
Kangweon-Kyungki Math. Jour. 4 (1996), No. 2, pp. 125–133

APPROXIMATION AND CONVERGENCE
OF ACCRETIVE OPERATORS

Young Mee Koh and Young S. Lee

Abstract. We show that if X is a reflexive Banach space with

a uniformly Gâteaux differentiable norm, then the convergence of

semigroups acting on Banach spaces Xn implies the convergence of
resolvents of generators of semigroups.

In this paper we show that if X is a reflexive Banach space with
a uniformly Gâteaux differentiable norm, then the convergence of a
sequence of semigroups acting on different Banach spaces Xn implies
the convergence of the resolvents of the generators defined on Xn. This
improves Theorem 5.3 in [5]. Combining our result with Theorem 3.1
in [5], we can derive a nonlinear version of Trotter-Kato Theorem. This
version is useful for studying convergence of numerical approximations
of solutions to partial differential equations (see [5]).

Let X be a Banach space. We denote the identity operator by I
and the closure of a subset D of X by cl(D). An operator A ⊂ X ×X
with domain D(A) and range R(A) is said to be accretive if

|x1 − x2| ≤ |x1 − x2 + r(y1 − y2)|

for [xi, yi] ∈ A, i = 1, 2, and r > 0. An accretive operator A is said to
be m-accretive if R(I + rA) = X for all r > 0. Let JA

r = (I + rA)−1,
r > 0, be the resolvent of A.

A semigroup on a subset C of X is a function S : [0, ∞) × C →
C satisfying S(t1 + t2)x = S(t1)S(t2)x for t1, t2 ≥ 0 and x ∈ C,
|S(t)x− S(t)y| ≤ |x− y| for x, y ∈ C, S(0)x = x for x ∈ C, and S(t)x
is continuous in t ≥ 0 for each x ∈ C.
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If A is accretive and R(I + rA) ⊃ cl(D(A)) for r > 0, then there
exists a semigroup S on cl(D(A)) such that for each x ∈ cl(D(A)) and
t ≥ 0,

S(t)x = lim
r→0

(I + rA)−[t/r]x,

uniformly on bounded t−intervals (see [2, 6]), where [·] denotes the
Gaussian bracket. We shall say that the semigroup S(t) is generated
by −A.

We first introduce an approximating sequence of Banach spaces. Let
X and Xn be Banach spaces with norms | · | and | · |n, respectively. For
every n ≥ 1 there exist bounded linear operators Pn : X → Xn and
En : Xn → X satisfying

(1) ||Pn|| ≤ 1 and ||En|| ≤ 1 for all n,
(2) |EnPnx− x| → 0 as n →∞ for all x ∈ X,
(3) PnEn = In, where In is the identity on Xn.

The introduction of Xn, Pn and En is motivated by the approximation
of differential equations via difference equations, since the difference
operators act on spaces different from the one on which the differential
operator acts. For examples of {Pn} and {En}, see [5].

Recall that the norm of a Banach space X is said to be uniformly
Gâteaux differentiable if for each y ∈ U = {x ∈ X : |x| = 1},
limt→0(|x + ty| − |x|)/t exists uniformly for x ∈ U . Every Banach
space with a uniformly convex dual is a reflexive Banach space with a
uniformly Gâteaux differentiable norm. If the norm of X is uniformly
Gâteaux differentiable, the duality mapping J : X → X∗ defined by
Jx = {x∗ ∈ X∗ : (x, x∗) = |x|2 = |x∗|2} is single-valued and uniformly
continuous on bounded subsets of X from the strong topology of X to
the weak star topology of X∗.

Theorem 1. Let X be a reflexive Banach space with a uniformly
Gâteaux differentiable norm. Let A be an accretive operator in X such
that R(I + rA) ⊃ cl(D(A)) for r > 0, and let S be the semigroup gen-
erated by −A. For each n, let An be an accretive operator in Xn such
that R(I + rAn) ⊃ cl(D(An)) for r > 0, and let Sn be the semigroup
generated by −An. Suppose that Pn(cl(D(A))) ⊂ cl(D(An)) for each
n and cl(D(A)) is convex. If

(I) lim
n→∞

EnSn(t)Pnx = S(t)x
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for x ∈ cl(D(A)) and the convergence is uniform on bounded t− inter-
vals, then

(II) lim
n→∞

EnJAn
r Pnx = JA

r x

for r > 0 and x ∈ cl(D(A)).

It is known [5] that (II) implies (I) in any Banach space. That is, (I)
and (II) are equivalent. Thus we have a complete nonlinear analog of
Trotter-Kato Theorem [3] and our result is a generalization of Theorem
5.3 in [5]. In contrast with the linear case, (I) does not imply (II) in
all Banach spaces, even in the one space case, that is, X = Xn and
En = Pn = I for all n (see [2]). In the one space case, our result
includes Theorem 1 in [7]. To prove Theorem 1, we start with the
following lemma.

