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Abstract. In this paper we investigate the existence of weak solutions of a nonlin-
ear beam equation under Dirichlet boundary condition on the interval−π

2
< x < π

2
and periodic condition on the variable t, utt + uxxxx = p(x, t, u). We show that
if p satisfies condition (p1)− (p3), then the nonlinear beam equation possesses at

least one weak solution.

0. Introduction

In this paper we investigate the existence of weak solutions of a nonlinear beam
equation 4 under Dirichlet boundary condition on the interval −π

2
< x <

π

2
and

periodic condition on the variable t

utt + uxxxx = p(x, t, u) in (−π
2
,
π

2
)× R, (0.1)

u(±π
2
, t) = uxx(±π

2
, t) = 0, (0.2)

u is π − periodic in t and even in x, (0.3)

where we shall describe the condition on the function p.
In [3, 4], the authors investigate the existence of multiple solutions of a nonlinear

suspension bridge equation (0.1) when the function p is consisted of semilinear
terms and the multiple sφ00 (s ∈ R) of the positive eigenfunction. The existence
of multiple solutions of a nonlinear suspension bridge equation with semilinearities
crossing multiple eigenvalues was shown by a variational reduction method in [4].

Let L be the beam operator, Lu = utt + uxxxx. Let H0 be the Banach space
spanned by eigenfunctions of the beam operator L, with L2-norm. Then equation
(0.1) with (0.2) and (0.3) is equivalent to the equation

Lu = p(x, t, u) in H0. (0.4)

In this paper we assume that the function p satisfies the following.
(1) (p1) p(x, t, u) is even in x and belongs to C([−π

2 ,
π
2 ])× R,R).

(2) (p2) There are constants a1, a2 ≥ 0 such that

|p(x, t, ξ)| ≤ a1 + a2|ξ|s for 0 ≤ s ≤ 1,
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where in case s = 1, we further assume on p that the limits

lim
ξ→∞

p(x, t, ξ)
ξ

= −b, lim
ξ→−∞

p(x, t, ξ)
ξ

= −c

exit and −1 < b, c < 15.
(3) (p3) There is a constant k with −3 < k < 1 such that p(x, t, ξ)− k = o(|ξ|)

as ξ → 0.

In Section 1, we investigate the property of the Hilbert space H spanned by
eigenfunctions of the beam operator L. We also investigate the property of the
Hilbert space.

In Section 2, we first show that the functional corresponding to (0.4) is continuous
Fréchet differentiable in a Hilbert space ( which is a subspace the Hilbert space H0

) and we calculate several estimates for the functional. By using several estimates
and the critical point for a C1-map in a Banach space, we show that equation (0.4)
satisfying (p1)-(p3) has at least one solution.

1. The Hilbert space spanned by eigenfunctions

In this section we shall describe the Hilbert space spanned by the eigenfunctions
of the one-dimensional wave operator L and investigate the property of it.

When u is even in x and periodic in t with period π, the eigenvalue problem for
u(x, t),

Lu = λu in (−π
2
,
π

2
)× R, (1.1)

u(±π
2
, t) = uxx(±π

2
, t) = 0,

has infinitely many eigenvalues

λmn = (2n+ 1)4 − 4m2 (m,n = 0, 1, 2, · · · )

and corresponding normalized eigenfunctions φmn, ψmn (m,n ≤ 0) given by

φ0n =
√

2
π

cos(2n+ 1)x for n ≥ 0,

φmn =
2
π

cos 2mt · cos(2n+ 1)x for m > 0, n ≥ 0,

ψmn =
2
π

sin 2mt · cos(2n+ 1)x for m > 0, n ≥ 0.

Let n be fixed and define

λ+
n = inf

m
{λmn : λmn > 0} = 8n2 + 8n+ 1, (1.2)

λ−n = sup
m
{λmn : λmn < 0} = −8n2 − 8n− 3. (1.3)
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Letting n −→ ∞, we obtain that λ+
n −→ +∞ and λ−n −→ −∞. Hence, it is easy

to check that the only eigenvalues in the interval (−19, 45) are given by

λ20 = −15 < λ10 = −3 < λ00 = 1 < λ41 = 17.

Let Q be the square [−π2 ,
π
2 ]× [−π

2 ,
π
2 ] and H0 the Hilbert space defined by

H0 = {u ∈ L2(Q) : u is even in x}.

