ON FUZZY S-CONTINUOUS FUNCTIONS

Won Keun Min

Abstract

We introduce the concepts of fuzzy s-continuous functions. And we investigate several properties of the fuzzy s-continuous function. In particular, we study the relation between fuzzy continuous functions and fuzzy s-continuous functions.

1. INTRODUCTION

Fuzzy topological spaces were first introduced in the literature by Chang [1] who studied a number of the basic concepts including fuzzy continuous maps and compactness. And fuzzy topological spaces are a very natural generalization of topological spaces. In 1983, A.S. Mashhour et al.[3] introduced supra topological spaces and studied s-continuous functions and s^{*}-continuous functions. In 1987, M.E. Abd El-Monsef et al.[2] introduced the fuzzy supra topological spaces and studied fuzzy supra-continuous functions and characterized a number of basic concepts. Also fuzzy supra topological spaces are generalizations of supra topological spaces. In this paper, we introduce fuzzy s-continuous function and establish a number of characterizations. Let X be a set and let $I=[0,1]$. Let I^{X} denote the set of all mapping $a: X \rightarrow I$.

A member of I^{X} is called a fuzzy subset of X. And unions and intersections of fuzzy sets are denoted by \vee and \wedge respectively and defined by

$$
\begin{aligned}
& \vee a_{i}=\sup \left\{a_{i}(x) \mid i \in J \text { and } x \in X\right\}, \\
& \wedge a_{i}=\inf \left\{a_{i}(x) \mid i \in J \text { and } x \in X\right\} .
\end{aligned}
$$

Definition 1.1[1]. A fuzzy topology T on X is a collection of subsets of I^{X} such that
(1) $0,1 \in T$,
(2) if $a, b \in T$, then $a \wedge b \in T$,
(3) if $a_{i} \in T$ for all $i \in J$, then $\vee a_{i} \in T$.
(X, T) is called a fuzzy topological space. Members of T are called fuzzy open sets in (X, T) and complement of a fuzzy open set is called a fuzzy closed set.

Definition 1.2. Let f be a mapping from a set X into a set Y. Let a and b be the fuzzy sets of X and Y, respectively. Then $f(a)$ is a fuzzy set in Y, defined by

$$
f(a)(y)= \begin{cases}\sup _{z \in f^{-1}(y)} a(z), & \text { if } f^{-1}(y) \neq \emptyset, y \in Y \\ 0, & \text { otherwise },\end{cases}
$$

and $f^{-1}(b)$ is a fuzzy set in X, defined by $f^{-1}(b)(x)=b(f(x)), x \in X$.

[^0]Definition 1.3[3]. A subfamily T^{*} of I^{X} is said to be a fuzzy supra-topology on X if
(1) $1 \in T^{*}$,
(2) if $a_{i} \in T^{*}$ for all $i \in J$, then $\vee a_{i} \in T^{*}$.
$\left(X, T^{*}\right)$ is called a fuzzy supra topological space. The elements of T^{*} are called fuzzy supra open sets in $\left(X, T^{*}\right)$. And a fuzzy set a is supra closed iff $\operatorname{co}(a)=1-a$ is a fuzzy supra open set. And the fuzzy supra topological spaces T^{*} is denoted by fsts.

Definition 1.4[3]. The supra closure of a fuzzy set a is denoted by $\operatorname{scl}(a)$, and given by

$$
\operatorname{scl}(a)=\wedge\{s \mid s \text { is a fuzzy supra closed set and } a \leq s\} .
$$

The supra interior of a fuzzy set a is denoted by $\operatorname{si}(a)$ and given by

$$
\operatorname{si}(a)=\vee\{t \mid t \text { is a fuzzy supra open set and } t \leq a\} .
$$

2. Fuzzy s-continuous function

Definition 2.1[2]. Let (X, T) be a fuzzy topological space and T^{*} be a fuzzy supra-topology on X. We call T^{*} a fuzzy supra-topology associated with T if $T \subset T^{*}$.

