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Abstract. We introduce the concepts of fuzzy s-continuous functions. And we
investigate several properties of the fuzzy s-continuous function. In particular,

we study the relation between fuzzy continuous functions and fuzzy s-continuous
functions.

1. INTRODUCTION

Fuzzy topological spaces were first introduced in the literature by Chang [1]
who studied a number of the basic concepts including fuzzy continuous maps and
compactness. And fuzzy topological spaces are a very natural generalization of
topological spaces. In 1983, A.S. Mashhour et al.[3] introduced supra topological
spaces and studied s-continuous functions and s∗-continuous functions. In 1987,
M.E. Abd El-Monsef et al.[2] introduced the fuzzy supra topological spaces and
studied fuzzy supra-continuous functions and characterized a number of basic con-
cepts. Also fuzzy supra topological spaces are generalizations of supra topological
spaces. In this paper, we introduce fuzzy s-continuous function and establish a
number of characterizations. Let X be a set and let I = [0, 1]. Let IX denote the
set of all mapping a : X → I.

A member of IX is called a fuzzy subset of X. And unions and intersections of
fuzzy sets are denoted by ∨ and ∧ respectively and defined by

∨ ai = sup{ai(x) | i ∈ J and x ∈ X},
∧ ai = inf{ai(x) | i ∈ J and x ∈ X}.

Definition 1.1[1]. A fuzzy topology T on X is a collection of subsets of IX

such that
(1) 0, 1 ∈ T ,
(2) if a, b ∈ T , then a ∧ b ∈ T ,
(3) if ai ∈ T for all i ∈ J , then ∨ai ∈ T .
(X, T ) is called a fuzzy topological space. Members of T are called fuzzy open

sets in (X, T ) and complement of a fuzzy open set is called a fuzzy closed set.

Definition 1.2. Let f be a mapping from a set X into a set Y . Let a and b be
the fuzzy sets of X and Y , respectively. Then f(a) is a fuzzy set in Y , defined by

f(a)(y) =
{

supz∈f−1(y) a(z), if f−1(y) 6= ∅, y ∈ Y

0, otherwise,

and f−1(b) is a fuzzy set in X, defined by f−1(b)(x) = b(f(x)), x ∈ X.
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Definition 1.3[3]. A subfamily T ∗ of IX is said to be a fuzzy supra-topology
on X if

(1) 1 ∈ T ∗,
(2) if ai ∈ T ∗ for all i ∈ J , then ∨ai ∈ T ∗.
(X, T ∗) is called a fuzzy supra topological space. The elements of T ∗ are called

fuzzy supra open sets in (X, T ∗). And a fuzzy set a is supra closed iff co(a) = 1−a
is a fuzzy supra open set. And the fuzzy supra topological spaces T ∗ is denoted by
fsts.

Definition 1.4[3]. The supra closure of a fuzzy set a is denoted by scl(a), and
given by

scl(a) = ∧{s | s is a fuzzy supra closed set and a ≤ s}.
The supra interior of a fuzzy set a is denoted by si(a) and given by

si(a) = ∨{t | t is a fuzzy supra open set and t ≤ a}.

2. Fuzzy s-continuous function

Definition 2.1[2]. Let (X, T ) be a fuzzy topological space and T ∗ be a fuzzy
supra-topology on X. We call T ∗ a fuzzy supra-topology associated with T if
T ⊂ T ∗.

Definition 2.2[2]. Let f : (X, T ∗) → (Y, S∗) be a mapping between two fuzzy
supratopological spaces. f is a fuzzy supracontinuous function if f−1(S∗) ⊆ T ∗.

Definition 2.3. Let (X, T ) and (Y, S) be fuzzy topological spaces and T ∗ be
an associated fuzzy supra-topology with T . A function f : X → Y is a fuzzy s-
continuous function if the inverse image of each fuzzy open set in Y is T ∗-fuzzy
supra open in X.

