Kangweon-Kyungki Math. Jour. 4 (1996), No. 2, pp. 135-140

ON FUZZY S-OPEN MAPS

WON KEUN MIN

ABSTRACT. We introduce the concepts of fuzzy *s*-open functions, and *s*-closed functions. And we investigate several properties of such functions. In particular, we study the relation between fuzzy *s*-continuous maps and fuzzy *s*-open maps(*s*-closed maps).

1. Introduction

Fuzzy topological spaces were first introduced in the literature by Chang [1] who studied a number of the basic concepts including fuzzy continuous maps and compactness. And fuzzy topological spaces are a very natural generalization of topological spaces. In 1983, A.S. Mashhour. et al.[3] introduced supra topological spaces and studied *s*continuous functions and *s*^{*}-continuous functions. In 1987, M.E. Abd El-Monsef .et al.[2] introduced the fuzzy-supra topological spaces and studied fuzzy supra-continuous functions and characterized a number of basic concepts. Also fuzzy-supra topological spaces are a generalization of supra topological spaces. In [4], the author introduced the fuzzy *s*-continuous function and established a number of properties. In this paper, we introduce the fuzzy *s*-open map and the fuzzy *s*-closed map, and we establish a number of characterizations. Let X be a set and let I = [0, 1]. Let I^X denote the set of all mapping $a: X \to I$.

A member of I^X is called a fuzzy subset of X. And unions and intersections of fuzzy sets are denoted by \vee and \wedge respectively and defined by

$$\forall a_i = \sup\{a_i(x) \mid i \in J \text{ and } x \in X\}, \\ \land a_i = \inf\{a_i(x) \mid i \in J \text{ and } x \in X\}.$$

Received June 18, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy *s*-open maps, fuzzy *s*-closed maps, fuzzy supracontinuous, fuzzy *s*-continuous, fuzzy supraopen maps.

Won Keun Min

DEFINITION 1.1[1]. A fuzzy topology T on X is a collection of subsets of I^X such that

- (1) $0, 1 \in T$,
- (2) if $a, b \in T$, then $a \wedge b \in T$,
- (3) if $a_i \in T$ for all $i \in J$, then $\forall a_i \in T$.

(X, T) is called a fuzzy topological space. Members of T are called fuzzy open sets in (X, T) and complement of a fuzzy open set is called a fuzzy closed set. And cl(a) and int(a) denote the closure, interior of fuzzy set a respectively.

DEFINITION 1.2[5]. Let f be a mapping from a set X into a set Y. Let a and b be the fuzzy sets of X and Y, respectively. Then f(a) is a fuzzy set in Y, defined by

$$f(a)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} a(z), & \text{if } f^{-1}(y) \neq \emptyset, \ y \in Y \\ 0, & \text{otherwise,} \end{cases}$$

and $f^{-1}(b)$ is a fuzzy set in X, defined by $f^{-1}(b)(x) = b(f(x)), x \in X$.

DEFINITION 1.3[2]. A subfamily T^* of I^X is said to be a fuzzy supra-topology on X if

- (1) $1 \in T^*$,
- (2) if $a_i \in T^*$ for all $i \in J$, then $\forall a_i \in T^*$.

 (X, T^*) is called a fuzzy supra-topological space. The elements of T^* are called fuzzy supra-open sets in (X, T^*) . And a fuzzy set a is supra-closed iff co(a) = 1 - a is a fuzzy supra-open set. And the fuzzy supra-topological spaces T^* is denoted by fsts.

DEFINITION 1.4[2]. The supra closure of a fuzzy set a is denoted by scl(a), and given by

 $scl(a) = \land \{s \mid s \text{ is a fuzzy supra-closed set and } a \leq s \}.$

The supra interior of a fuzzy set a is denoted by si(a) and given by

 $si(a) = \lor \{t \mid t \text{ is a fuzzy supra-open set and } t \le a\}.$

136

DEFINITION 1.5[2]. Let (X, T) be a fuzzy topological space and T^* be a fuzzy supra-topology on X. We call T^* a fuzzy supra-topology associated with T if $T \subset T^*$.

