PERTURBATION AND JUMP OF A SEMI-FREDHOLM OPERATOR

DONG HARK LEE AND PHIL UNG CHUNG

ABSTRACT. The purpose of the present paper is to derive the perturbations and jumps of semi-Fredholm operators.

1. Introduction

Throughout this paper, we suppose that X is a Banach space and write BL(X) for the set of all bounded linear operators on X.

A linear operator $T \in BL(X)$ is called upper semi-Fredholm if it has closed range with finite dimensional null space, and lower semi-Fredholm if it has closed range with its range of finite codimension.

If T is upper or lower semi-Fredholm, we call it semi-Fredholm.

We shall introduce $T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X)$ for the hyperrange and $T^{-\infty}(0) = \bigcup_{n=1}^{\infty} T^{-n}(0)$ for the hyperkernel of $T \in BL(X)$.

 $T \in BL(X)$ is hyperexact if $T^{-1}(0) \subseteq T^{\infty}(X)$.

We shall say that T has ascent $\leq k$ if there exists a positive integer k such that $T^{-\infty}(0) = T^{-k}(0)$ and T has descent $\leq k$ if there exists a positive integer k for which $T^{\infty}(X) = T^{k}(X)$.

The punctured neighborhood theorem says that if $T \in BL(X)$ is semi-Fredholm then there is $\epsilon > 0$ for which $n(T - \lambda)$ and $d(T - \lambda)$ are both constant for $0 < |\lambda| < \epsilon$, $\lambda \in C$, where $n(T) = \dim(T^{-1}(0)), d(T) = \operatorname{codim}(T(X))$. We define the jump j(T) of a semi-Fredholm operator $T \in BL(X)$;

$$j(T) \stackrel{\text{def}}{=} \begin{cases} n(T) - n(T - \lambda) \text{ if } T \text{ is upper semi-Fredholm,} \\ d(T) - d(T - \lambda) \text{ if } T \text{ is lower semi-Fredholm.} \end{cases}$$

T.T. West ([5]) has shown that if $j(T) \neq 0$, then there is the smallest integer t for which $T^{-1}(0) \subseteq T^{t-1}(X)$ but $T^{-1}(0) \nsubseteq T^t(X)$.

The purpose of this paper is to derive the perturbation and jumps of semi-Fredholm operators.

LEMMA 1. Let T, $T_i \in BL(X), i \in N$ be semi-Fredholm operators. Then

(1.1)

$$(T_1T_2\cdots T_m)^{-1}(0) \subseteq (T_1T_2\cdots T_m)^{\infty}(X)$$

$$(1.1)$$

$$iff \quad (T_1T_2\cdots T_m)^{-\infty}(0) \subseteq (T_1T_2\cdots T_m)^{\infty}(X)$$

$$iff \quad j(T_1T_2\cdots T_m) = 0$$

Received December 21, 1995.

¹⁹⁹¹ Mathematics Subject Classification: 47A53.

Key words and phrases: semi-Fredholm operator, jump, perturbation.

and

(1.2)
$$T^{-m}(0) \subseteq (T^m)^{\infty}(X) \quad iff \quad j(T^m) = 0$$

for each $m \in N$.

proof. Since each T_i is semi-Fredholm, $T_1T_2\cdots T_m$ is also semi-Fredholm. Hence we have

$$(T_1T_2\cdots T_m)^{-\infty}(0) \subseteq (T_1T_2\cdots T_m)^{\infty}(X)$$

$$\iff (T_1T_2\cdots T_m)^{-1}(0) \subseteq (T_1T_2\cdots T_m)^n(X) \text{ for each } n \in N$$

$$\iff (T_1T_2\cdots T_m)^{-1}(0) \subseteq (T_1T_2\cdots T_m)^{\infty}(X).$$

and

$$j(T_1T_2\cdots T_m) = 0 \iff (T_1T_2\cdots T_m)^{-\infty}(0) \subseteq (T_1T_2\cdots T_m)^{\infty}(X).$$

Using the above argument, we have

$$T^{-m}(0) \subseteq (T^m)^{\infty}(X) \iff j(T^m) = 0,$$

for each $m \in N$.