The set of functions {φmn, ψmn} is an orthonormal basis in H0. Let us denote an
element u, in H0, as

u =
∑

(hmnφmn + kmnψmn),

and we define a subspace H of H0 as follows

H = {u ∈ H0 :
∑

|λmn|(h2
mn + k2

mn) <∞}.

Then this space is a Banach space with a norm

|‖u‖| = [
∑

|λmn|(h2
mn + k2

mn)]
1
2 .

We note that 1 belongs to H0, but does not belong to H. Hence we can see that
the space H is a proper subspace of H0. The following lemma is very important in
this paper [cf. 4].

Lemma 1.1. Let c be not an eigenvalue of L and let u ∈ H0. Then we have
(L− c)−1u ∈ H.

Lemma 1.2. If p satisfies (p1)-(p2), the map u(x, t) → p(x, t, u(x, t)) belongs to
C(H0,H0).

Proof. We note that the function p(x, t, u(x, t)) is even in x. If u ∈ H0, then, by
(p2), ∫

Q

|p(x, t, u)|2dxdt ≤
∫

Q

(a1 + a2|u|s)2dxdt

≤ a3

∫
Q

(1 + |u|2)dxdt (1.4)

for s ≤ 0, which shows that p : H0 → H0.
To prove the continuity of this map, observe that it is continuous at u if and

only if
f(x, t, z(x, t)) = p(x, t, z(x, t) + u(x, t))− p(x, t, u(x, t))

is continuous at z = 0.
Therefore we can assume that u = 0 and p(x, t, 0) = 0. Let ε > 0. We claim there

is a δ > 0 such that ‖u‖ ≤ δ implies ‖P (·, u)‖ ≤ ε. By (p1) and p(x, t, 0) = 0, given
any ε̂ > 0, there is a δ̂ > 0 such that

|p(x, t, ξ)| ≤ ε̂ if (x, t) ∈ Q and |ξ| ≤ δ̂.
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Let u ∈ H0 with ‖u‖ ≤ 0, δ being free for now, and set

Q1 = {(x, t) ∈ Q : |δ| ≤ β}.

Then we have ∫
Q1

|p(x, t, u(x, t))|2dxdt ≤ ε̂2|Q1| ≤ ε̂2π2, (1.5)

where |Q1| denotes the measure of Q1.
Choose ε̂ so that ε̂π ≤ ε

2 . Let Q2 = Q−Q1. Then as in (1.4)∫
Q2

|p(x, t, u(x, t))|2dxdt ≤ a3(|Q3|+ δ2). (1.6)

Moreover

δ2 ≥
∫ Q2

|u|2dxdt ≥ β2|Q2| (1.7)

or |Q2| ≤ (δβ−1)2. Combining (1.6)-(1.7) gives∫
Q2

|p(x, t, u)|2dxdt ≤ a3(1 + β−2)δ2. (1.8)

Choose δ so that a3(1 + β−2)δ2 ≤ ( ε
2 )2. Then (1.5) and (1.8) imply ‖p(·, u)‖ ≤ 0 if

‖u‖ ≤ δ. This completes the lemma. � �

With above lemmas 1.1 and 1.2, we can obtain the following.

Proposition 1.1. Assume that the function p satisfies the conditions (p1)-(p2).
If we have a solution, in H0, of the equation

Lu = p(x, t, u) in H0, (1.9)

then it belongs to H.

Proof. Assume that u belong to the Hilbert space H0. Since p satisfies (p1) and
(p2), it follows from Lemma 1.2 that p(x, t, u) belongs to H0. Equation (1.9) is
equivalent to

u = L−1[p(x, t, u)]

Hence it follows from Lemma 1.1 that u belongs to H. � �

With aid of Proposition 1.1, the investigation of the existence of solutions in H0

of (1.9) reduces to the investigation of one in H of (1.9).

2. The existence of a weak solution

In this section we investigate the existence of a nontrivial solutions of the nonlin-
ear beam equation (1.9) described in Section 1. By Proposition 1.1, problem (1.9)
in H0 is reduced to the one in the subspace H of the Hilbert space H0. Hence we
consider the problem

Lu = p(x, t, u(x, t)) in H, (2.1)

where the function p satisfies (p1)− (p3) described in Section 0.
We now state the main theorem of this section.
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Theorem 2.1. Assume that p satisfies (p1)− (p3). Then (2.1) possesses at least
one solution.

