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ON FUZZY S-OPEN MAPS

Won Keun Min

Abstract. We introduce the concepts of fuzzy s-open functions,

and s-closed functions. And we investigate several properties of
such functions. In particular, we study the relation between fuzzy

s-continuous maps and fuzzy s-open maps( s-closed maps).

1. Introduction

Fuzzy topological spaces were first introduced in the literature by
Chang [1] who studied a number of the basic concepts including fuzzy
continuous maps and compactness. And fuzzy topological spaces are
a very natural generalization of topological spaces. In 1983, A.S.
Mashhour. et al.[3] introduced supra topological spaces and studied s-
continuous functions and s∗-continuous functions. In 1987, M.E. Abd
El-Monsef .et al.[2] introduced the fuzzy-supra topological spaces and
studied fuzzy supra-continuous functions and characterized a number
of basic concepts. Also fuzzy-supra topological spaces are a general-
ization of supra topological spaces. In [4], the author introduced the
fuzzy s-continuous function and established a number of properties. In
this paper, we introduce the fuzzy s-open map and the fuzzy s-closed
map, and we establish a number of characterizations. Let X be a set
and let I = [0, 1]. Let IX denote the set of all mapping a : X → I.

A member of IX is called a fuzzy subset of X. And unions and
intersections of fuzzy sets are denoted by ∨ and ∧ respectively and
defined by

∨ ai = sup{ai(x) | i ∈ J and x ∈ X},
∧ ai = inf{ai(x) | i ∈ J and x ∈ X}.
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Definition 1.1[1]. A fuzzy topology T on X is a collection of
subsets of IX such that

(1) 0, 1 ∈ T ,
(2) if a, b ∈ T , then a ∧ b ∈ T ,
(3) if ai ∈ T for all i ∈ J , then ∨ai ∈ T .

(X, T ) is called a fuzzy topological space. Members of T are called
fuzzy open sets in (X, T ) and complement of a fuzzy open set is called
a fuzzy closed set. And cl(a) and int(a) denote the closure, interior of
fuzzy set a respectively.

Definition 1.2[5]. Let f be a mapping from a set X into a set Y .
Let a and b be the fuzzy sets of X and Y , respectively. Then f(a) is a
fuzzy set in Y , defined by

f(a)(y) =
{

supz∈f−1(y) a(z), if f−1(y) 6= ∅, y ∈ Y

0, otherwise,

and f−1(b) is a fuzzy set in X, defined by f−1(b)(x) = b(f(x)), x ∈ X.

Definition 1.3[2]. A subfamily T ∗ of IX is said to be a fuzzy
supra-topology on X if

(1) 1 ∈ T ∗,
(2) if ai ∈ T ∗ for all i ∈ J , then ∨ai ∈ T ∗.

(X, T ∗) is called a fuzzy supra-topological space. The elements of
T ∗ are called fuzzy supra-open sets in (X, T ∗). And a fuzzy set a is
supra-closed iff co(a) = 1− a is a fuzzy supra-open set. And the fuzzy
supra-topological spaces T ∗ is denoted by fsts.

Definition 1.4[2]. The supra closure of a fuzzy set a is denoted
by scl(a), and given by

scl(a) = ∧{s | s is a fuzzy supra-closed set and a ≤ s}.

The supra interior of a fuzzy set a is denoted by si(a) and given by

si(a) = ∨{t | t is a fuzzy supra-open set and t ≤ a}.



On fuzzy s-open maps 137

Definition 1.5[2]. Let (X, T ) be a fuzzy topological space and T ∗

be a fuzzy supra-topology on X. We call T ∗ a fuzzy supra-topology
associated with T if T ⊂ T ∗.

Definition 1.6. Let f : (X, T ∗) → (Y, S∗) be a mapping between
two fuzzy supra-topological spaces.

(1) f is a fuzzy supra-continuous function if f−1(S∗) ⊆ T ∗ [2],
(2) f is a fuzzy s-continuous function if the inverse image of each

fuzzy open set in (Y, S) is T ∗-fuzzy supra-open in X [4],
(3) f is a fuzzy supra open map if the image of each fuzzy supra-

open in T ∗ is S∗-fuzzy supra-open in X [2].

2. Fuzzy s-open maps and fuzzy s-closed maps

Definition 2.1. A fuzzy mapping f : (X, T ) → (Y, S) is called
fuzzy s-open (respectively, fuzzy s-closed) if the image of each fuzzy
open (respectively, fuzzy closed) set in (X, T ), is S∗-fuzzy supra-open
(respectively, fuzzy supra-closed) in (Y, S∗).

Clearly, every fuzzy open (fuzzy closed) map is a fuzzy s-open map
(fuzzy s-closed map). And every fuzzy supraopen map is a fuzzy s-
open map. But the converses of these implications are not true, which
are clear from the following examples.

Example. Let X = I. Consider the fuzzy sets;

a(x) =
{

2x, if 0 ≤ x ≤ 1/2
1/2, if 1/2 < x ≤ 1,

b(x) =


1/2, if 0 ≤ x < 1/4
2x, if 1/4 ≤ x ≤ 1/2
0, if 1/2 < x ≤ 1,

c(x) =
{

1, if 0 ≤ x ≤ 1/2
0, if 1/2 < x ≤ 1.

