# EXAMPLES IN ERGODIC THEORY 

Kyewon Koh Park*and Seungseol Park


#### Abstract

In ergodic theory cutting and stacking constructions have been used to obtain a variety of important examples of transformations on the unit interval. We examine the example constructed by J. von Neumann and Kakutani and then apply the method used in the construction of Chacon's transformation to make examples that are weakly mixing but not mixing.


## 1. Preliminaries

Our discussion will take place on the unit interval $X=[0,1)$ with $\mathcal{B}$ its family of Lebesgue measurable sets. All sets and functions discussed will be assumed measurable.

Let $T$ be an invertible transformation $X$ onto $X$. Given a set $B$ and an integer $i$, let $T^{i}(B)=\left\{T^{i}(x): x \in B\right\}$ and $B^{T}=\cup_{i=-\infty}^{\infty} T^{i}(B)$. We refer to $B^{T}$ the set swept out by $B$.

A transformation $T$ is measurable if $B \in \mathcal{B}$ implies $T(B) \in \mathcal{B}$ and $T^{-1}(B) \in \mathcal{B}$. All transformations are assumed measurable. Hence $B \in \mathcal{B}$ implies $T^{i}(B) \in \mathcal{B}$ for each integer $i$ and therefore $B^{T} \in \mathcal{B}$.

Definition 1.1. A transformation $T$ is nonsingular if $m(B)=0$ if and only if $m(T(B))=0$.

That is, $T$ preserves sets of measure zero.
Definition 1.2. A transformation $T$ is measure preserving if for all $B \in \mathcal{B}$, $m(T(B))=m(B)$.

Definition 1.3. A measure preserving transformation is ergodic if each set of positive measure sweeps out $X$.

That is, $T$ is ergodic if $m(B)>0$ implies $m\left(B^{T}\right)=1$. A set is $T$-invariant if $T A=A$ in which case $A^{T}=A$. It is clear that a transformation is ergodic if and only if invariant sets have either measure zero or one.

Definition 1.4. A transformation $T$ is called a $\sigma$-translation if there exist disjoint intervals $I_{n}, n \in N$ and disjoint intervals $J_{n}, n \in N$ such that $X=\cup_{n=1}^{\infty} I_{n}=$ $\cup_{n=1}^{\infty} J_{n}, I_{n}$ and $J_{n}$ have the same length and $T$ translates $I_{n}$ onto $J_{n}, n \in N$.

Lemma 1.5. All $\sigma$-translations are measure preserving.
Received October 18, 1995.
1991 Mathematics Subject Classification: 28D05, 28A65.
Key words and phrases: ergodic, mixing, ladder.
*This research was supported in part by Ajou University Faculty Research Grant.

## 2. Ladders

The ergodicity of the examples will follow from viewing the construction of the examples via ladders. A ladder $L$ of height $h$ and width $w$ is an ordered set of $h$ disjoint subintervals $I_{i}$ contained in the unit interval $[0,1)$ such that all $h$ intervals have width $w$ and are left-closed and right-open.

Thus $L=\left\{I_{i}: 1 \leq i \leq h\right\}$ and we can view this as a ladder. We refer to $I_{i}$ as the $i$ th rung, $1 \leq i \leq h$.

The rung $I_{1}$ is the base of $L$ and $I_{h}$ is the top of $L$. Since all rungs in $L$ are left-closed, right-open, and have the same length, we can define a map $T_{L}$ that translate $I_{i-1}$ onto $I_{i}, 2 \leq i \leq h$. Since $I_{i}$ is directly above $I_{i-1}, 2 \leq i \leq h$, so $T_{L}$ simply maps a point to the directly above. Let $L^{*}$ denote the union of the rungs in $L$, hence $T_{L}$ is defined on $L^{*}-I_{h}$ and $T_{L}^{-1}$ is defined on $L^{*}-I_{1}$.

Given a transformation $T$, a ladder $L$ is a $T$-ladder if $T=T_{L}$ on $L^{*}-L_{h}$. In this case iterates of $T$ move a rung up and down the ladder, hence $I^{T}=L^{*}$ if $I$ is a rung in $L$. In particular, if $L^{*}=[0,1)$, then a rung sweeps out the whole space.