We now consider the functional associated with (2.1)

I(u) =
∫

Q

[
1
2
(−|ut|2 + |uxx|2)− P (x, t, u)]dxdt, (2.2)

where P (x, t, ξ) =
∫ ξ

0
p(x, t, η)dη.

Since every solution in H0 of (2.1) belongs to H, it suffices to investigate the
solutions in H of (2.1). On the other hand, the weak solutions of (2.1) coincide
with the critical points of I(u). Hence we consider the functional I(u) in H.

In order to apply critical point theory to the functional I(u) given by (2.2), we
have to know that I ∈ C1(H,R) and I(u) satisfies the Palais-Smale condition.

First we prove that I is continuous and Fréchet differentiable in H.

Lemma 2.1. If p satisfies (p1)-(p3), then the functional I(u) is continuous and
Fréchet differentiable in H, and I ′(u) is continuous in H with

I ′(u)φ =
∫

Q

[Luφ− p(x, t, u)φ]dxdt (2.3)

for all φ ∈ H. Moreover

J(u) =
∫

Q

P (x, t, u)dxdt

is weakly continuous and J ′(u) is compact.

Proof. Let u be in H and prove that I(u) is continuous at u. We consider

I(u+ v)− I(u) =
∫

Q

[u(vtt + vxxxx) +
1
2
v(vtt + vxxxx)]dxdt

−
∫

Q

[P (x, t, u+ v)− P (x, t, u)]dxdt.

Let u =
∑
hmnφmn+kmnψmn, v =

∑
h̃mnφmn+k̃mnψmn. Then, by using Schwartz

inequality, we have

|
∫

Q

u(vtt + vxxxx)dxdt| ≤ |‖u‖| · ‖‖v‖|,

|
∫

Q

1
2
v(vtt + vxxxx)dxdt| ≤ |‖v‖|2.

On the other hand, by Mean Value Theorem, we have

P (x, t, ξ + η)− P (x, t, ξ) = P (x, t, ξ + θη)η for some θ ∈ (0, 1).
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Therefore by (p2), we have, for s ≤ 1,∫
Q

|P (x, t, u+ v)− P (x, t, u)|dxdt

=
∫

Q

|p(x, t, u+ θv)||v|dxdt

≤
∫

Q

[a1 + a2(|u|+ |v|)s]|v|dxdt

≤ a1‖v‖+ a2‖u‖‖v‖+ a2‖v‖2

≤ a1|‖v‖|+ a2|‖u‖| · |‖v‖|+ a3|‖v‖|2

= (a1 + a2|‖u‖|+ a3|‖v‖|)|‖v‖|. (2.4)

With the above results, we can see that I(u) is continuous at u.
Now let us prove that I(u) is Fréchet differentiable at u ∈ H with equation (2.3).

To prove equation (2.3), we compute the following.

|I(u+ v)− I(u)− I ′(u)v|

=|
∫

Q

[u(vtt + vxxxx) +
1
2
v(vtt + vxxxx)− (P (x, t, u+ v)− P (x, t, u))

− (utt + uxxxx)v + p(x, t, u)v]dxdt|

=|
∫

Q

1
2
vLvdxdt−

∫
Q

[P (x, t, u+ v)P (x, t, u)− p(x, t, u)v]dxdt|

≤1
2
|‖v‖|2 +

∫
Q

|p(x, t, u+ θv)− p(x, t, u)||v|dxdt.

By (p1), p(x, t, ξ) is a continuous function of ξ and hence for given ε1 > 0, there
exists δ > 0 such that

|p(x, t, u+ θv)− p(x, t, u)| < ε1

holds almost everywhere when |‖v‖| < δ. Therefore we have

|I(u+ v)− I(u)− I ′(u)v| < 1
2
|‖v‖|2 + ε1

∫
Q

|v|dxdt

≤ 1
2
|‖v‖|+ ε1|‖v‖|

≤ (
1
2
|‖v‖|+ ε1)|‖v‖|,

which proves equation (2.3).
It is clear that the first term in I ′ is continuous. Hence, to prove the continuity of

I ′(u), it suffices to show that J ′(u) is continuous. Let um → u in H. Then um → u
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in H0 and we have

