CONFORMAL CHANGE OF THE TENSOR $S_{\lambda \mu}{ }^{\nu}$ FOR THE SECOND CATEGORY IN 6-DIMENSIONAL g-UFT

Chung Hyun Cho

Abstract

We investigate change of the torsion tensor induced by the conformal change in 6 -dimensional g-unified field theory. These topics will be studied for the second class with the second category in 6 -dimensional case.

1. Introduction

The conformal change in a generalized 4-dimensional Riemannian space connected by an Einstein's connection was primarily studied by $\operatorname{HLAVATÝ}([8], 1957)$. $\operatorname{CHUNG}([6], 1968)$ also investigated the same topic in 4 -dimensional ${ }^{*} g$-unified field theory.

The Einstein's connection induced by the conformal change for all classes in 3-dimensional case, for the second and third classes in 5dimensional case, and for the first class in 5-dimensional case, and for the second class with the first category in 6 -dimensional case were investigated by $\mathrm{CHO}([1], 1992,[2], 1994,[3], 1995)$.

In the present paper, we investigate change of the torsion tensor $S_{\omega \mu}{ }^{\nu}$ induced by the conformal change in 6-dimensional g-unified field theory. These topics will be studied for the second class with the second category in 6-dimensional case.

2. Preliminaries

This chapter is a brief collection of basic concepts, notations, theorems, and results needed in our further considerations. They may be
reffered to CHUNG([4],1982;[3],1988), CHO([1],1992;[2],1994;[3],1995).

2.1. n-dimensional g-unified field theory

The n-dimensional g-unified field theory (n - g-UFT hereafter) was originally suggested by $\operatorname{HLAVATY}([8], 1957)$ and systematically introduced by CHUNG([7],1963).

Let $X_{n}{ }^{1}$ be an n-dimensional generalized Riemannian manifold, reffered to a real coordinate system x^{ν} obeying coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$, for which

$$
\begin{equation*}
\operatorname{Det}\left(\left(\frac{\partial x}{\partial x^{\prime}}\right)\right) \neq 0 \tag{2.1}
\end{equation*}
$$

In the usual Einstein's n-dimensional unified field theory, the manifold X_{n} is endowed with a general real nonsymmetric tensor $g_{\lambda_{\mu}}$ which may be split into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}{ }^{2}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Det}\left(\left(g_{\lambda \mu}\right)\right) \neq 0 \quad \operatorname{Det}\left(\left(h_{\lambda \mu}\right)\right) \neq 0 . \tag{2.3}
\end{equation*}
$$

Therefore we may define a unique tensor $h^{\lambda \nu}=h^{\nu \lambda}$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} . \tag{2.4}
\end{equation*}
$$

In our n - g-UFT, the tensors $h_{\lambda \mu}$ and $h^{\lambda \nu}$ will serve for raising and/or lowering indices of the tensors in X_{n} in the usual manner.

The manifold X_{n} is connected by a general real connection $\Gamma_{\omega \mu}^{\nu}$ with the following transformation rule :

$$
\begin{equation*}
\Gamma_{\omega^{\prime} \mu^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\omega^{\prime}}} \cdot \frac{\partial x^{\gamma}}{\partial x^{\mu^{\prime}}} \Gamma_{\beta \gamma}^{\alpha}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\omega^{\prime}} \partial x^{\mu^{\prime}}}\right) \tag{2.5}
\end{equation*}
$$

[^0]and satisfies the system of Einstein's equations
\[

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha} \tag{2.6}
\end{equation*}
$$

\]

where D_{ω} denotes the covariant derivative with respect to $\Gamma_{\lambda \mu}^{\nu}$ and

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda \mu]}^{\nu} \tag{2.7}
\end{equation*}
$$

is the torsion tensor of $\Gamma_{\lambda \mu}^{\nu}$. The connection $\Gamma_{\lambda \mu}^{\nu}$ satisfying (2.6) is called the Einstein's connection.