Suppose we start with a ladder $L$ and the partially defined mapping $T_{L}$. If $I_{i}$ is the $i$ th rung in $L$, as in Figure 2.1, $\cup_{j=-i+1}^{h-i} T_{L}^{j} I_{i}=L^{*}$. Thus we can say rungs in $L$ sweep out $L^{*}$ under the action of $T_{L}$. Now we can extend $T_{L}$ so that bisected rungs of $L$ also sweep out $L^{*}$. This is accomplished by cutting $L$ in Figure 2.1 in half by a vertical cut down the middle of $L$. We then obtain two ladders of length $h$ and width $\frac{w}{2}$ each. Let $L_{1}$ be the left half and $L_{2}$ be the right, as in Figure 2.1. We assume the rungs in $L_{1}$ are right-open and the rungs in $L_{2}$ are left-closed. We now stack $L_{2}$ on top of $L_{1}$ to obtain a new ladder $L_{3}$ of height $2 h$ and width $\frac{w}{2}$, as in Figure 2.2.

Figure 2.1.
Figure 2.2
Note that $T_{L_{3}}$ extends $T_{L}$ to map the left half $I$ of the top of $L$ onto the right half $J$ at the base of $L$, as indicated by the heavy arrows in Figure 2.2. Thus the construction of $T_{L_{3}}$ extends $T_{L}$ to $I$ which is half of where $T_{L}$ was not defined.

The extension of $T_{L}$ is measure preserving since $I$ and $J$ have the same length. Now $L_{3}, \cup_{j=-i+1}^{2 h-i} T_{L}^{j} I^{i}=L_{3}^{*}$, that is, each rung in $L_{3}$ sweeps out $L_{3}^{*}=L^{*}$.

The preceding construction of cutting in halves and stacking the right half above the left can be repeated inductively. Thus the construction consists of a sequence of ladders $L_{n}$ cutting in halves and stacking the right above the left half.

## 3. von Neumann-Kakutani Transformation

The first ladder $L_{1}$ is constructed to guarantee that the two binary intervals of length $\frac{1}{2}$ sweep out. Cut $[0,1)$ in half and define $L_{1}=\left(\left[0, \frac{1}{2}\right),\left[\frac{1}{2}, 1\right)\right)$ as in Figure 3.1.

Now $L_{2}$ is formed to guarantee that the four binary intervals of length $\frac{1}{4}$ sweep out. Cut $L_{1}$ in half and stack the right half above the left to form $L_{2}$. In general, denote $T_{n}=T_{L_{n}}, n \geq 1$. The $T_{2}$ extends $T_{1}$ by mapping $\left[\frac{1}{2}, \frac{3}{4}\right.$ ) onto $\left[\frac{1}{4}, \frac{1}{2}\right)$ which is induced by the heavy arrow in Figure 3.1

The induction step starts with a ladder $L_{n}$ of height $2^{n}$ whose rungs are binary intervals of length $2^{-n}$ and the top of $L_{n}$ is $\left[1-2^{-n}, 1\right)$.

Thus $L_{n}$ guarantees that the binary intervals of length $2^{-n}$ sweep out. Now $L_{n+1}$ formed to guarantee that the binary intervals of length $2^{-n-1}$ sweep out. Cut $L_{n}$ in half and stack the right above the left half to obtain $L_{n+1}$. If $I_{n}=[1-$ $2^{-n}, 1-2^{-n-1}$ ) and $J_{n}=\left[2^{-n-1}, 2^{-n}\right)$, then $T_{n+1}$ extends $T_{n}$ by mapping $I_{n}$ onto $J_{n}$ which is indicated by the heavy arrow in Figure 3.2. Thus $T_{n+1}\left(I_{n}\right)=J_{n}, n \geq 1$ by induction.

Figure 3.1
Figure 3.2
If $I_{0}=\left[0, \frac{1}{2}\right)$ and $J_{0}=\left[\frac{1}{2}, 1\right)$, then $[0,1)=\cup_{n=0}^{\infty} I_{n}=\cup_{n=0}^{\infty} J_{n}$ and $T_{n+1}\left(I_{n}\right)=$ $J_{n}, n \geq 0$. If $x \in[0,1)$, then $x \in I_{n}$ for some $n \geq 0$ and we define $T(x)=T_{n+1}(x)$. Since $T_{k}$ extends $T_{n}$ for $k \geq n$, we have $T_{k}(x)=T_{n+1}(x), k \geq n, x \in I_{n}$. Therefore we can write $T(x)=\lim _{n \rightarrow \infty} T_{n}(x), x \in[0,1)$. The transformation $T$ extends $T_{n}, n \geq 1$, hence $L_{n}$ is a $T$-ladder, $n \geq 1$ and $T\left(I_{n}\right)=J_{n}, n \geq 0$. Thus $T$ is a $\sigma$-translation.