Lemma 2. For each fixed n, let An be an accretive operator in
Xn satisfying R(I + rAn) ⊃ cl(D(An)) for r > 0 and let Sn be the
semigroup generated by −An. Suppose that Pnx ∈ cl(D(An)) for
x ∈ X and [xn, zn] ∈ An. Then

|Enxn − EnSn(T )Pnx|2 − |Enxn − EnPnx|2

≤ 2
∫ T

0

< Enzn, Enxn − EnSn(t)Pnx >s dt,

where for x, y ∈ X, < x, y >s= sup{(x, y∗) : y∗ ∈ J(y)}.

Proof. Since [xn, zn] ∈ An, 1
r ((JAn

r )k−1Pnx−(JAn
r )kPnx) ∈ An(JAn

r )kPnx
and An is accretive,

|xn − (JAn
r )kPnx|n

≤ |xn − (JAn
r )kPnx + α(zn −

1
r
((JAn

r )k−1Pnx− (JAn
r )kPnx))|n

for α > 0. So we have

|Enxn−En(JAn
r )kPnx|

≤ |Enxn − En(JAn
r )kPnx

+ α(Enzn −
1
r
(En(JAn

r )k−1Pnx− En(JAn
r )kPnx))|.
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By Lemma 1.1 in [4], there exists η∗ ∈ J(Enxn − En(JAn
r )kPnx) such

that

(Enzn −
1
r
(En(JAn

r )k−1Pnx− En(JAn
r )kPnx), η∗) ≥ 0.

Hence we have

(Enzn, η∗)

≥ 1
r
(En(JAn

r )k−1Pnx− En(JAn
r )kPnx, η∗)

=
1
r
|Enxn − En(JAn

r )kPnx|2 − 1
r
(Enxn − En(JAn

r )k−1Pnx, η∗)

≥ 1
2r

(|Enxn − En(JAn
r )kPnx|2 − |Enxn − En(JAn

r )k−1Pnx|2).

For kr ≤ t < (k + 1)r,

|Enxn − En(JAn
r )kPnx|2 − |Enxn − En(JAn

r )k−1Pnx|2

≤ 2r(Enzn, η∗) ≤ 2r < Enzn, Enxn − En(JAn
r )[t/r]Pnx >s

≤ 2
∫ (k+1)r

kr

< Enzn, Enxn − En(JAn
r )[t/r]Pnx >s dt.

Add these inequalities for k = 1, 2, · · · , [T/r]. Then

|Enxn − En(JAn
r )[T/r]Pnx|2 − |Enxn − EnPnx|2

≤ 2
∫ ([T/r]+1)r

r

< Enzn, Enxn − En(JAn
r )[t/r]Pnx >s dt.

Letting r → 0, we obtain

|Enxn − EnSn(T )Pnx|2 − |Enxn − EnPnx|2

≤ 2
∫ T

0

< Enzn, Enxn − EnSn(t)Pnx >s dt,

by the upper semicontinuity of < ·, · >s and dominated convergence
theorem (see [6]). � �
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Proof of Theorem 1. Let x ∈ cl(D(A)) and let yn = EnJAn
r Pnx for

r > 0. Then (see [1])

|yn − EnPnx| ≤ |JAn
r Pnx− Pnx|n

≤ 4
r

∫ r

0

|Pnx− Sn(t)Pnx|ndt

=
4
r

∫ r

0

|EnPnx− EnSn(t)Pnx|dt.

So {yn} is bounded. Define f : cl(D(A)) → R by

f(z) = LIM{|yn − z|2},

where LIM is a Banach limit, z ∈ cl(D(A)) and {yn} is any subsequence
of the original sequence which we continue to denote by {yn}. Then f
is continuous, convex and f(z) →∞ as |z| → ∞. Since X is reflexive,
f has its minimum f(u) over cl(D(A)) for some u ∈ cl(D(A)).

For 0 < η ≤ 1, we have

(z − u, J(yn − u− η(z − u))) ≤ 1
2η

(|yn − u|2 − |yn − u− η(z − u)|2).

By taking LIM to both sides, we have

LIM{(z − u, J(yn − u− η(z − u)))}

≤ 1
2η

(f(u)− f(u + η(z − u))) ≤ 0.

By the uniform continuity of J , for each ε > 0 there exists η0 such that

LIM{(z − u, J(yn − u)} ≤ LIM{(z − u, J(yn − u− η(z − u)))}+ ε

for η ≤ η0. Since ε is arbitrary,

LIM{(z − u, J(yn − u))} ≤ 0.