(1) Let T1 = {0, a, 1} be a fuzzy topology on X and let the collection
T ∗1 = {0, a, b, c, a ∨ c, a ∨ b, 1} be an associated fuzzy supra-topology
with T1. Let f : (X, T1) → (X, T1) be a fuzzy mapping defined by

f(x) =
{

x, if 0 ≤ x ≤ 1/2
1− x, if 1/2 < x ≤ 1.
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Clearly, we have f(a) = b and f(1) = c. Since b and c are fuzzy
supra-open in T ∗1 , f is a fuzzy s-open mapping. But since b and c are
not fuzzy open in T1, f is not a fuzzy open mapping.

(2) Let T = {0, b, 1} be a fuzzy topology on X. Let T ∗ = {0, a, b, a∨
b, 1} and S∗ = {0, b, c, 1} are associated fuzzy supra-topologies with T.
Consider a fuzzy mapping f : (X, T ∗) → (X, S∗) defined by

f(x) =
{

x, if 0 ≤ x ≤ 1/2
1/2, if 1/2 < x ≤ 1.

We obtain f(b) = b and f(1) = c, thus f is a fuzzy s-open map. But
for a fuzzy supra-open set a in T ∗, f(a) is not fuzzy supra-open in S∗.
Consequently, f is not a fuzzy supraopen map.

Theorem 2.2. Let f : (X, T1) → (Y, T2) be a fuzzy function. Then
the followings are equivalent :

(1) f is a fuzzy s-open map.
(2) f(int(a)) ≤ si(f(a)) for each fuzzy set a in X.

Proof. (1) ⇒ (2). Since int(a) ≤ a, we have f(int(a)) ≤ f(a). By
hypothesis, f(int(a)) is fuzzy supra-open, and because si(f(a)) is the
largest fuzzy supra-open set in f(a), thus f(int(a)) ≤ si(f(a)).

(2) ⇒ (1). Let a be a fuzzy open in X. We have si(f(a)) ≤ f(a).
By hypothesis, f(a) ≤ si(f(a)). Thus f(a) is a fuzzy supra-open in
Y . � �

Theorem 2.3. A fuzzy mapping f : (X, T1) → (Y, T2) is fuzzy s-
closed iff scl(f(a)) ≤ f(cl(a)) for each fuzzy set a in X.

Proof. If f is fuzzy s-closed map, then f(cl(a)) is a fuzzy supra-
closed set in Y . And we have f(a) ≤ f(cl(a)), thus scl(f(a)) ≤
f(cl(a)).

Conversely, let a be a fuzzy closed set. Then f(a) ≤ scl(f(a)) ≤
f(cl(a)) = f(a), thus f(a) is a fuzzy supra-closed set in Y . � �

Theorem 2.4. Let f : (X, T1) → (Y, T2) and g : (Y, T2) → (Z, T3)
be fuzzy mappings.

(1) If (g ◦ f) is fuzzy s-open and f is fuzzy continuous surjective,
then g is also fuzzy s-open .
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(2) If (g ◦ f) is a fuzzy open map and g is fuzzy s-continuous in-
jective, then f is fuzzy s-open.

Proof. (1) Let a be any fuzzy open set in Y . Then f−1(a) is fuzzy
open in X. Since (g ◦ f) is fuzzy s-open, (g ◦ f)(f−1(a)) is a fuzzy
supra-open set in Z. And (g ◦ f)(a ◦ f) = g(a), since f is surjective.
Therefore the map g is fuzzy s-open.

(2) Let a be fuzzy open in X. Then (g ◦ f)(a) = g(f(a)) is fuzzy
open in Z. Since g is fuzzy s-continuous and injective, g−1(g(f(a))) =
g(f(a)) ◦ g = f(a) is a fuzzy supra-open set. Hence, f is fuzzy s-
open. � �

Theorem 2.5. Let (X, T1) and (Y, T2) be fts. If f : (X, T1) →
(Y, T2) is a fuzzy bijective mapping, then following statements are
equivalent:

(1) f is a fuzzy s-open map.
(2) f is a fuzzy s-closed map.
(3) f−1 is fuzzy s-continuous.

Proof. (1) ⇒ (2). Let a be a fuzzy closed set in X. Then f(1−a) =
1−f(a) is fuzzy supra-open in Y , since f is a fuzzy s-open map. Hence
f(a) is fuzzy supra-closed in Y .

(2) ⇒ (3). Let a be a fuzzy closed set in X. We have (f−1)−1(a) =
f(a). Since f is a fuzzy s-closed map, f(a) is fuzzy supra-closed in Y .
Therefore, f is fuzzy s-continuous.

(3) ⇒ (1). Let a be a fuzzy open set in X. Since f−1 is fuzzy s-
continuous, (f−1)−1(a) = f(a) is fuzzy supra-open in Y . Hence f is a
fuzzy s-open map. � �
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