Theorem 3. The von Neumann-Kakutani transformation $T$ is measure preserving and ergodic.

Proof. Since $T$ is $\sigma$-translation, $T$ is measure preserving. Before verifying ergodicity for $T$ in the general case, first note $I^{T}=[0,1)$ if $I$ is a rung in $L_{n}, n \geq 1$. Since $L_{n}$ consists of the $2^{n}$ binary intervals of length $2^{-n}, n \geq 1$, we have $I^{T}=[0,1)$ if $I$ is a binary interval. Since every interval contains a binary interval, we have $I^{T}=[0,1)$ if $I$ is any interval.

In general, let $m(B)>0$ and choose a point $x \in B$ such that the Lebesgue density of $B$ at $x$ is 1 . This means that given $\epsilon>0$ there exists $\delta>0$ such that if $I$ is any interval with $x \in I$ and $m(I)<\delta$, then $m(B \cap I)>(1-\epsilon) m(I)$. Choose $n$ so large that $2^{-n}<\delta$ and let $h=2^{n}$. There is a binary interval $I$ in $L_{n}$ with
$x \in I$. Suppose $I$ is the $r$ th rung in $L_{n}$, then $T^{-r+1}(I), \cdots, T^{h-r}(I)$ are mutually disjoint, we have

$$
\begin{aligned}
m\left(B^{T}\right) & \geq m\left((B \cap I)^{T}\right) \\
& =m\left(\bigcup_{i=-\infty}^{\infty} T^{i}(B \cap I)\right) \\
& \geq m\left(\bigcap_{i=-r+1}^{h-r} T^{i}(B \cap I)\right) \\
& =\sum_{i=-r+1}^{h-r} m\left(T^{i}(B \cap I)\right) \\
& =h m(B \cap I) \\
& \geq h(1-\epsilon) m(I)=1-\epsilon .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we conclude that $m\left(B^{T}\right)=1$. Hence $T$ is ergodic.

## 4. Mixing

Definition 4.1. A measure preserving transformation $T$ is mixing if

$$
\lim _{n \rightarrow \infty} m\left(T^{n}(A) \cap B\right)=m(A) m(B), \quad A, B \in \mathcal{B} .
$$

A transformation may not be mixing but can be mixing "on the average".
Definition 4.2. A transformation $T$ is Césaro mixing if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} m\left(T^{i}(A) \cap B\right)=m(A) m(B), \quad A, B \in \mathcal{B} .
$$

Lemma 4.3. A transformation $T$ is Césaro mixing if and only if $T$ is ergodic and measure preserving.

Corollary 4.4. The von Neumann-Kakutani transformation is Césaro mixing but not mixing.

Proof. It is enough to show that the transformation is not mixing. Let $A=\left[0, \frac{1}{2}\right)$ and $B=\left[\frac{1}{2}, 1\right)$. Note that $T^{2 i}(A) \cap B=\emptyset$ for all $i \in Z$. Hence it is not mixing.

In general, let $T$ be measure preserving and let $U_{T}$ be the unity operator defined on $\mathcal{L}^{2}(m)$ by $U_{T} f(x)=f(T(x))$ for $f \in \mathcal{L}^{2}(m)$. A complex number $c$ is an eigenvalue for $T$ if there is a corresponding eigenfunction $f$ such that $U_{T} f=c f$.

Remark 4.5. Constant functions are eigenfunctions for any measure preserving transformation with $c=1$.

Definition 4.6. A transformation $T$ has continuous spectrum if $c=1$ is the only eigenvalue for $T$ and constant functions are the only eigenfunctions.

The mixing condition corresponding to continuous spectrum is weakly mixing.

Definition 4.7. A transformation $T$ is weakly mixing if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|m\left(T^{i}(A) \cap B\right)-m(A) m(B)\right|=0, \quad A, B \in \mathcal{B} .
$$

A weakly mixing property is difficult to verify directly. The following result of Koopman and von Neumann is generally used to verify weakly mixing.

Theorem 4.8. An ergodic measure preserving transformation $T$ is weakly mixing if and only if $T$ has continuous spectrum. [H]

Remark 4.9. The von Neumann-Kakutani transformation is not weakly mixing.

It is clear that mixing implies weakly mixing and weakly mixing implies Césaro mixing.