Theorem 2.4. Let (X, T ) and (Y, S) be fts. Let f be a function from X into
Y . Let T ∗ be an associated fuzzy supra-topology with T . Then the followings are
equivalent :

(1) f is fuzzy s-continuous.
(2) The inverse image of each fuzzy closed set in Y is T ∗-fuzzy supra closed.
(3) scl(f−1(a)) ≤ f−1(cl(a)) for every fuzzy set a in Y .
(4) f(scl(a)) ≤ cl(f(a)) for every fuzzy set a in X.
(5) f−1(int(b)) ≤ si(f−1(b)) for every fuzzy set b in Y .
(6) For each fuzzy set a in X and each fuzzy neighborhood b of f(a), there is a

fuzzy supra neighborhood c of a such that f(c) ≤ b.

Proof. (1) ⇒ (2). Let a be fuzzy closed set in Y . Since f is a fuzzy s-continuous,
f−1(1 − a) = 1 − f−1(a) is fuzzy supra open in X. Therefore f−1(a) is a fuzzy
supra closed set in X.

(2) ⇒ (3). Since cl(a) is fuzzy closed for every fuzzy set a in Y , f−1(cl(a)) is
T ∗-fuzzy supra closed. Therefore,

f−1(cl(a)) = scl(f−1(cl(a))) ≥ scl(f−1(a)).
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(3) ⇒ (4). Let a be fuzzy subset in X and let f(a) = b. Then f−1(scl(b)) ≥
scl(f−1(b)). So f−1(cl(f(a))) ≥ scl(f−1f(a)) ≥ scl(a), and hence cl(f(a)) ≥
f(scl(a)).

(4) ⇒ (2). Let b be a fuzzy closed set in Y and be a = f−1(b). Then f(scl(a)) ≤
cl(f(a)) = cl(f(f−1(b))) ≤ cl(b) = b. Since scl(a) ≤ f−1(f(scl(a)) ≤ f−1(b) = a,
then a is T ∗-fuzzy supra closed.

(2) ⇒ (1). Obvious.
(1) ⇒ (5). Let b be a fuzzy subset in Y . Since f−1(int(b)) is T ∗-fuzzy supra

open set in X, f−1(int(b)) ≤ si(f−1(int(b))) ≤ si(f−1(b)).
(5) ⇒ (1). Let a be a fuzzy open set in Y . Since f−1(a) ≤ si(f−1(a)) ≤ f−1(a),

f−1(a) is T ∗-fuzzy supra open.
(6) ⇒ (1). Let b be any fuzzy open set in Y and let f−1(b) = a. Then b is a

fuzzy neighborhood of f(a) = f(f−1(b)). There exists a fuzzy supra neighborhood
c of a = f−1(b) such that f(c) ≤ b. Thus c ≤ f−1f(c) ≤ f−1(b). Therefore, f−1(b)
is a fuzzy supra neighborhood of f−1(b). And f−1(b) is a fuzzy supra open set in
X, by [6, Theorem 2.2].

(1) ⇒ (6). Obvious. � �

Remark. Every fuzzy continuous function is fuzzy s-continuous. But the con-
verse of this implication is not true, as following example shows.

Example 2.1. Let a1, a2, and a3 be fuzzy subsets of X = I, defined as

a1(x) =
{

0, if 0 ≤ x ≤ 1/2,

2x− 1, if 1/2 ≤ x ≤ 1;

a2(x) =


1, if 0 ≤ x ≤ 1/4,

−4x + 2, if 1/4 ≤ x ≤ 1/2,

0, if 1/2 ≤ x ≤ 1;

a3(x) =
{

1, if ≤ x ≤ 1/2,

−2x + 2, if 1/2 ≤ x ≤ 1.