‖J ′(um)− J ′(u)‖op = sup
|‖φ‖|≤1

|
∫

Q

(p(x, t, um)− p(x, t, u))φdxdt|

≤ sup
|‖φ‖|≤1

∫
Q

|p(x, t, um)− p(x, t, u)||φ|dxdt

≤ sup
|‖φ‖|≤1

‖p(x, t, um)p(x, t, u)‖‖φ‖

≤ sup
|‖φ‖|≤1

‖p(x, t, um)− p(x, t, u)‖ · |‖φ‖|

≤ ‖p(x, t, um)− p(x, t, u)‖, (2.5)

where ‖ · ‖op is the operator norm. Since the map u(x, t) → p(x, t, u(x, t)) belongs
to C(H0,H0), the last term in the above inequalities tends to 0 as m→∞ and J ′

is continuous.
To prove that J is weakly continuous, let um converges to u in H. Then um

converges to u in H0 since ‖u‖ ≤ |‖u‖|. Consequently, Lemma 1.2 implies J(um) →
J(u).

Finally, to prove that J ′ is compact, let (um) be bounded in H. Then along a
subsequence, um converges weakly to some u ∈ H and um → u in H0. The proof
then concludes via (2.3). � �

Lemma 2.2. If p satisfies (p1)-(p3), then the functional I(u) satisfies the Palais-
Smale condition. That is, any sequence (um) in H for which I(um) is bounded and
I ′(um) → 0 in H as m→∞ possesses a convergent subsequence.

The verification for (PS) is simplified with aid of the following result.

Lemma 2.3. Let p satisfies (p1)-(p2). If (um) is a bounded sequence in H such
that I(um) is bounded and I ′(um) → 0 in H as m→ 0, then (um) has a convergent
subsequence.

Proof. Suppose that I(um) is bounded and I ′(um) → 0 in H as m→∞ for any
bounded sequence (um) in H. Let D : H → H∗ denote the duality map between H
and its dual defined by

(Du)φ =
∫

Q

Lu · φdxdt for u, φ ∈ H.

Thus
D−1I ′(u) = u−D−1J ′(u).

By the continuity of D−1 and (2.10), we have

um = D−1I ′(um) +D−1J ′(um) → D−1J ′(um),

where the limit being taken along the convergent subsequence of J ′(um).
But, since (um) is bounded in H and J ′ is compact (cf. Lemma 2.1), J ′(um) has

a convergent subsequence. This completes the lemma. � �

We now state the theorem (cf. [3]), which will be useful in the proof of Lemma
2.2.
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Theorem 2.2. Let −1 < a, b < 15. Then the equation

Lu+ au+ − bu− = 0 in H0

has only the trivial solution.

Proof of Lemma 2.2. By Lemma 2.3, to verify (PS), we need only show that
|I(um)| ≤M and I ′(um) → 0 as m→∞ implies that (um) is a bounded sequence.

For m large, we have

Lun + p(x, t, un) = DI(un) in H.

Assume that (PS) condition does not hold, that is, |‖un‖| → ∞. Dividing by |‖un‖|
and taking wn = |‖un‖|−1un, we have

Lwn +
1

|‖u‖|
p(x, t, un) =

1
|‖un‖|

DI(un). (2.6)

SinceDI(un) → 0 as n→∞ and |‖un‖| → ∞, the right hand side of (2.6) converges
to 0 in H as n → ∞. Moreover (2.6) shows that |‖un‖| is bounded. Since L−1 is
a compact operator, passing to a subsequence we get that wn → w0 in H. Since
|‖wn‖| = 1 for all n = 1, 2, · · · , it follows that |‖w0‖| = 1. Taking the limit of (2.6),
we find

Lw0 + bw+
0 − cw−0 = 0 (in case s = 1), or Lw0 = 0 (in case 0 ≤ s < 1)

with |‖w0‖| 6= 0. This contradicts to the fact (from Theorem 2.2) that the above
equation has only the trivial solution. � �

We state a critical point theory, which is very useful to show the existence of
critical points of a C1−map in a Banach space.

Lemma 2.4. Let E be a real Banach space and I ∈ C1(E,R) satisfying (PS).
Then the local minimum (or maximum) of I is a critical point of I.