## 5. Examples of weakly mixing transformations

Consider a transformation $T$ with a ladder $L$ of height $h$. We cut $L$ into four ladders of same width and add an extra interval $E$ above top of the second ladder. The second ladder with $E$ will be stacked above the first ladder, the third ladder will be stacked above the second ladder with $E$, and the fourth ladder will be stacked above the third ladder. The resulting ladder will have height $4 h+1$, as in Figure 5.1.

Figure 5.1
Example 5.1Let $a_{0}=0$ and

$$
a_{n}=\sum_{i=1}^{n} \frac{3}{4^{i+1}}, \quad n \geq 1 .
$$

Let $E_{n}=\left[\frac{3}{4}+a_{n-1}, \frac{3}{4}+a_{n}\right), n \geq 1$. The sum of the lengths $\frac{3}{4^{n+1}}$ of $E_{n}, n \geq 1$, is $\frac{1}{4}$; hence $\cup_{i=1}^{\infty} E_{n}=\left[\frac{3}{4}, 1\right)$.

Let $L_{1}$ consist of a single rung $\left[0, \frac{3}{4}\right)$. This rung is cut into four equal subintervals and $E_{1}$ is placed above the second ladder.

We map $\left[0, \frac{3}{4^{2}}\right)$ onto $\left(\frac{3}{4^{2}}, \frac{6}{4^{2}}\right),\left[\frac{3}{4^{2}}, \frac{6}{4^{2}}\right)$ onto $E_{1}, E_{1}$ onto $\left[\frac{6}{4^{2}}, \frac{9}{4^{2}}\right)$, and $\left[\frac{6}{4^{2}}, \frac{9}{4^{2}}\right)$ onto $\left[\frac{9}{4^{2}}, \frac{3}{4}\right)$. This results is the ladder $L_{2}$.

The base of $L_{n}$ is $\left[0, \frac{3}{4^{n}}\right)$ and the top of $L_{n}$ is $\left[\frac{3}{4}-\frac{3}{4^{n}}, \frac{3}{4}\right)$. Cut $L_{n}$ into four ladders of width $\frac{3}{4^{n+1}}$ each. Stack the second ladder above the first ladder. Place $E_{n}$ above the second ladder. Stack the third ladder above the second ladder with $E_{n}$ and the fourth ladder above the third ladder. The resulting ladder $L_{n+1}$ has width $\frac{3}{4^{n+1}}$ and height $h_{n+1}=4 h_{n}+1$. The stacking is equivalent to mapping the top of the first ladder onto the base of the second ladder, the top of the second ladder onto $E_{n}, E_{n}$ onto the base of the third ladder, and the top of the third ladder onto the base of the fourth ladder.

If $x \in[0,1)$, then $x \in\left[0, \frac{3}{4}\right)$ or $x \in\left[\frac{3}{4}, 1\right)$. If $x \in\left[\frac{3}{4}, 1\right)$, then $x \in E_{n}$ for some $n$ and $T_{n+1}(x)$ is defined. If $x \in\left[0, \frac{3}{4}\right)$, then $x$ is not top of $L_{n}$ for a sufficiently large $n$. Hence $T_{n}(x)$ is well defined. Since $T_{k}$ extends $T_{n}$ for $k>n$, we define $T(x)=\lim _{n \rightarrow \infty} T_{n}(x), x \in[0,1)$.

Theorem 5.1.1. $T$ is measure preserving and ergodic.
Proof. The transformation $T$ is a $\sigma$-translation and is therefore measure preserving.

We will prove that $T$ is ergodic. Let $B$ be a set of positive measure and a subset of $[0,1)$. Choose a point $x \in B$ such that the Lebesgue density of $B$ at $x$ is 1 .

Given $\epsilon>0$ there exists $\delta>0$ such that if $I$ is any interval with $x \in I$ and $m(I)<\delta$, then $m(B \cap I)>(1-\epsilon) m(I)$. Choose $n$ so large that $\frac{3}{4^{n}}<\delta$ and let $h=h_{n}$. There is an interval $I$ in $L_{n}$ with $x \in I$. Suppose $I$ is the $r$ th rung in $L_{n}$, we have $m\left(T^{i}(B \cap I)\right) \geq(1-\epsilon) m(I)$, as long as $T^{i}(I)$ is a rung in $L_{n}$. Therefore, we have