In our further considerations, the following scalars, tensors, abbreviations, and notations for $p=0,1,2, \cdots$ are frequently used :

$$
\begin{align*}
& \mathfrak{g}=\operatorname{Det}\left(\left(g_{\lambda \mu}\right)\right) \neq 0, \quad \mathfrak{h}=\operatorname{Det}\left(\left(h_{\lambda \mu}\right)\right) \neq 0, \\
& \mathfrak{t}=\operatorname{Det}\left(\left(k_{\lambda \mu}\right)\right), \tag{2.8}
\end{align*}
$$

$$
\begin{equation*}
g=\frac{\mathfrak{g}}{\mathfrak{h}}, \quad k=\frac{\mathfrak{t}}{\mathfrak{h}}, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
K_{p}=k_{\left[\alpha_{1}\right.}{ }^{\alpha^{1}} \cdots k_{\left.\alpha_{p}\right]}{ }^{\alpha_{p}}, \quad(p=0,1,2, \cdots) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
K_{\omega \mu \nu}=\nabla_{\nu} k_{\omega \mu}+\nabla_{\omega} k_{\nu \mu}+\nabla_{\mu} k_{\omega \nu} \tag{2.8}
\end{equation*}
$$

$$
\sigma=\left\{\begin{array}{ll}
1 & \text { if } n \text { is odd } \tag{2.8}\\
0 & \text { if } n \text { is even }
\end{array} .\right.
$$

where ∇_{ω} is the symbolic vector of the convariant derivative with respect to the Christoffel symbols $\left\{\begin{array}{c}\nu \\ \lambda \mu\end{array}\right\}$ defined by $h_{\lambda \mu}$. The scalars and vectors introduced in (2.8) satisfy

$$
\begin{equation*}
K_{0}=1 ; K_{n}=k \text { if } n \text { is even; } \quad K_{p}=0 \text { if } p \text { is odd } \tag{2.9}
\end{equation*}
$$

$$
\begin{gathered}
g=1+K_{2}+\cdots+K_{n-\sigma} \\
{ }^{(p)} k_{\lambda \mu}=(-1)^{p(p)} k_{\mu \lambda}, \quad\left({ }^{p}\right) \\
k^{\lambda \nu}=(-1)^{p(p)} k^{\nu \lambda} .
\end{gathered}
$$

Furthermore, we also use the following useful abbrevations, denoting an arbitrary tensor $T_{\omega \mu \nu}$, skew-symmetric in the first two indices, by T :

$$
\begin{equation*}
\stackrel{p q r}{T}=\stackrel{p q r}{T}_{\omega \mu \nu}=T_{\alpha \beta \gamma}{ }^{(p)} k_{\omega}{ }^{\alpha(q)} k_{\mu}{ }^{\beta(r)} k_{\nu}{ }^{\gamma}, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
T=T_{\omega \mu \nu}=\stackrel{000}{T} \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
2 \stackrel{p q r}{T}_{\omega[\lambda \mu]} \stackrel{p q r}{T}_{\omega \lambda \mu}-\stackrel{p q r}{T}_{\omega \mu \lambda}, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
2 \stackrel{(p q) r}{T}_{\omega \lambda \mu}=\stackrel{p q r}{T}_{\omega \lambda \mu}+\stackrel{q p r}{T}_{\omega \lambda \mu .} . \tag{2.10}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\stackrel{p q r}{T}_{\omega \lambda \mu}=-\stackrel{q p r}{T}_{\lambda \omega \mu} . \tag{2.11}
\end{equation*}
$$

If the system (2.6) admits $\Gamma_{\lambda \mu}^{\nu}$, using the above abbreviations it was shown that the connection is of the form

$$
\Gamma_{\omega \mu}^{\nu}=\left\{\begin{array}{c}
\nu \tag{2.12}\\
\omega \mu
\end{array}\right\}+S_{\omega \mu}{ }^{\nu}+U^{\nu}{ }_{\omega \mu}
$$

where

$$
\begin{equation*}
U_{\nu \omega \mu}=\stackrel{100}{S}_{(\omega \mu) \nu}+\stackrel{(10)}{S}_{\nu(\omega \mu)} . \tag{2.13}
\end{equation*}
$$

The above two relations show that our problem of determining $\Gamma_{\omega \mu}^{\nu}$ in terms of $g_{\lambda \mu}$ is reduced to that of studying the tensor $S_{\omega \mu}{ }^{\nu}$. On the other hand, it has also been shown that the tensor $S_{\omega \mu}{ }^{\nu}$ satisfies

$$
\begin{equation*}
S=B-3 \stackrel{(110)}{S} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
2 B_{\omega \mu \nu}=K_{\omega \mu \nu}+3 K_{\alpha[\mu \beta} k_{\omega]}{ }^{\alpha} k_{\nu}{ }^{\beta} . \tag{2.15}
\end{equation*}
$$

2.2. Some results for the second class with the second category in 6- g-UFT

In this section, we introduce some results of $6-g$-UFT without proof, which are needed in our subsequent considerations.