DEFINITION 1.6. Let $f: (X, T^*) \to (Y, S^*)$ be a mapping between two fuzzy supra-topological spaces.

- (1) f is a fuzzy supra-continuous function if $f^{-1}(S^*) \subseteq T^*$ [2],
- (2) f is a fuzzy s-continuous function if the inverse image of each fuzzy open set in (Y, S) is T^* -fuzzy supra-open in X [4],
- (3) f is a fuzzy supra open map if the image of each fuzzy supraopen in T^* is S^* -fuzzy supra-open in X [2].

2. Fuzzy s-open maps and fuzzy s-closed maps

DEFINITION 2.1. A fuzzy mapping $f: (X,T) \to (Y,S)$ is called fuzzy s-open (respectively, fuzzy s-closed) if the image of each fuzzy open (respectively, fuzzy closed) set in (X,T), is S^* -fuzzy supra-open (respectively, fuzzy supra-closed) in (Y,S^*) .

Clearly, every fuzzy open (fuzzy closed) map is a fuzzy s-open map (fuzzy s-closed map). And every fuzzy supraopen map is a fuzzy s-open map. But the converses of these implications are not true, which are clear from the following examples.

EXAMPLE. Let X = I. Consider the fuzzy sets;

$$a(x) = \begin{cases} 2x, & \text{if } 0 \le x \le 1/2 \\ 1/2, & \text{if } 1/2 < x \le 1, \end{cases}$$
$$b(x) = \begin{cases} 1/2, & \text{if } 0 \le x < 1/4 \\ 2x, & \text{if } 1/4 \le x \le 1/2 \\ 0, & \text{if } 1/2 < x \le 1, \end{cases}$$
$$c(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1/2 \\ 0, & \text{if } 1/2 < x \le 1. \end{cases}$$

(1) Let $T_1 = \{0, a, 1\}$ be a fuzzy topology on X and let the collection $T_1^* = \{0, a, b, c, a \lor c, a \lor b, 1\}$ be an associated fuzzy supra-topology with T_1 . Let $f: (X, T_1) \to (X, T_1)$ be a fuzzy mapping defined by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \le 1/2\\ 1 - x, & \text{if } 1/2 < x \le 1. \end{cases}$$

Won Keun Min

Clearly, we have f(a) = b and f(1) = c. Since b and c are fuzzy supra-open in T_1^* , f is a fuzzy s-open mapping. But since b and c are not fuzzy open in T_1 , f is not a fuzzy open mapping.

(2) Let $T = \{0, b, 1\}$ be a fuzzy topology on X. Let $T^* = \{0, a, b, a \lor b, 1\}$ and $S^* = \{0, b, c, 1\}$ are associated fuzzy supra-topologies with T. Consider a fuzzy mapping $f: (X, T^*) \to (X, S^*)$ defined by

$$f(x) = \begin{cases} x, & \text{if } 0 \le x \le 1/2\\ 1/2, & \text{if } 1/2 < x \le 1. \end{cases}$$

We obtain f(b) = b and f(1) = c, thus f is a fuzzy s-open map. But for a fuzzy supra-open set a in T^* , f(a) is not fuzzy supra-open in S^* . Consequently, f is not a fuzzy supraopen map.

THEOREM 2.2. Let $f: (X, T_1) \to (Y, T_2)$ be a fuzzy function. Then the followings are equivalent :

- (1) f is a fuzzy s-open map.
- (2) $f(int(a)) \leq si(f(a))$ for each fuzzy set a in X.

Proof. (1) \Rightarrow (2). Since $int(a) \leq a$, we have $f(int(a)) \leq f(a)$. By hypothesis, f(int(a)) is fuzzy supra-open, and because si(f(a)) is the largest fuzzy supra-open set in f(a), thus $f(int(a)) \leq si(f(a))$.

