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Abstract. In this note, we study a relation between harmonic maps and expo-
nential harmonic maps, and we show existence of Yang-Mills connections.

1. Introduction

The theory of harmonic maps and exponentially harmonic maps has recently
developed very much as we see excellent expository papers of Eells and Lamaire
[2].

In this paper we focus on the exponentially harmonic maps and exponentially
Yang–Mills connections. It is well known that both theories of harmonic maps and
Yang–Mills connections have certain strong similarities. We introduce and study
another problem of calculus of variations in an analogous way as exponentially
harmonic maps. Namely, we define the exponential Yang–Mills connection and we
show existence of Yang–Mills connection and exponential Yang–Mills connection.

2. Main Results

Let (M, g) and (N,h) be two compact Riemannian manifolds and ϕ : M → N
be a smooth map. Harmonic maps are extremals of the energy functional

E(ϕ) =
∫

M

e(ϕ)vg

where e(ϕ) = 1
2 |dϕ|2 is the energy density and vg is the canonical volume element.

The map ϕ is harmonic if and only if it satisfies the Euler–Lagrange equation

τ(ϕ) = div(dϕ) = 0.

The existence problem for harmonic maps is the following; Given two Riemannian
manifolds (M, g), (N,h) and a homotopy class H of smooth maps from M to N ,
when is there a harmonic maps in H? This problem has been studied extensively,
and the answer depends on the manifolds and the homotopy class. To obtain
existence of solutions in all dimensions without conditions on the manifolds, Eells–
Lemaire [2] considered another problem of calculus of variations. They defined the
exponential energy of ϕ as

Ee(ϕ) =
∫

M

exp(
1
2
|dϕ|2)vg,

and say that a smooth extremal of Ee an exponentially harmonic maps.
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Proposition 1. [2] Let (M, g) and (N,h) be compact manifolds, H a homotopy
class. Then H contains an E–minimizing map, which is α–Hölder continuous for
all α < 1.

This can be verified using the properties of the Sobolev spaces of maps from M
to N , which are defined as follows. Choose a finite atlas on M and Riemannian
embedding of (N,h) in some Euclidean space V . Let Lp

1(M,V ) be the Sobolev
space of Lp functions from M to V whose first partial derivatives are also Lp. Then
we set

Lp
1(M,N) = {φ ∈ Lp

1(M,V ), φ(x) ∈ N a.e.}
W = ∩p≥1Lp

1(M,N),

and consider in W ∩H a minimizing sequence (φn) for E. Since

E(φ) =
∫

M

∞∑
k=0

1
k!

(
|dφ|2

2
)kvg,

(φn) is bounded in each Lp
1(M,N). Using the compactness of various Sobolev em-

beddings and a diagonal argument, we deduce that a subsequence converge weakly
in each Lp

1, strongly in each Lp, and in Cα for each α < 1. In particular, the con-
vergence is uniform and the limit φ belongs to the homotopy class H. Convexity
in P of exp(|p|2/2) insure lower–semicontinuity of E for that convergence, so that
E(φ) < lim inf (φn), and φ is a Cα minimizer.

Theorem 2. [1] If dim M ≥ 3 for any homotopy class H, then there exist a
C∞ Riemannian metric g̃ on M conformal to g and C∞ map ϕ in H such that
ϕ : (M, g̃) → (N,h) is harmonic.

Theorem 3. [3] If dim M ≥ 3, then there is a smooth metric g̃ conformally
equivalent to g and a map ϕ ∈ H such that ϕ : (M, g̃) → (N,h) is exponentially
harmonic.

We prove a relation between exponentially harmonic and harmonic maps.

Theorem 4. If dim M ≥ 3 and ϕ : (M, g̃) → (N,h) is exponentially harmonic,
then there exists a smooth metric g̃ conformally equivalent to g such that ϕ :
(M, g̃) → (N,h) is harmonic.

Corollary. Let ϕ : (M, g) → (N,h) be an exponentially harmonic map which
is constant on an open subset of M . Then ϕ is constant on M .

It is well–known that both theories of Yang–Mills connections and harmonic
maps have certain similarities. We introduce and study another problem of calculus
of variations in an analogous way as exponentially harmonic maps. Namely, we
define the exponential Yang–Mills functional. Let (M, g) be a compact Riemannian
manifold, and let E be a G–vector bundle over M . Let C(E) be the space of all
C∞ G–connections of E. For ∇ ∈ C(E), let R∇ be its curvature tensor. The
Yang–Mills functional yM : C(E) → R is defined by

yM(∇) =
1
2

∫
M

‖R∇‖2vg.
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Definition. The exponential Yang-Mills functional yMe : C(E) → R is defined
by

yMe(∇) =
∫

M

exp(
1
2
‖R∇‖2)vg.