$$
\begin{aligned}
m\left(B^{T}\right) & \geq m\left((B \cap I)^{T}\right) \\
& \geq m\left(\bigcap_{i=-r+1}^{h-r} T^{i}(B \cap I)\right) \\
& =\sum_{i=-r+1}^{h-r} m\left(T^{i}(B \cap I)\right) \\
& =(1-\epsilon) m(I) h \\
& =(1-\epsilon) \frac{3}{4^{n}} h_{n} \\
& >(1-\epsilon)\left(1-4^{-n}\right) .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, we conclude that $m\left(B^{T}\right)=1$. Hence $T$ is ergodic.
Theorem 5.1.2. $T$ is not mixing.
Proof. Choosing $A=\left[0, \frac{3}{4^{2}}\right)$, it appears as a rung in $L_{2}$ and $A$ will be a union of rungs $I$ in $L_{n}$ for $n \geq 2$. Let $I_{1}, I_{2}, I_{3}$ and $I_{4}$ be the subintervals of equal length
of $I$, respectively. Then $T^{h}\left(I_{1}\right)=I_{2}$ and $T^{h}\left(I_{3}\right)=I_{4}$. Hence we have

$$
m\left(T^{h}(I) \cap I\right) \geq m\left(T^{h}\left(I_{1} \cup I_{3}\right) \cap I\right) \geq \frac{m(I)}{2} .
$$

Since $A$ is a union of rungs in $L$ and $m(A)<\frac{1}{2}$, it follows that $m\left(T^{h}(A) \cap A\right) \geq$ $\frac{m(A)}{2}>m^{2}(A)$, and $h=h_{n} \rightarrow \infty$. It follows that $T$ can not be mixing.

Theorem 5.1.3. $T$ is weakly mixing.
Proof. We want to show that $T$ has a continuous spectrum. Suppose there are $f$ and $c$ such that $f(T(x))=c f(x)$. If $c=1$, then $f(T(x))=f(x)$, that is, $f$ is invariant function under $T$. Thus $f$ is a constant. It is sufficient to show that $c=1$.

Since $T$ is measure preserving, $\|f\|_{2}=\|f(T)\|_{2}=|c|\|f\|_{2}$, hence $|c|=1$. Therefore $|f(T(x))|=|c f(x)|=|c||f(x)|$, hence $|f|$ is invariant under $T$. Since $T$ is ergodic, $|f|$ is constant. Thus we can set $c=e^{i a}$, where $0 \leq a<2 \pi$ and $f(x)=e^{i \theta(x)}$ where $\theta(x)$ is measurable. By Lusin's Theorem there exists a closed set $F$ of measure arbitrarily close to 1 such that $\theta(x)$ is uniformly continuous on $F$. Therefore given $\eta>0$, there exists corresponding $\delta>0$ such that $|\theta(x)-\theta(y)|<\eta$ for all points $x, y \in F$ with $|x-y|<\delta$.

Since $m(F)>0$, we can choose a point $p \in F$ such that $F$ has Lebesgue density one at $p$.

Let $\epsilon>0$. We can choose $n$ sufficiently large so that $\frac{3}{4^{n}}<\delta$ and there exists a rung $I$ in $L_{n}$ with $p \in I$ and $m(I \cap F)>(1-\epsilon) m(I)$. If $\epsilon$ is sufficiently small, then there must exists $x, y, z \in I \cap F$, where $x, y, z$ are as in Figure 5.1 with $L=L_{n}$.

Let $h$ denote the height of $L_{n}$. Hence, we have

$$
\begin{align*}
& e^{i \theta(y)}=f(y)=f\left(T^{h}(x)\right)=c^{h} f(x)=e^{i h a} e^{i \theta(x)}  \tag{1}\\
& e^{i \theta(z)}=f(z)=f\left(T^{h+1}(y)\right)=c^{h+1} f(y)=e^{i(h+1) a} e^{i \theta(y)} \tag{2}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
& \theta(y)=h a+\theta(x)  \tag{3}\\
& \theta(z)=(h+1) a+\theta(y) \tag{4}
\end{align*}
$$

Equalities (3) and (4) are $\bmod 2 \pi$. Since $|x-y|<\delta$ and $|z-y|<\delta$, subtracting (3) from (4) yields $|a+\theta(y)-\theta(x)|=|\theta(z)-\theta(y)|<\eta$. By adding $|\theta(x)-\theta(y)|$ on both sides, we have $|a+(\theta(y)-\theta(x))+(\theta(x)-\theta(y))| \leq|\theta(z)-\theta(y)|+|\theta(x)-\theta(y)|$, and thus

$$
|a| \leq|\theta(z)-\theta(y)|+|\theta(x)-\theta(y)| \leq 2 \eta .
$$

Since $\eta>0$ is arbitrary, we obtain $a=0$, hence $c=1$. Thus $T$ has continuous spectrum and is therefore weakly mixing.

