂

i=−r+1

T i(B ∩ I))

=
h−r∑

i=−r+1

m(T i(B ∩ I))

= hm(B ∩ I)

≥ h(1− ε)m(I) = 1− ε.

Since ε > 0 is arbitrary, we conclude that m(BT ) = 1. Hence T is ergodic. �

4. Mixing

Definition 4.1. A measure preserving transformation T is mixing if

lim
n→∞

m(Tn(A) ∩B) = m(A)m(B), A, B ∈ B.

A transformation may not be mixing but can be mixing “on the average”.

Definition 4.2. A transformation T is Césaro mixing if

lim
n→∞

1
n

n∑
i=1

m(T i(A) ∩B) = m(A)m(B), A, B ∈ B.

Lemma 4.3. A transformation T is Césaro mixing if and only if T is ergodic
and measure preserving.

Corollary 4.4. The von Neumann-Kakutani transformation is Césaro mixing
but not mixing.

Proof. It is enough to show that the transformation is not mixing. Let A = [0, 1
2 )

and B = [ 12 , 1). Note that T 2i(A) ∩B = ∅ for all i ∈ Z. Hence it is not mixing. �

In general, let T be measure preserving and let UT be the unity operator de-
fined on L2(m) by UT f(x) = f(T (x)) for f ∈ L2(m). A complex number c is an
eigenvalue for T if there is a corresponding eigenfunction f such that UT f = cf .

Remark 4.5. Constant functions are eigenfunctions for any measure preserving
transformation with c = 1.



Examples in ergodic theory 21

Definition 4.6. A transformation T has continuous spectrum if c = 1 is the
only eigenvalue for T and constant functions are the only eigenfunctions.

The mixing condition corresponding to continuous spectrum is
weakly mixing.

Definition 4.7. A transformation T is weakly mixing if

lim
n→∞

1
n

n∑
i=1

|m(T i(A) ∩B)−m(A)m(B)| = 0, A, B ∈ B.

A weakly mixing property is difficult to verify directly. The following result of
Koopman and von Neumann is generally used to verify weakly mixing.

Theorem 4.8. An ergodic measure preserving transformation T is weakly mix-
ing if and only if T has continuous spectrum. [H]

Remark 4.9. The von Neumann-Kakutani transformation is not
weakly mixing.

It is clear that mixing implies weakly mixing and weakly mixing implies Césaro
mixing.

5. Examples of weakly mixing transformations

Consider a transformation T with a ladder L of height h. We cut L into four
ladders of same width and add an extra interval E above top of the second ladder.
The second ladder with E will be stacked above the first ladder, the third ladder will
be stacked above the second ladder with E, and the fourth ladder will be stacked
above the third ladder. The resulting ladder will have height 4h + 1, as in Figure
5.1.

Figure 5.1

Example 5.1Let a0 = 0 and

an =
n∑

i=1

3
4i+1

, n ≥ 1.

Let En = [34 + an−1,
3
4 + an), n ≥ 1. The sum of the lengths 3

4n+1 of En, n ≥ 1, is
1
4 ; hence ∪∞i=1En = [34 , 1).
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Let L1 consist of a single rung [0, 3
4 ). This rung is cut into four equal subintervals

and E1 is placed above the second ladder.
We map [0, 3

42 ) onto [ 3
42 , 6

42 ), [ 3
42 , 6

42 ) onto E1, E1 onto [ 6
42 , 9

42 ), and [ 6
42 , 9

42 ) onto
[ 9
42 , 3

4 ). This results is the ladder L2.
The base of Ln is [0, 3

4n ) and the top of Ln is [ 34 −
3
4n , 3

4 ). Cut Ln into four
ladders of width 3

4n+1 each. Stack the second ladder above the first ladder. Place
En above the second ladder. Stack the third ladder above the second ladder with
En and the fourth ladder above the third ladder. The resulting ladder Ln+1 has
width 3

4n+1 and height hn+1 = 4hn + 1. The stacking is equivalent to mapping the
top of the first ladder onto the base of the second ladder, the top of the second
ladder onto En, En onto the base of the third ladder, and the top of the third
ladder onto the base of the fourth ladder.

If x ∈ [0, 1), then x ∈ [0, 3
4 ) or x ∈ [ 34 , 1). If x ∈ [ 34 , 1), then x ∈ En for some

n and Tn+1(x) is defined. If x ∈ [0, 3
4 ), then x is not top of Ln for a sufficiently

large n. Hence Tn(x) is well defined. Since Tk extends Tn for k > n, we define
T (x) = limn→∞ Tn(x), x ∈ [0, 1).