2. Main Results

THEOREM 2. Let each $T_i \in BL(X), i \in N$ be semi-Fredholmand let k and t be the smallest integers for which, for each $m \in N$,

$$(T_1 T_2 \cdots T_m)^{-1}(0) \cap (T_1 T_2 \cdots T_m)^{\infty}(X) = (T_1 T_2 \cdots T_m)^{-1}(0) \cap (T_1 T_2 \cdots T_m)^k(X),$$

and

$$(T_1 T_2 \cdots T_m)^{-1}(0) \subseteq (T_1 T_2 \cdots T_m)^{t-1}(X),$$

 $(T_1 T_2 \cdots T_m)^{-1}(0) \nsubseteq (T_1 T_2 \cdots T_m)^t(X)$

respectively. If either k < t or k = t and $T_1 T_2 \cdots T_m$ is hyperexact, then we have

(2.1)
$$d((T_1T_2\cdots T_m)^k) = kd(T_1T_2\cdots T_m)$$

and

(2.2)
$$j((T_1T_2\cdots T_m)^k) = kj(T_1T_2\cdots T_m).$$

proof. Since each operator of the form $(T_1T_2\cdots T_m)^n$, $n \in N$ is semi-Fredholm, we have

$$X/((T_1T_2\cdots T_m)^n(X) + (T_1T_2\cdots T_m)^{-1}(0))$$

$$\cong (T_1T_2\cdots T_m)(X)/(T_1T_2\cdots T_m)^{n+1}(X)$$

In particular, if k < t, then

$$(T_1T_2\cdots T_m)^{-1}(0) \subseteq (T_1T_2\cdots T_m)^k(X).$$

Hence we have

$$X/(T_1T_2\cdots T_m)^k(X) \cong (T_1T_2\cdots T_m)(X)/(T_1T_2\cdots T_m)^{k+1}(X).$$

By the inductive steps, we have

$$X/(T_1T_2\cdots T_m)^k(X) \cong k(X/(T_1T_2\cdots T_m)(X)).$$

Since $(T_1 \cdots T_m)$, $(T_1 \cdots T_m)^k$ are semi-Fredholm, $X/(T_1T_2 \cdots T_m)(X)$ and $X/(T_1T_2 \cdots T_m)^k(X)$ are finite dimensional normed spaces. Then,

$$d((T_1T_2\cdots T_m)^k) = kd(T_1T_2\cdots T_m).$$

By the duality of $d((T_1T_2\cdots T_m)^k)$, we have

$$n((T_1T_2\cdots T_m)^k) = kn(T_1T_2\cdots T_m).$$

If k = t and $T_1 T_2 \cdots T_m$ is hyperexact, then

$$(T_1T_2\cdots T_m)^{-1}(0) \subseteq (T_1T_2\cdots T_m)^{k=t}(X) = (T_1T_2\cdots T_m)^{\infty}(X).$$

Since $j(T_1T_2\cdots T_m) = 0$ by Lemma 1, we have

$$kn(T_1T_2\cdots T_m) = kn(T_1T_2\cdots T_m - \lambda) = n((T_1T_2\cdots T_m)^k)$$

for sufficiently small λ . Using the punctured neighborhood theorem,

$$n((T_1T_2\cdots T_m - \lambda)^l) - n((T_1T_2\cdots T_m)^l - \mu) = l[n(T_1T_2\cdots T_m)] - l[n(T_1T_2\cdots T_m)] = 0$$

for each $l \in N$ and for a sufficiently small $\mu \in C$. Hence

$$n((T_1T_2\cdots T_m)^k) = kn(T_1T_2\cdots T_m),$$

and

$$j((T_1T_2\cdots T_m)^k) = kn(T_1T_2\cdots T_m).$$

By the duality of $n((T_1T_2\cdots T_m)^k)$,

$$d((T_1T_2\cdots T_m)^k) = kd(T_1T_2\cdots T_m).$$

Thus, we have the required results.