Remark 5.1.4. The above construction is a variation of the well known Chacon's transformation.[C]

We will consider putting three extra intervals. Consider a transformation $T$ with a ladder $L$. We cut $L$ into four pieces of equal width and add an extra interval $E_{1}$ above the top of the second ladder, $E_{2}$ above the top of the third ladder. Placed $E_{3}$ above $E_{2}$.

The second ladder with $E_{1}$ will be stacked above the first ladder, third ladder with $E_{2}$ and $E_{3}$ will be stacked above $E_{1}$ and the fourth ladder will be stacked above $E_{3}$.

Example 5.2Let $a_{0,3}=0$ and $a_{n, m}=\frac{1}{2}\left(\sum_{i=1}^{n-1} \frac{3}{4^{i}}+\frac{m}{4^{n}}\right), \quad 1 \leq m \leq 3, n \geq 1$.
Let extra intervals be

$$
\begin{gathered}
E_{n, 1}=\left[\frac{1}{2}+a_{n-1,3}, \frac{1}{2}+a_{n, 1}\right), \\
E_{n, 2}=\left[\frac{1}{2}+a_{n, 1}, \frac{1}{2}+a_{n, 2}\right)
\end{gathered}
$$

and

$$
E_{n, 3}=\left[\frac{1}{2}+a_{n, 2}, \frac{1}{2}+a_{n, 3}\right), \quad \text { where } \quad n \geq 1 .
$$

The length of $E_{n, m}$ are $\frac{1}{2} \frac{1}{4^{n}}$ for each $m$. The sum of $E_{n, m}, n \geq 1$ and $1 \leq m \leq 3$ is $\frac{1}{2}$, hence $\cup_{n=1}^{\infty} \cup_{m=1}^{3} E_{n, m}=\left[\frac{1}{2}, 1\right)$. Let $L_{1}$ consist of a single rung $\left[0, \frac{1}{2}\right)$. This rung is cut into four equal subintervals. The $E_{1,1}$ is placed above the second ladder, $E_{1,2}$ is placed above the third ladder and $E_{1,3}$ is placed above $E_{1,2}$.

This results in the ladder $L_{2}$ of width $\frac{1}{8}$ and height 7 . We map $\left[0, \frac{1}{8}\right.$ ) onto $\left[\frac{1}{8}, \frac{1}{4}\right)$, $\left[\frac{1}{8}, \frac{1}{4}\right.$ ) onto $E_{1,1}, E_{1,1}$ onto $\left[\frac{1}{4}, \frac{3}{8}\right),\left[\frac{1}{4}, \frac{3}{8}\right)$ onto $E_{1,2}, E_{1,2}$ onto $E_{1,3}$ and $E_{1,3}$ onto $\left[\frac{3}{8}, \frac{1}{2}\right)$.

For the induction step, we start a ladder $L_{n}$ of height $h_{n}$ and width $\frac{1}{2} \frac{1}{4^{n-1}}$ each. The base of $L_{n}$ is $\left[0, \frac{1}{2} \frac{1}{4^{n-1}}\right)$ and the top of $L_{n}$ is $\left[\frac{1}{2}-\frac{1}{2} \frac{1}{4^{n-1}}, \frac{1}{2}\right)$. Cut $L_{n}$ into four ladders of width $\frac{1}{2} \frac{1}{4^{n}}$ each. Place $E_{n, 1}$ above the second ladder, $E_{n, 2}$ above the third ladder and $E_{n 3}$ above the $E_{n 2}$. Stack the second ladder with $E_{n 1}$ above the first ladder. Stack the third ladder with $E_{n, 2}$ and $E_{n, 3}$ above the second ladder with $E_{n 1}$. Stack the fourth ladder above the third ladder with $E_{n, 2}$ and $E_{n, 3}$. This results in the ladder $L_{n+1}$ with width $\frac{1}{2} \frac{1}{4^{n}}$ and height $h_{n+1}=4 h_{n}+3$.

The ladder $L_{n+1}$ map the top of first ladder onto the base of the second ladder, the top of the second ladder onto $E_{n, 1}, E_{n, 1}$ onto the base of the third ladder, the top of the third ladder onto $E_{n, 2}, E_{n, 2}$ onto $E_{n, 3}$ and $E_{n, 3}$ onto the base of the fourth ladder.