Theorem 5.1.1. T is measure preserving and ergodic.

Proof. The transformation T is a σ-translation and is therefore measure preserv-
ing.

We will prove that T is ergodic. Let B be a set of positive measure and a subset
of [0, 1). Choose a point x ∈ B such that the Lebesgue density of B at x is 1.

Given ε > 0 there exists δ > 0 such that if I is any interval with x ∈ I and
m(I) < δ, then m(B ∩ I) > (1 − ε)m(I). Choose n so large that 3

4n < δ and let
h = hn. There is an interval I in Ln with x ∈ I. Suppose I is the rth rung in Ln,
we have m(T i(B ∩ I)) ≥ (1− ε)m(I), as long as T i(I) is a rung in Ln. Therefore,
we have

m(BT ) ≥ m((B ∩ I)T )

≥ m(
h−r⋂

i=−r+1

T i(B ∩ I))

=
h−r∑

i=−r+1

m(T i(B ∩ I))

= (1− ε)m(I)h

= (1− ε)
3
4n

hn

> (1− ε)(1− 4−n).

Since ε > 0 is arbitrary, we conclude that m(BT ) = 1. Hence T is ergodic. �

Theorem 5.1.2. T is not mixing.

Proof. Choosing A = [0, 3
42 ), it appears as a rung in L2 and A will be a union

of rungs I in Ln for n ≥ 2. Let I1, I2, I3 and I4 be the subintervals of equal length
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of I, respectively. Then Th(I1) = I2 and Th(I3) = I4. Hence we have

m(Th(I) ∩ I) ≥ m(Th(I1 ∪ I3) ∩ I) ≥ m(I)
2

.

Since A is a union of rungs in L and m(A) < 1
2 , it follows that m(Th(A) ∩ A) ≥

m(A)
2 > m2(A), and h = hn →∞. It follows that T can not be mixing. �

Theorem 5.1.3. T is weakly mixing.

Proof. We want to show that T has a continuous spectrum. Suppose there are
f and c such that f(T (x)) = cf(x). If c = 1, then f(T (x)) = f(x), that is, f is
invariant function under T . Thus f is a constant. It is sufficient to show that c = 1.

Since T is measure preserving, ‖f‖2 = ‖f(T )‖2 = |c|‖f‖2, hence |c| = 1. There-
fore |f(T (x))| = |cf(x)| = |c||f(x)|, hence |f | is invariant under T . Since T is er-
godic, |f | is constant. Thus we can set c = eia, where 0 ≤ a < 2π and f(x) = eiθ(x)

where θ(x) is measurable. By Lusin’s Theorem there exists a closed set F of mea-
sure arbitrarily close to 1 such that θ(x) is uniformly continuous on F . Therefore
given η > 0, there exists corresponding δ > 0 such that |θ(x) − θ(y)| < η for all
points x, y ∈ F with |x− y| < δ.

Since m(F ) > 0, we can choose a point p ∈ F such that F has Lebesgue density
one at p.

Let ε > 0. We can choose n sufficiently large so that 3
4n < δ and there exists a

rung I in Ln with p ∈ I and m(I ∩F ) > (1− ε)m(I). If ε is sufficiently small, then
there must exists x, y, z ∈ I ∩ F , where x, y, z are as in Figure 5.1 with L = Ln.

Let h denote the height of Ln. Hence, we have

eiθ(y) = f(y) = f(Th(x)) = chf(x) = eihaeiθ(x)(1)

eiθ(z) = f(z) = f(Th+1(y)) = ch+1f(y) = ei(h+1)aeiθ(y)(2)

Thus, we have

θ(y) = ha + θ(x)(3)

θ(z) = (h + 1)a + θ(y)(4)

Equalities (3) and (4) are mod2π. Since |x − y| < δ and |z − y| < δ, subtracting
(3) from (4) yields |a + θ(y)− θ(x)| = |θ(z)− θ(y)| < η. By adding |θ(x)− θ(y)| on
both sides, we have |a+(θ(y)− θ(x))+(θ(x)− θ(y))| ≤ |θ(z)− θ(y)|+ |θ(x)− θ(y)|,
and thus

|a| ≤ |θ(z)− θ(y)|+ |θ(x)− θ(y)| ≤ 2η.