Definition 2.2[2]. Let $f:\left(X, T^{*}\right) \rightarrow\left(Y, S^{*}\right)$ be a mapping between two fuzzy supratopological spaces. f is a fuzzy supracontinuous function if $f^{-1}\left(S^{*}\right) \subseteq T^{*}$.

Definition 2.3. Let (X, T) and (Y, S) be fuzzy topological spaces and T^{*} be an associated fuzzy supra-topology with T. A function $f: X \rightarrow Y$ is a fuzzy s continuous function if the inverse image of each fuzzy open set in Y is T^{*}-fuzzy supra open in X.

Theorem 2.4. Let (X, T) and (Y, S) be fts. Let f be a function from X into Y. Let T^{*} be an associated fuzzy supra-topology with T. Then the followings are equivalent :
(1) f is fuzzy s-continuous.
(2) The inverse image of each fuzzy closed set in Y is T^{*}-fuzzy supra closed.
(3) $\operatorname{scl}\left(f^{-1}(a)\right) \leq f^{-1}(c l(a))$ for every fuzzy set a in Y.
(4) $f(\operatorname{scl}(a)) \leq \operatorname{cl}(f(a))$ for every fuzzy set a in X.
(5) $f^{-1}(\operatorname{int}(b)) \leq s i\left(f^{-1}(b)\right)$ for every fuzzy set b in Y.
(6) For each fuzzy set a in X and each fuzzy neighborhood b of $f(a)$, there is a fuzzy supra neighborhood c of a such that $f(c) \leq b$.

Proof. (1) \Rightarrow (2). Let a be fuzzy closed set in Y. Since f is a fuzzy s-continuous, $f^{-1}(1-a)=1-f^{-1}(a)$ is fuzzy supra open in X. Therefore $f^{-1}(a)$ is a fuzzy supra closed set in X.
$(2) \Rightarrow(3)$. Since $c l(a)$ is fuzzy closed for every fuzzy set a in $Y, f^{-1}(c l(a))$ is T^{*}-fuzzy supra closed. Therefore,

$$
f^{-1}(c l(a))=\operatorname{scl}\left(f^{-1}(c l(a))\right) \geq \operatorname{scl}\left(f^{-1}(a)\right) .
$$

(3) \Rightarrow (4). Let a be fuzzy subset in X and let $f(a)=b$. Then $f^{-1}(\operatorname{scl}(b)) \geq$ $\operatorname{scl}\left(f^{-1}(b)\right)$. So $f^{-1}(c l(f(a))) \geq \operatorname{scl}\left(f^{-1} f(a)\right) \geq \operatorname{scl}(a)$, and hence $\operatorname{cl}(f(a)) \geq$ $f(s c l(a))$.
(4) $\Rightarrow(2)$. Let b be a fuzzy closed set in Y and be $a=f^{-1}(b)$. Then $f(\operatorname{scl}(a)) \leq$ $c l(f(a))=c l\left(f\left(f^{-1}(b)\right)\right) \leq c l(b)=b$. Since $\operatorname{scl}(a) \leq f^{-1}\left(f(s c l(a)) \leq f^{-1}(b)=a\right.$, then a is T^{*}-fuzzy supra closed.
$(2) \Rightarrow(1)$. Obvious.
$(1) \Rightarrow(5)$. Let b be a fuzzy subset in Y. Since $f^{-1}(\operatorname{int}(b))$ is T^{*}-fuzzy supra open set in $X, f^{-1}(\operatorname{int}(b)) \leq \operatorname{si}\left(f^{-1}(\operatorname{int}(b))\right) \leq s i\left(f^{-1}(b)\right)$.
(5) \Rightarrow (1). Let a be a fuzzy open set in Y. Since $f^{-1}(a) \leq s i\left(f^{-1}(a)\right) \leq f^{-1}(a)$, $f^{-1}(a)$ is T^{*}-fuzzy supra open.
(6) $\Rightarrow(1)$. Let b be any fuzzy open set in Y and let $f^{-1}(b)=a$. Then b is a fuzzy neighborhood of $f(a)=f\left(f^{-1}(b)\right)$. There exists a fuzzy supra neighborhood c of $a=f^{-1}(b)$ such that $f(c) \leq b$. Thus $c \leq f^{-1} f(c) \leq f^{-1}(b)$. Therefore, $f^{-1}(b)$ is a fuzzy supra neighborhood of $f^{-1}(b)$. And $f^{-1}(b)$ is a fuzzy supra open set in X, by [6, Theorem 2.2].
$(1) \Rightarrow(6)$. Obvious.
Remark. Every fuzzy continuous function is fuzzy s-continuous. But the converse of this implication is not true, as following example shows.