If $x \in[0,1)$, then $x \in\left[0, \frac{1}{2}\right)$ or $x \in\left[\frac{1}{2}, 1\right)$. If $x \in\left[\frac{1}{2}, 1\right)$, then $x \in E_{n m}$ for some $n, m$ and $T_{n+1}$ is defined. If $x \in\left[0, \frac{1}{2}\right)$, then $x$ is not in top of $L_{n}$ for $n$ sufficiently large and $T_{n}(x)$ is defined. We define $T(x)=\lim _{n \rightarrow \infty} T_{n}(x), x \in[0,1)$.

Theorem 5.2.1. The transformation $T$ is measure preserving, ergodic and weakly mixing but not mixing.

Proof. We can prove just as in Example 5.1.

Example 5.3We consider a sequence of ladders $\left\{L_{n}\right\}$ where the number of cuttings at each step is increasing. Let $k=\frac{1}{e-1}$.

Let $a_{0}=0$ and $a_{n}=\sum_{i=1}^{n} \frac{k}{(i+1)!}, n \geq 1$ and $E_{n}=\left[k+a_{n-1}, k+a_{n}\right), n \geq 1$.
The sum of the lengths $\frac{k}{(n+1)!}$ of $E_{n}, n \geq 1$ is $1-k$, hence $\cup_{n=1}^{\infty} E_{n}=[k, 1)$.
Let $L_{1}$ consist of a single rung $[0, k)$. This rung is cut into two subintervals. Place $E_{1}$ on top of the first interval. We map $\left[0, \frac{k}{2}\right)$ onto $E_{1}$ and $E_{1}$ onto $\left[\frac{k}{2}, k\right)$. This results in the ladder $L_{2}$ of height 3 and width $\frac{k}{2}$ each. The ladder $L_{2}$ is cut into three equal ladders and $E_{2}$ is placed above the middle ladder. We obtain $L_{3}$ of height $h_{3}=3 h_{2}+1$ and width $\frac{k}{3!}$. The ladder $L_{3}$ is cut into four equal ladders and $E_{3}$ is placed above the second ladder. Thus we obtain the ladder $L_{4}$ with height $h_{4}=4 h_{3}+1$ and width $\frac{k}{4!}$.

For the induction step, we start with a ladder $L_{n}$ height $h_{n}$ and width $\frac{k}{n!}$. The base of $L_{n}$ is $\left[0, \frac{k}{n!}\right)$ and the top of $L_{n}$ is $\left[k-\frac{k}{n!}, k\right)$. Cut $L_{n}$ into $n+1$ equal ladders of width $\frac{k}{(n+1)!}$ each. Cutting ladder in $L_{n}$ are denoted by $L_{n i}, 1 \leq i \leq n+1$. Place $E_{n}$ above ladder $L_{n,\left[\frac{n+1}{2}\right]}$, where $n$ is odd and if $n$ is even, place $E_{n}$ above the middle ladder. Stack $L_{n, i+1}$ ladder with extra interval $E_{n}$ above $L_{n, i}$. We obtain $L_{n+1}$ of height $h_{n+1}=(n+1) h_{n}+1$ and width $\frac{k}{(n+1)!}$. This defines a map $T_{L_{n}}$ and $T(x)=\lim _{n \rightarrow \infty} T_{L_{n}}(x)$.

Theorem 5.3.1. The transformation $T$ is measure preserving, ergodic and weakly mixing but not mixing.

Proof. The transformation $T$ is a $\sigma$-translation and is therefore measure preserving. To prove ergodicity and weakly mixing properties, we proceed exactly as in the Example 5.1.

To see that $T$ is not mixing, choose $A=\left[0, \frac{k}{2}\right)$, the interval $A$ appears as a rung in $L_{n}, n \geq 2$. $A$ will be a rung $I$ in $L_{n}$ for $n \geq 2$. Let $h_{n}$ be the height of $L_{n}$. If $n$ is even, then $m\left(T^{h_{n}}(I) \cap I\right) \geq \frac{n-1}{n+1} m(I), n \geq 2$, hence $m\left(T^{h_{n}}(I) \cap I\right)>\frac{m(I)}{3}$. Since $A$ is a union of rungs in $L_{n}$, it follows that $m\left(T^{h_{n}}(A) \cap A\right)>\frac{m(A)}{3}$. Since $m(A)<\frac{1}{3}$ and $h=h_{n} \rightarrow \infty$, it follows that $T$ cannot be mixing.

Example 5.4We consider that both the numbers of extra intervals and the cutting numbers are increasing.