Lemma 2.5. Suppose that I satisfy (p1)− (p3). Then, as u→ 0, we have

I(u) =
1
2

∫
Q

Lu · udxdt+
∫

Q

kudxdt+ o(|‖u‖|2). (2.7)

Proof. By (p3), given any ε > 0, there is a δ > 0 such that |ξ| ≤ δ implies

|P (x, t, ξ)− kξ| ≤ 1
2
ε|ξ|2

for all (x, t) ∈ Q. By (p2), there is a constant A = A(δ) > 0 such that |ξ| > δ
implies

|P (x, t, ξ)− kξ| ≤ A|ξ|s+1
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for all (x, t) ∈ Q. Combining these two estimates, for all ξ ∈ R and (x, t) ∈ Q,

|P (x, t, ξ)− kξ| ≤ ε

2
|ξ|2 +A|ξ|s+1.

On the other hand, there is a δ1 such that |‖u‖| < δ1 implies∫
|u(x,t)|>δ

|P (x, t, u)− ku|dxdt ≤ ε

2
|‖u‖|.

Therefore if |‖u‖| < δ1, we have

|J(u)− k

∫
Q

udxdt| ≤ ε

2

∫
|u(x,t)|≤δ

|u|2dxdt+A

∫
|u(x,t)|>δ

|u|s+1dxdt

≤ ε

2
‖u‖2 +

ε

2
|‖u‖|

≤ ε|‖u‖|2

for s ≤ 1. Hence

|J(u)− k

∫
Q

udxdt| ≤ ε|‖u‖|2.

Since ε was arbitrary, J(u)− k
∫

Q
udxdt = o(|‖u‖|2) as u→ 0. Therefore we have

I(u) =
1
2

∫
Q

Lu · udxdt− J(u)

=
1
2

∫
Q

Lu · udxdt+
∫

Q

kudxdt+ o(|‖u‖|2).�

�

Let V be the subspace of H, spanned by the eigenfunctions of λmn > 0 and W
be the orthogonal compliment of V in H. Let P : H → V denote the orthogonal
projection of H onto V and I−P : H →W that of H onto W . Then every element
u of H is expressed by u = v + w, where v = Pu, w = (I − P )u. Hence equation
(2.1) is equivalent to a system

Lv = P (p(·, ·, v + w)), (2.8.a)

Lw = (I − P )(p(·, ·, v + w)). (2.8.b)

We let
I1(v) =

1
2

∫
Q

Lv · vdxdt−
∫

Q

P (x, t, v + w)dxdt,

I2(w) =
1
2

∫
Q

Lw · wdxdt−
∫

Q

P (x, t, v + w)dxdt.

Then we have the following lemma.
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Lemma 2.6. There is a neighborhood B1 of 0 in V such that for any v ∈ B1

there exists a solution z ∈W of equation (2.8.b) in W, where z is a local maximum
I2(w). If we put z = θ(v) in B1, then θ is continuous in B1 and we have

DI(v + θ(v))(w) = 0 for all w ∈W.

Proof. Equation (2.8.b) is equivalent to

z = L−1(I − P )(p(·, ·, v + w)). (2.9)

We note that L−1(I − P ) is a self-adjoint, compact, linear map from W into itself
and the eigenvalues L−1(I − P ) in W are λ−1

mn with λmn < 0. Hence, by Lemma
2.5,

I2(w) = −1
2
|‖w‖|2 +

∫
Q

k(v + w)dxdt+ o(|‖v‖|2)o(|‖w‖|2).

Since −3 < k < 1, I2(w) has a local maximum z, which is a solution of (2.8.b). We
let z = θ(v). By Lemma 1.2 and Lemma 2.2 of [3], θ is continuous in B1.

Let v ∈ V and set z = θ(v). If w ∈W, then from (2.2) we see that∫
Q

(−ztwt + zxwx + p(x, t, v + w)w)dxdt = 0.

Since
∫

Q
vtwt = 0 and

∫
Q
vxwx = 0, we have

DI(v + θ(v))(w) = 0 for w ∈W.�

�

Proof of Theorem 2.1. It follows from Lemma 2.2 of [3] that if Ĩ : V → R is
defined by Ĩ(v) = I(v+ θ(v)) in B1, then Ĩ has a continuous Fréchet derivative DĨ
with respect to v and

DĨ(v)(h) = DI(v + θ(v))(h) for all h ∈ V.

If v0 is a critical point of Ĩ , then v0 + θ(v0) is a solution of (2.1). Since V is the
subspace of H of eigenfunctions of λmn > 0, Ĩ has a local minimum in B1, which
is a critical value of Ĩ . This completes the proof of Theorem 2.1. � �
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