Example 2.1. Let a_{1}, a_{2}, and a_{3} be fuzzy subsets of $X=I$, defined as

$$
\begin{aligned}
& a_{1}(x)= \begin{cases}0, & \text { if } 0 \leq x \leq 1 / 2, \\
2 x-1, & \text { if } 1 / 2 \leq x \leq 1 ;\end{cases} \\
& a_{2}(x)= \begin{cases}1, & \text { if } 0 \leq x \leq 1 / 4, \\
-4 x+2, & \text { if } 1 / 4 \leq x \leq 1 / 2, \\
0, & \text { if } 1 / 2 \leq x \leq 1 ;\end{cases} \\
& a_{3}(x)= \begin{cases}1, & \text { if } \leq x \leq 1 / 2, \\
-2 x+2, & \text { if } 1 / 2 \leq x \leq 1 .\end{cases}
\end{aligned}
$$

Consider the fuzzy space $T_{1}=\left\{0, a_{1}, a_{2}, a_{1} \vee a_{2}, 1\right\}$ and an associated supra fuzzy space $T_{1}{ }^{*}=\left\{0, a_{1}, a_{2}, a_{3}, a_{1} \vee a_{2}, a_{1} \vee a_{3}, 1\right\}$. Let $g: X \rightarrow X$ be defined by $g(x)=$ $(1 / 2) x$. Clearly, we have $g^{-1}(0)=0, g^{-1}(1)=1, g^{-1}\left(a_{1} \vee a_{2}\right)=a_{3}, g^{-1}\left(a_{2}\right)=a_{3}$, and $g^{-1}\left(a_{1}\right)=0 . \operatorname{co}\left(a_{1}\right)=a_{3}$ is a fuzzy supra open in $\left(X, T_{1}^{*}\right)$ but it is not fuzzy open in $\left(X, T_{1}\right)$. Hence the fuzzy mapping g is fuzzy s-continuous but not fuzzy continuous.

Remark. In general, the composition of two fuzzy s-continuous functions need not be fuzzy s-continuous.

Example 2.2. Let $X=I$. Consider the fuzzy sets

$$
\begin{aligned}
& a(x)= \begin{cases}1, & \text { if } 0 \leq x<1 / 3 \\
1 / 2, & \text { if } 1 / 3 \leq x \leq 2 / 3 \\
0, & \text { if } 2 / 3<x \leq 1,\end{cases} \\
& b(x)=1 / 2, \text { if } 0 \leq x \leq 1 \\
& c(x)=1 / 3, \text { if } 0 \leq x \leq 1
\end{aligned}
$$

Let $T_{1}=\{0, a, 1\}$ and $T_{1}{ }^{*}=\{0, a, b, a \vee b, 1\}$. Let $T_{2}=\{0, c, 1\}$ and $T_{2}{ }^{*}=$ $\{0, a, c, a \vee c, 1\}$. Let $f:\left(X, T_{1}\right) \rightarrow\left(X, T_{1}\right)$ be a fuzzy mapping defined by $f(x)=$ $(x+1) / 3$. Let $g:\left(X, T_{2}\right) \rightarrow\left(X, T_{1}\right)$ be a fuzzy mapping defined by $g(x)=(1 / 3) x$. Clearly, f and g are fuzzy s-continuous. But $(f \circ g)$ is not fuzzy s-continuous, since a is a fuzzy open set in $\left(X, T_{1}\right)$ but $(f \circ g)^{-1}(a)=b$ is not fuzzy supra open in T_{2}^{*}.