Since η > 0 is arbitrary, we obtain a = 0, hence c = 1. Thus T has continuous
spectrum and is therefore weakly mixing. �
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Remark 5.1.4. The above construction is a variation of the well known Cha-
con’s transformation.[C]

We will consider putting three extra intervals. Consider a transformation T with
a ladder L. We cut L into four pieces of equal width and add an extra interval E1

above the top of the second ladder, E2 above the top of the third ladder. Placed
E3 above E2.

The second ladder with E1 will be stacked above the first ladder, third ladder
with E2 and E3 will be stacked above E1 and the fourth ladder will be stacked
above E3.

Example 5.2Let a0,3 = 0 and an,m = 1
2 (

∑n−1
i=1

3
4i + m

4n ), 1 ≤ m ≤ 3, n ≥ 1.
Let extra intervals be

En,1 = [
1
2

+ an−1,3,
1
2

+ an,1),

En,2 = [
1
2

+ an,1,
1
2

+ an,2)

and
En,3 = [

1
2

+ an,2,
1
2

+ an,3), where n ≥ 1.

The length of En,m are 1
2

1
4n for each m. The sum of En,m, n ≥ 1 and 1 ≤ m ≤ 3 is

1
2 , hence ∪∞n=1∪3

m=1 En,m = [12 , 1). Let L1 consist of a single rung [0, 1
2 ). This rung

is cut into four equal subintervals. The E1,1 is placed above the second ladder, E1,2

is placed above the third ladder and E1,3 is placed above E1,2.
This results in the ladder L2 of width 1

8 and height 7. We map [0, 1
8 ) onto [18 , 1

4 ),
[ 18 , 1

4 ) onto E1,1, E1,1 onto [ 14 , 3
8 ), [ 14 , 3

8 ) onto E1,2, E1,2 onto E1,3 and E1,3 onto
[ 38 , 1

2 ).
For the induction step, we start a ladder Ln of height hn and width 1

2
1

4n−1 each.
The base of Ln is [0, 1

2
1

4n−1 ) and the top of Ln is [ 12 −
1
2

1
4n−1 , 1

2 ). Cut Ln into four
ladders of width 1

2
1
4n each. Place En,1 above the second ladder, En,2 above the

third ladder and En3 above the En2. Stack the second ladder with En1 above the
first ladder. Stack the third ladder with En,2 and En,3 above the second ladder
with En1. Stack the fourth ladder above the third ladder with En,2 and En,3. This
results in the ladder Ln+1 with width 1

2
1
4n and height hn+1 = 4hn + 3.

The ladder Ln+1 map the top of first ladder onto the base of the second ladder,
the top of the second ladder onto En,1, En,1 onto the base of the third ladder, the
top of the third ladder onto En,2, En,2 onto En,3 and En,3 onto the base of the
fourth ladder.

If x ∈ [0, 1), then x ∈ [0, 1
2 ) or x ∈ [ 12 , 1). If x ∈ [ 12 , 1), then x ∈ Enm for some

n, m and Tn+1 is defined. If x ∈ [0, 1
2 ), then x is not in top of Ln for n sufficiently

large and Tn(x) is defined. We define T (x) = limn→∞ Tn(x), x ∈ [0, 1).

Theorem 5.2.1. The transformation T is measure preserving, ergodic and
weakly mixing but not mixing.

Proof. We can prove just as in Example 5.1. �
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Example 5.3We consider a sequence of ladders {Ln} where the number of
cuttings at each step is increasing. Let k = 1

e−1 .
Let a0 = 0 and an =

∑n
i=1

k
(i+1)! , n ≥ 1 and En = [k + an−1, k + an), n ≥ 1.

The sum of the lengths k
(n+1)! of En, n ≥ 1 is 1− k, hence ∪∞n=1En = [k, 1).

Let L1 consist of a single rung [0, k). This rung is cut into two subintervals.
Place E1 on top of the first interval. We map [0, k

2 ) onto E1 and E1 onto [k
2 , k).

This results in the ladder L2 of height 3 and width k
2 each. The ladder L2 is cut

into three equal ladders and E2 is placed above the middle ladder. We obtain L3 of
height h3 = 3h2 + 1 and width k

3! . The ladder L3 is cut into four equal ladders and
E3 is placed above the second ladder. Thus we obtain the ladder L4 with height
h4 = 4h3 + 1 and width k

4! .
For the induction step, we start with a ladder Ln height hn and width k

n! . The
base of Ln is [0, k

n! ) and the top of Ln is [k− k
n! , k). Cut Ln into n+1 equal ladders

of width k
(n+1)! each. Cutting ladder in Ln are denoted by Lni, 1 ≤ i ≤ n + 1.