 $(2) \Rightarrow (1)$. Let *a* be a fuzzy open in *X*. We have $si(f(a)) \leq f(a)$. By hypothesis, $f(a) \leq si(f(a))$. Thus f(a) is a fuzzy supra-open in *Y*. \Box

THEOREM 2.3. A fuzzy mapping $f: (X, T_1) \to (Y, T_2)$ is fuzzy sclosed iff $scl(f(a)) \leq f(cl(a))$ for each fuzzy set a in X.

Proof. If f is fuzzy s-closed map, then f(cl(a)) is a fuzzy supraclosed set in Y. And we have $f(a) \leq f(cl(a))$, thus $scl(f(a)) \leq f(cl(a))$.

Conversely, let a be a fuzzy closed set. Then $f(a) \leq scl(f(a)) \leq f(cl(a)) = f(a)$, thus f(a) is a fuzzy supra-closed set in Y. \Box

THEOREM 2.4. Let $f: (X, T_1) \to (Y, T_2)$ and $g: (Y, T_2) \to (Z, T_3)$ be fuzzy mappings.

(1) If $(g \circ f)$ is fuzzy s-open and f is fuzzy continuous surjective, then g is also fuzzy s-open.

138

(2) If $(g \circ f)$ is a fuzzy open map and g is fuzzy s-continuous injective, then f is fuzzy s-open.

Proof. (1) Let a be any fuzzy open set in Y. Then $f^{-1}(a)$ is fuzzy open in X. Since $(g \circ f)$ is fuzzy s-open, $(g \circ f)(f^{-1}(a))$ is a fuzzy supra-open set in Z. And $(g \circ f)(a \circ f) = g(a)$, since f is surjective. Therefore the map g is fuzzy s-open.

(2) Let *a* be fuzzy open in *X*. Then $(g \circ f)(a) = g(f(a))$ is fuzzy open in *Z*. Since *g* is fuzzy *s*-continuous and injective, $g^{-1}(g(f(a))) = g(f(a)) \circ g = f(a)$ is a fuzzy supra-open set. Hence, *f* is fuzzy *s*-open. \Box

THEOREM 2.5. Let (X, T_1) and (Y, T_2) be fts. If $f: (X, T_1) \rightarrow (Y, T_2)$ is a fuzzy bijective mapping, then following statements are equivalent:

- (1) f is a fuzzy s-open map.
- (2) f is a fuzzy s-closed map.
- (3) f^{-1} is fuzzy s-continuous.

Proof. (1) \Rightarrow (2). Let *a* be a fuzzy closed set in *X*. Then f(1-a) = 1 - f(a) is fuzzy supra-open in *Y*, since *f* is a fuzzy *s*-open map. Hence f(a) is fuzzy supra-closed in *Y*.

 $(2) \Rightarrow (3)$. Let *a* be a fuzzy closed set in *X*. We have $(f^{-1})^{-1}(a) = f(a)$. Since *f* is a fuzzy *s*-closed map, f(a) is fuzzy supra-closed in *Y*. Therefore, *f* is fuzzy *s*-continuous.

(3) \Rightarrow (1). Let *a* be a fuzzy open set in *X*. Since f^{-1} is fuzzy *s*-continuous, $(f^{-1})^{-1}(a) = f(a)$ is fuzzy supra-open in *Y*. Hence *f* is a fuzzy *s*-open map. \Box

References

- 1. Chang, C.L, Fuzzy topological spaces, J.Math. Anal. Appl. 24 (1968), 182–190.
- Abd El-Monsef, M.E and Ramadan, A.E, On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. 18 (1987), no. 4, 322–329.
- Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H., On supra topological spaces, Indian J. Pure and Appl. Math. 14 (1983), no. 4, 502–510.
- Min Won Keun, On fuzzy s-continuous functions, Kangweon-Kyungki Math. J. 4 (1996), no. 1, 77-82.

Won Keun Min

5. Zadeh, L.A., *Fuzzy sets*, Imfor. and Control 8 (1965), 338–353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

140