A critical point ∇ ∈ C(E) of the Yang–Mills functional yM is called a Yang–Mills
connection and a critical point of the exponential Yang–Mills functional yMe is
called an exponential Yang–Mills connection.

Theorem 5. Let (M, g) be an n–dimensional Riemannian manifold, G a com-
pact Lie group and E a G–vector bundle over M . Assume that n ≥ 5. Then there
exists a C∞ Riemannian metric g̃ on M conformal to g and a C∞ G–connection ∇
on E such that ∇ is Yang–Mills connection with respect to g̃.

Proof. For a positive C∞–function f on M , put a new Riemannian metric g̃ on
M by g̃ = fg. We denote the subscripts g and g̃ for their corresponding quantities.
Then we get ∫

M

‖R∇‖2g̃vg̃ =
∫

M

f (n−4)/2‖R∇‖2gvg.

For the Euler–Lagrange equation,

δ∇g̃ R∇ = 0 if and only if δ∇g (f (n−4)/2R∇) = 0,

where δ∇g̃ , δ∇g are the formal adjoint of d∇ corresponding to g̃ and g respectively.
Moreover, the functional

Fp(∇) =
1
2

∫
M

(1 + ‖R∇‖2)p/2vg

satisfies the Palais–Smale condition and attains a minimum if 2p > dim M . Its
Euler–Lagrange equation is given by

δ∇g ((1 + ‖R∇‖2)(p−2)/2R∇) = 0. (1)

In fact, for A ∈ Ω1(gE),

d

dt
|t=0Fp(∇+ tA) =

d

dt
|t=0

∫
M

(1 + ‖R∇+tA‖2g)p/2vg

=
p

2

∫
M

(1 + ‖R∇‖2)(p−2)/2 < d∇A,R∇ >g vg.

The equation (1) has a solution ∇ for 2p > dim M . For the solution ∇, defining

f = (1 + ‖R∇‖2)(p−2)/(n−4)

and g̃ = fg, we obtain δ∇g̃ = 0, so g̃ and ∇ are the desired ones. � �
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Proposition 6. The function f 7→ log f/f2 is a strictly increasing function
on the interval [1,

√
e). Thus the inverse function f = Ψ(y) exists on the interval

[0, 1/2e) and smooth.

Proof. In fact, the derivative is

dy

df
=

1− 2 log f

f3

which is positive on the interval [1,
√

e). � �

Proposition 7. Let (M, g) be an n–dimensional compact Riemannian mani-
fold, G a compact Lie group, and E a G–vector bundle over M . Assume that n ≥ 5
and ∇ is a Yang–Mills connection. Then for any ε > 0, there exists a C∞ Riemann-
ian metric g̃ on M which is homotopic to g such that ∇ is Yang–Mills connection
with respect to g̃ and ‖R∇‖2g̃ < ε.

Proof. For a positive constant C, put g̃ = Cg. Then the Yang–Mills equation
for g̃ is the same for g. Moreover, since ‖R∇‖2g̃ = C−2‖R∇‖2g and M is compact,
we get ‖R∇‖2g < ε if C is sufficiently large. � �

Theorem 8. Let (M, g) be an n–dimensional compact Riemannian manifold,
G a compact Lie group, and E a G–vector bundle over M . Assume that n ≥ 5 and
∇ is a Yang–Mills connection. Then there exists a C∞ Riemannian metric on M
which is conformal to g such that ∇ is an exponential Yang–Mills connection with
respect to g̃.

Proof. By Proposition 7, we may assume a Yang–Mills connection ∇ satisfies
‖R∇‖2 < ε < n−4

2e . For a positive C∞ function f on M , define g̃ = f−1g. Then

δ∇g R∇ = 0 if and only if δ∇g̃ (f (n−4)/2R∇) = 0.

Since ‖R∇‖2g < n−4
2e , we can define the function f on M by

f = Ψ(
‖R∇‖2g
n− 4

) > 0

due to Proposition 6. Then it holds that

f (n−4)/2 = (exp(
‖R∇‖2g
n− 4

))(n−4)/2

= exp(f2
‖R∇‖2g

2
) = exp(

‖R∇‖2g̃
2

).

Then it holds that

δ∇g̃ (exp(
‖R∇‖2g̃

2
)R∇) = 0

which implies that ∇ is an exponential Yang–Mills connection with respect to g̃.��

From Theorem 5 and Theorem 8 we obtain the following result.
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Theorem 9. Let (M, g) be an n–dimensional compact Riemannian manifold,
G a compact Lie group, and E a G–vector bundle over M . Assume that n ≥ 5.
Then there exists a C∞ Riemannian metric g̃ on M which is conformal to g and
a C∞ G–connection ∇ on E such that ∇ is an exponential Yang–Mills connection
with respect to g̃.
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