By Lemma 2, we have

2
r

∫ T

0

(yn − EnPnx, J(yn − EnSn(t)Pnu))dt

≤ |yn − EnPnu|2 − |yn − EnSn(T )Pnu|2,



130 Young Mee Koh and Young S. Lee

since yn = EnPnyn. Note that

(yn − x, J(yn − u))− (yn − EnPnx, J(yn − EnSn(t)Pnu))

= (yn − u + u− x, J(yn − u))

− (yn − EnSn(t)Pnu + EnSn(t)Pnu− EnPnx, J(yn − EnSn(t)Pnu))

= |yn − u|2 − |yn − EnSn(t)Pnu|2 + (u− x, J(yn − u))

− (EnSn(t)Pnu− EnPnx, J(yn − EnSn(t)Pnu))

= |yn − u|2 − |yn − EnSn(t)Pnu|2 + (u− x, J(yn − u))

− (EnSn(t)Pnu− u + u− x + x− EnPnx, J(yn − EnSn(t)Pnu))

= |yn − u|2 − |yn − EnSn(t)Pnu|2

+ (u− x, J(yn − u)− J(yn − EnSn(t)Pnu))

− (EnSn(t)Pnu− u, J(yn − EnSn(t)Pnu))

− (x− EnPnx, J(yn − EnSn(t)Pnu)).

By the uniform continuity of J , it follows that for each ε > 0 there
exist T and n0 such that

(yn − x, J(yn − u)) ≤ (yn − EnPnx, J(yn − EnSn(t)Pnu)) + ε

for all 0 ≤ t ≤ T and n ≥ n0. Hence we have

2
r

∫ T

0

(yn − x, J(yn − u))dt

≤ 2
r

∫ T

0

(yn − EnPnx, J(yn − EnSn(t)Pnu))dt +
2T

r
ε

≤ |yn − EnPnu|2 − |yn − EnSn(T )Pnu|2 +
2T

r
ε

≤ (|yn − u|+ |u− EnPnu|)2

− (|yn − S(T )u| − |S(T )u− EnSn(T )Pnu|)2 +
2T

r
ε

= |yn − u|2 − |yn − S(T )u|2 + Kn +
2T

r
ε,

where Kn = 2|yn−u| |u−EnPnu|+|u−EnPnu|2+2|yn−S(T )u||S(T )u−
EnSn(T )Pnu|+ |S(T )u−EnSn(T )Pnu|2. Applying LIM to both sides,
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we obtain

2T

r
LIM{(yn − x, J(yn − u))}

≤ f(u)− f(S(T )u) +
2T

r
ε ≤ 2T

r
ε.

Since ε is arbitrary, LIM{(yn−x, J(yn−u))} ≤ 0. Therefore LIM{|yn−
u|2} = LIM{(yn − x, J(yn − u))}+ LIM{(x− u, J(yn − u))} ≤ 0. So
there exists a subsequence {ynk

} such that

lim
k→∞

|ynk
− u| = 0.

For s > 0, let zs = (I + r
s (I − S(s)))−1x. It is known [8] that

lims→0 zs = JA
r x = v. Suppose that limm→∞ ym = u for some subse-

quence {ym} of {yn}. We complete the proof by showing that u = v.
For T > 0 we have

2
r

∫ T

0

(u− x, J(u− S(t)zs))dt

≤ |u− zs|2 − |u− S(T )zs|2.

By the uniform continuity of J , for given ε > 0

2T

r
(u− x, J(u− v))

≤ 2
r

∫ T

0

(u− x, J(u− S(t)zs))dt +
2T

r
ε

≤ |u− zs|2 − |u− S(T )zs|2 +
2T

r
ε.

for all sufficiently small T and s. Let s = T . Then

2s

r
(u− x, J(u− v))

≤ |u− zs|2 − |u− zs −
s

r
(zs − x)|2 +

2s

r
ε

≤ 2s

r
(zs − x, J(u− zs)) +

2s

r
ε.
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Therefore we have (u− x, J(u− v)) ≤ (v − x, J(u− v)) + ε, that is,
|u− v|2 ≤ ε. This completes the proof. � �

Recall the notion of the limit inferior of a sequence of operators
{Bn}. The operator lim inf Bn is defined by [x, y] ∈ lim inf Bn if and
only if there exists a sequence {[xn, yn]} such that [xn, yn] ∈ Bn,
limn→∞ xn = x and limn→∞ yn = y. Combining Theorem 1 with
Lemma 3.3 in [5], we establish the equivalency between convergence of
semigroups and convergence of m-accretive operators.

Corollary 3. Let X be a reflexive Banach space with a uniformly
Gâteaux differentiable norm. Let A be an m-accretive operator in X
and let S be the semigroup generated by −A. For each n let An be
an m-accretive operator in Xn and let Sn be the semigroup gener-
ated by −An. Suppose that Pn(cl(D(A))) ⊂ cl(D(An)) for each n and
cl(D(A)) is convex. Then the following are equivalent.
(I) limn→∞EnSn(t)Pnx = S(t)x for each x ∈ cl(D(A)) and the con-
vergence is uniform on bounded t-intervals.
(II) limn→∞EnJAn

r Pnx = JA
r x for r > 0 and x ∈ cl(D(A)).

(III) A ⊂ lim inf EnAnPn.
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