Let $a_{00}=0$ and

$$
a_{n m}=\sum_{i=1}^{n-1} \frac{2 L}{(2+i)!} \frac{i(i+1)}{2}+\frac{2 L}{(2+n)!} m, \quad 1 \leq m \leq \frac{n(n+1)}{2},
$$

where $l=\sum_{n=1}^{\infty} \frac{2}{(2+n)!} \frac{n(n+1)}{2}$ and $L=\frac{1}{1+l}$.
We denote the extra intervals by $E_{n, m}$. Let

$$
E_{n, 1}=\left[L+a_{n-1, \frac{n(n+1)}{2}}, L+a_{n, 1}\right) \operatorname{and} E_{n, m}=\left[L+a_{n, m-1}, L+a_{n, m}\right),
$$

where $2 \leq m \leq \frac{n(n+1)}{2}$.

The sum of height $\frac{2 L}{(2+n)!}$ of $E_{n, m}$ each $m$, where $n \geq 1$ and $1 \leq m \leq \frac{n(n+1)}{2}$ is $\frac{l}{1+l}$, hence $\cup_{m=1}^{\infty} \cup_{m=1}^{\frac{n(n+1)}{2}} E_{n, m}=[L, 1)$.

The $L_{1}$ consists of the single rung $[0, L)$. This rung is cut into three equal subintervals and $E_{1,1}$ is placed above the middle ladder. We map $\left[0, \frac{L}{3}\right)$ onto $\left[\frac{L}{3}, \frac{2 L}{3}\right)$, $\left[\frac{L}{3}, \frac{2 L}{3}\right.$ ) onto $E_{1,1}$ and $E_{1,1}$ onto $\left[\frac{2 L}{3}, L\right)$. This results in $L_{2}$. We cut $L_{2}$ into four equal interval and $E_{21}$ is placed above the second ladder and $E_{22}$ is placed above the third ladder. Stack $E_{2,3}$ above $E_{2,2}$. We map the top of the first ladder onto the base of the second ladder, the top of the second ladder onto $E_{2,1}, E_{2,1}$ onto the base of the third ladder, the top of the third ladder onto $E_{2,2}, E_{2,2}$ onto $E_{2,3}$ and $E_{2,3}$ onto the base the fourth ladder. This results in $L_{3}$ with height $h_{3}=4 h_{2}+3$ and width $\frac{L}{3 \cdot 4}$ each.

For the induction step, We begin a ladder $L_{n}$ with height $h_{n}=(n+1) h_{n-1}+$ $\frac{(n-1) n}{n}, \quad n \geq 2$ and width $\frac{2 L}{(n+1)!}$. The base of $L_{n}$ is $\left[0, \frac{2 L}{(2+1)!}\right)$. The top of $L_{n}$ is $\left[L-\frac{2 L}{(n+1)!}, L\right)$. Cut $L_{n}$ into $(n+2)$ equal ladders of width $\frac{2 L}{(2+n)!}$ each. We denote cutting ladders in $L_{n}$ by $L_{n, i}, 1 \leq i \leq n+2$. Let $m_{i}=1+\frac{i(i-1)}{2}, 1 \leq i \leq n$. Placed $E_{n, m_{i+j-1}}, 1 \leq j \leq m_{i+1}-m_{i}$. We stack $L_{n, i}$ with extra intervals above the $L_{n(i-1)}, 2 \leq i \leq n+2$. This results in the ladder $L_{n+1}$ of width $\frac{2 L}{(2+n)!}$ and height $h_{n+1}=(n+2) h_{n}+\frac{n(n+1)}{2}$. We can define $T_{L_{n}}$. Also we define $T(x)=$ $\lim _{n \rightarrow \infty} T_{L_{n}}(x)$.

Theorem 5.4.1. The transformation $T$ is measure preserving, ergodic and weakly mixing.

Remark 5.4.2. It has recently been proved that this transformation $T$ is mixing[AF].

Note the sharp differences between the examples 5.1-5.3 and the example 5.4.

## References

[AF] Adams, S. and Friedman, N. A., preprint.
[C] Chacon, R. V., Transformations with continuous spectrum, J. Math. Mech 16 (1966), 399416.
[F] Friedman, N. A., Replication and stacking in ergodic theory, MAA. Math. Monthly (1992), 31-41.
[H] Halmos, P. R., Lectures on ergodic theory, Chelsea, New York (1953).
[S] Cornfeld, I. P., Formin, S. V. and Sinai, Ya. G., Ergodic Theory, Springer Verlag, New York Inc. (1982).

Department of Mathematics
Ajou University
Suwon 442-749, Korea