Place En above ladder Ln,[ n+1
2 ], where n is odd and if n is even, place En above the

middle ladder. Stack Ln,i+1 ladder with extra interval En above Ln,i. We obtain
Ln+1 of height hn+1 = (n + 1)hn + 1 and width k

(n+1)! . This defines a map TLn

and T (x) = limn→∞ TLn
(x).

Theorem 5.3.1. The transformation T is measure preserving, ergodic and
weakly mixing but not mixing.

Proof. The transformation T is a σ-translation and is therefore measure pre-
serving. To prove ergodicity and weakly mixing properties, we proceed exactly as
in the Example 5.1.

To see that T is not mixing, choose A = [0, k
2 ), the interval A appears as a rung

in Ln, n ≥ 2. A will be a rung I in Ln for n ≥ 2. Let hn be the height of Ln. If
n is even, then m(Thn(I) ∩ I) ≥ n−1

n+1m(I), n ≥ 2, hence m(Thn(I) ∩ I) > m(I)
3 .

Since A is a union of rungs in Ln, it follows that m(Thn(A) ∩ A) > m(A)
3 . Since

m(A) < 1
3 and h = hn →∞, it follows that T cannot be mixing. �

Example 5.4We consider that both the numbers of extra intervals and the
cutting numbers are increasing.

Let a00 = 0 and

anm =
n−1∑
i=1

2L

(2 + i)!
i(i + 1)

2
+

2L

(2 + n)!
m, 1 ≤ m ≤ n(n + 1)

2
,

where l =
∑∞

n=1
2

(2+n)!
n(n+1)

2 and L = 1
1+l .

We denote the extra intervals by En,m. Let

En,1 = [L + a
n−1,

n(n+1)
2

, L + an,1)andEn,m = [L + an,m−1, L + an,m),

where 2 ≤ m ≤ n(n+1)
2 .
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The sum of height 2L
(2+n)! of En,m each m, where n ≥ 1 and 1 ≤ m ≤ n(n+1)

2 is

l
1+l , hence ∪∞m=1 ∪

n(n+1)
2

m=1 En,m = [L, 1).
The L1 consists of the single rung [0, L). This rung is cut into three equal

subintervals and E1,1 is placed above the middle ladder. We map [0, L
3 ) onto [L

3 , 2L
3 ),

[L
3 , 2L

3 ) onto E1,1 and E1,1 onto [ 2L
3 , L). This results in L2. We cut L2 into four

equal interval and E21 is placed above the second ladder and E22 is placed above
the third ladder. Stack E2,3 above E2,2. We map the top of the first ladder onto
the base of the second ladder, the top of the second ladder onto E2,1, E2,1 onto the
base of the third ladder, the top of the third ladder onto E2,2, E2,2 onto E2,3 and
E2,3 onto the base the fourth ladder. This results in L3 with height h3 = 4h2 + 3
and width L

3·4 each.
For the induction step, We begin a ladder Ln with height hn = (n + 1)hn−1 +

(n−1)n
n , n ≥ 2 and width 2L

(n+1)! . The base of Ln is [0, 2L
(2+1)! ). The top of Ln is

[L− 2L
(n+1)! , L). Cut Ln into (n + 2) equal ladders of width 2L

(2+n)! each. We denote

cutting ladders in Ln by Ln,i, 1 ≤ i ≤ n + 2. Let mi = 1 + i(i−1)
2 , 1 ≤ i ≤ n.

Placed En,mi+j−1 , 1 ≤ j ≤ mi+1 − mi. We stack Ln,i with extra intervals above
the Ln(i−1), 2 ≤ i ≤ n + 2. This results in the ladder Ln+1 of width 2L

(2+n)! and

height hn+1 = (n + 2)hn + n(n+1)
2 . We can define TLn

. Also we define T (x) =
limn→∞ TLn(x).

Theorem 5.4.1. The transformation T is measure preserving, ergodic and
weakly mixing.

Remark 5.4.2. It has recently been proved that this transformation T is mix-
ing[AF].

Note the sharp differences between the examples 5.1-5.3 and the example 5.4.
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