Consider the fuzzy space T1 = {0, a1, a2, a1 ∨ a2, 1} and an associated supra fuzzy
space T1

∗ = {0, a1, a2, a3, a1 ∨ a2, a1 ∨ a3, 1}. Let g : X → X be defined by g(x) =
(1/2)x. Clearly, we have g−1(0) = 0, g−1(1) = 1, g−1(a1∨a2) = a3, g−1(a2) = a3,
and g−1(a1) = 0 . co(a1) = a3 is a fuzzy supra open in (X, T ∗1 ) but it is not fuzzy
open in (X, T1). Hence the fuzzy mapping g is fuzzy s-continuous but not fuzzy
continuous.

Remark. In general, the composition of two fuzzy s-continuous functions need
not be fuzzy s-continuous.

Example 2.2. Let X = I. Consider the fuzzy sets

a(x) =


1, if 0 ≤ x < 1/3
1/2, if 1/3 ≤ x ≤ 2/3
0, if 2/3 < x ≤ 1,

b(x) = 1/2, if 0 ≤ x ≤ 1,

c(x) = 1/3, if 0 ≤ x ≤ 1.



80 Won Keun Min

Let T1 = {0, a, 1} and T1
∗ = {0, a, b, a ∨ b, 1}. Let T2 = {0, c, 1} and T2

∗ =
{0, a, c, a ∨ c, 1}. Let f : (X, T1) → (X, T1) be a fuzzy mapping defined by f(x) =
(x + 1)/3. Let g : (X, T2) → (X, T1) be a fuzzy mapping defined by g(x) = (1/3)x.
Clearly, f and g are fuzzy s-continuous. But (f ◦ g) is not fuzzy s-continuous, since
a is a fuzzy open set in (X, T1) but (f ◦ g)−1(a) = b is not fuzzy supra open in T ∗2 .

Theorem 2.5. If a fuzzy mapping f : (X, T1) → (Y, T2) is fuzzy s-continuous
and g : (Y, T2) → (Z, T3) is fuzzy continuous, then (g ◦ f) is fuzzy s-continuous.

Proof. The proof is clear by the definitions of fuzzy s-continuous functions and
fuzzy continuous functions. � �

Theorem 2.6. Let (X, T ) and (Y, S) be fts, T ∗ and S∗ be two associated fuzzy
supra-topologies with T and S, respectively. If f : X → Y is a fuzzy mapping, and
one of the followings;

(1) f−1(si(a)) ≤ int(f−1(a)) for each fuzzy set a in (Y, S),
(2) cl(f−1(a)) ≤ f−1(scl(a)) for each fuzzy set a in (Y, S),
(3) f(cl(b)) ≤ scl(f(b)) for each fuzzy set b in (X, T ), holds, then f is fuzzy

continuous.

Proof. If the condition (2) is satisfied, let b be a fuzzy closed set in Y , then
cl(f−1(b)) ≤ f−1(scl(b)) = f−1(b). Therefore f−1(b) is a fuzzy closed set in X.

If the condition (3) is satisfied, let b be a fuzzy subset in Y , then f−1(b) is a fuzzy
subset in X and f(cl(f−1(b))) ≤ scl(f(f−1(b))). Thus cl(f−1(b)) ≤ f−1(scl(b)).
Therefore, since the condition (2) is satisfied, f is a fuzzy continuous function.

Similarly, we can prove in the case (1). � �

Lemma [4]. Let g : X → X × Y be the graph of a fuzzy mapping f : X → Y .
Then, if a is a fuzzy set in X and b is a fuzzy set in Y , g−1(a× b) = a ∧ f−1(b).

Theorem 2.7. Let f : (X, T ) → (Y, S) be a fuzzy mapping and T ∗ be an asso-
ciated supra-topology with T . Let g : X → X × Y , given by g(x) = (x, f(x)) be its
graph mapping. If g is fuzzy s-continuous, then f is fuzzy s-continuous.

Proof. Suppose that g is a fuzzy s-continuous and a is a fuzzy open set in (Y, S).
Then f−1(a) = 1 ∧ f−1(a) = g−1(1 × a). Therefore, f−1(a) is a fuzzy supra open
set in (X, T ∗). � �
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