Theorem 2.5. If a fuzzy mapping $f:\left(X, T_{1}\right) \rightarrow\left(Y, T_{2}\right)$ is fuzzy s-continuous and $g:\left(Y, T_{2}\right) \rightarrow\left(Z, T_{3}\right)$ is fuzzy continuous, then $(g \circ f)$ is fuzzy s-continuous.

Proof. The proof is clear by the definitions of fuzzy s-continuous functions and fuzzy continuous functions.

Theorem 2.6. Let (X, T) and (Y, S) be fts, T^{*} and S^{*} be two associated fuzzy supra-topologies with T and S, respectively. If $f: X \rightarrow Y$ is a fuzzy mapping, and one of the followings;
(1) $f^{-1}(\operatorname{si}(a)) \leq \operatorname{int}\left(f^{-1}(a)\right)$ for each fuzzy set a in (Y, S),
(2) $\operatorname{cl}\left(f^{-1}(a)\right) \leq f^{-1}(\operatorname{scl}(a))$ for each fuzzy set a in (Y, S),
(3) $f(\operatorname{cl}(b)) \leq \operatorname{scl}(f(b))$ for each fuzzy set b in (X, T), holds, then f is fuzzy continuous.

Proof. If the condition (2) is satisfied, let b be a fuzzy closed set in Y, then $c l\left(f^{-1}(b)\right) \leq f^{-1}(\operatorname{scl}(b))=f^{-1}(b)$. Therefore $f^{-1}(b)$ is a fuzzy closed set in X.

If the condition (3) is satisfied, let b be a fuzzy subset in Y, then $f^{-1}(b)$ is a fuzzy subset in X and $f\left(c l\left(f^{-1}(b)\right)\right) \leq \operatorname{scl}\left(f\left(f^{-1}(b)\right)\right)$. Thus $c l\left(f^{-1}(b)\right) \leq f^{-1}(\operatorname{scl}(b))$. Therefore, since the condition (2) is satisfied, f is a fuzzy continuous function.

Similarly, we can prove in the case (1).
Lemma [4]. Let $g: X \rightarrow X \times Y$ be the graph of a fuzzy mapping $f: X \rightarrow Y$. Then, if a is a fuzzy set in X and b is a fuzzy set in $Y, g^{-1}(a \times b)=a \wedge f^{-1}(b)$.

Theorem 2.7. Let $f:(X, T) \rightarrow(Y, S)$ be a fuzzy mapping and T^{*} be an associated supra-topology with T. Let $g: X \rightarrow X \times Y$, given by $g(x)=(x, f(x))$ be its graph mapping. If g is fuzzy s-continuous, then f is fuzzy s-continuous.

Proof. Suppose that g is a fuzzy s-continuous and a is a fuzzy open set in (Y, S). Then $f^{-1}(a)=1 \wedge f^{-1}(a)=g^{-1}(1 \times a)$. Therefore, $f^{-1}(a)$ is a fuzzy supra open set in $\left(X, T^{*}\right)$.

References

1. Chang, C.L, Fuzzy topological spaces, J.Math. Anal. Appl. 24(1968), 182-190.
2. Abd El-Monsef, M.E and Ramadan, A.E, On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. 18(4)(1987), 322-329.
3. Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H., On supra topological spaces, Indian J. Pure and Appl. Math. 14(4)(1983), 502-510.
4. Singal, M.K. and Singal, A.R., Fuzzy alpha-set and alpha-continuous maps, Fuzzy Sets and Systems 48(1992), 383-390.
5. Zadeh, L.A., Fuzzy sets, Imfor. and Control 8(1965), 338-353.

Department of Mathematics
Kangwon National University
Chuncheon, 200-701, Korea

[^0]: Received December 26, 1995.
 1991 Mathematics Subject Classification: 54A40.
 Key words and phrases: fuzzy s-continuous, fuzzy continuous, fuzzy supra topological space, fuzzy supracontinuous.