COROLLARY 3. Let $T \in BL(X)$ be semi-Fredholm and let k and t be the smallest integer such that $T^{-1}(0) \cap T^{\infty}(X) = T^{-1}(0) \cap T^k(X)$ and $T^{-1}(0) \subseteq T^{t-1}(X)$ but $T^{-1}(0) \nsubseteq T^t(X)$ respectively. If either k < t or k = t and T is hyperexact, then we have

(3.1)
$$d(T^k) = kd(T),$$

$$(3.2.) j(T^k) = kj(T).$$

proof. Using Theorem 2, our assertion can be easily proved. \Box

THEOREM 4. Let $S, T \in BL(X)$ commute.

(4.1) If T is an upper semi-Fredholm operator with finite ascent, and S is a compact operator with finite ascent, then

$$j(T+S) = n(T+S).$$

(4.2) If T is a lower semi-Fredholm operator with finite descent and S is a compact operator with finite descent, then

$$j(T+S) = d(T+S).$$

(4.3) If S + T is a semi-Fredholm operator with finite ascent and t is the smallest integer for which $(T + S)^{-1}(0) \subseteq (T + S)^{t-1}(X)$ but $(T + S)^{-1}(0) \nsubseteq (T + S)^t(X)$ and either k < t or k = t and T + S is hyperexact, then

$$j((T+S)^k) = kj(T+S) = kn(T+S).$$

proof. Suppose that T is upper semi-Fredholm with finite ascent and S is compact operator with finite ascent for (4.1). Then T + S is upper semi-Fredholm and it has finite ascent. If T + S has ascent k, then we have

$$(T+S)^{-1}(0) \cap (T+S)^k(X) = \{0\}.$$

and

$$\dim(T + S - \lambda)^{-1}(0) = \dim((T + S)^{-1}(0) \cap (T + S)^{\infty}(X))$$

for sufficiently small λ . Since

$$(T+S)^{-1}(0) \cap (T+S)^{\infty}(X) = (T+S)^{-1}(0) \cap (T+S)^{k}(X) = \{0\},\$$

we have

$$\dim((T + S - \lambda)^{-1}(0)) = 0.$$

Hence

$$j(T + S) = n(T + S) - n(T + S - \lambda) = n(T + S)$$

for sufficiently small λ . And we have $d(T+S-\lambda) = 0$ for sufficiently small $\lambda([1],[3])$. Thus j(T+S) = d(T+S). Let t be the smallest integer for which $(T+S)^{-1}(0) \subseteq (T+S)^{t-1}(X)$ but $(T+S)^{-1}(0) \not\subseteq (T+S)^t(X)$ and $k \leq t$ for (4.3). If T+S has finite ascent, then, (4.3) follows at once from Corollary 3 and (4.1). \Box

References

- Dong Hark Lee and Woo Yong Lee, The Jump of a Semi-Fredholm Operator, Comm. Korean Math. Soc. 9, No.3 (1994), 593–598.
- 2. M. O'SEARCOLD and T.T. West, Continuity of the generalized kernel and range of semi-Fredholm operators, Math. Proc. Camb. Phil. Soc. 105 (1989), 513-522.
- 3. R.E. Harte, Invertibility and Singularity for Bounded Linear Operators (1988), Dekker, New York, 174–297.
- 4. _____, Taylor Exactness and Kato's Jump, Proc. A.M.S, Vol. 119, No. 3 (1993), 793–801.
- T.T. West, M.R.I.A, A Riesz-Schauder Theorem for semi-Fredholm Operators, Proc. R. Ir. Acad. Vol.87A. 2 (1987), 137–146.
- T.T. West, Removing the Jump-kato's Decomposition, Rocky Mountain Journal of Mathematics, Vol. 20, No. 2, Spring (1990), 603–612.

Dong Hark Lee Department of Mathematics Education Kangwon National University Chuncheon 200-701, Korea

Phil Ung Chung Department of Mathematics Kangwon National University Chuncheon 200-701, Korea