They may be referred to $\operatorname{CHO}([4], 1993)$.
Definition 2.1. In 6- g-UFT, the tensor $g_{\lambda \mu}\left(k_{\lambda \mu}\right)$ is said to be the second class with the second category, if $K_{4} \neq 0, K_{6}=0$.

Theorem 2.2. (Main recurrence relations) For the second class with the second category in 6 -UFT, the following recurrence relation hold

$$
\begin{equation*}
{ }^{(p+4)} k_{\lambda}{ }^{\nu}=-K_{2}{ }^{(p+2)} k_{\lambda}{ }^{\nu}-K_{4}{ }^{(p)} k_{\lambda}{ }^{\nu}, \quad(p=0,1,2, \cdots) . \tag{2.16}
\end{equation*}
$$

Theorem 2.3. (For the second class with the second category in $6-g$-UFT). A necessary and sufficient condition for the existence and uniqueness of the solution of (2.5) is

$$
\begin{align*}
\left(1+K_{2}+K_{4}\right) & \left(1-K_{2}+K_{4}\right)\left(1-K_{4}\right)\left(1-3 K_{2}+9 K_{4}\right) \times \\
& \times\left[\left(1-K_{2}-3 K_{4}\right)^{2}-4 K_{4}\left(\left(K_{2}\right)^{2}-4 K_{4}\right)\right] \neq 0 . \tag{2.17}
\end{align*}
$$

If the condition (2.17) is satisfied, the unique solution of (2.14) is given by

$$
\begin{align*}
& (S-B)\left(1+K_{2}+K_{4}\right)\left[\left(1-K_{2}+5 K_{4}\right)^{2}-4 K_{4}\left(2-K_{2}\right)^{2}\right] \tag{2.18}\\
= & 4 B_{1}\left(K_{4}-1\right)+\underset{2}{B}\left(1-K_{2}+5 K_{4}\right)+2 \underset{3}{B}\left(1-2 K_{2}+\left(K_{2}\right)^{2}-5 K_{4}\right)
\end{align*}
$$

where

$$
\begin{aligned}
{\underset{1}{B}}_{B}^{=} & \left(K_{4}\right)^{2} B+2 \stackrel{(12) 3}{B}+K_{2} K_{4} \stackrel{002}{B}+\left(2 K_{4}-\left(K_{2}\right)^{2}\right) \stackrel{112}{B}- \\
& -2 K_{4} \stackrel{(12) 1}{B}+K_{4}\left(2+2 K_{2}+\left(K_{2}\right)^{2}\right) \stackrel{110}{B}+K_{2}{ }^{222} B+ \\
& +2 K_{4} \stackrel{(20) 2}{B}-2 K_{4}\left(1+K_{2}\right) \stackrel{(10) 3}{B}-K_{4}\left(1+K_{2}\right) \stackrel{220}{B}- \\
& -2 K_{4}\left(1+K_{2}\right)^{2} \stackrel{(10) 1}{B}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{2}{B}=-\left(K_{4}\right)^{2} B+2\left(\left(K_{2}\right)^{2}-1+K_{4}+2 K_{2} K_{4}\right) \stackrel{(10) 1}{B}+\left(2+K_{2}\right) \stackrel{112}{B}- \\
& -\stackrel{222}{B}-K_{4} \stackrel{002}{B}_{B}+2 \stackrel{(20) 2}{B}+2\left(K_{2}+2 K_{4}\right) \stackrel{(10) 3}{B}+2 K_{4}{ }^{(20) 0}{ }^{-}- \\
& -\left(\left(K_{2}\right)^{2}-1+K_{4}+2 K_{2} K_{4}\right) \stackrel{110}{B}+\left(K_{2}-1+2 K_{4}\right){ }^{220} B \\
& \underset{3}{B}=2\left(K_{4}\right)^{2} B+2 \stackrel{(12) 3}{B}-K_{4}{ }^{002} B+K_{2}{ }^{112} B+2\left(1+K_{2}\right) \stackrel{(21) 1}{B}- \\
& -\stackrel{222}{B}+2 K_{4} \stackrel{(10) 3}{B}^{8}-\left(1+K_{4}\right)\left(1+K_{2}\right) \stackrel{110}{B}+\left(1+K_{4}\right) \stackrel{220}{B}+ \\
& +2 K_{4}\left(1+K_{2}\right) \stackrel{(10) 1}{B}-2 K_{4} \stackrel{(20) 0}{B} \text {. }
\end{aligned}
$$

3. Conformal change of the 6-dimensional torsion tensor for the second class with the second category

In this final chapter we investigate the change $S_{\lambda \mu}{ }^{\nu} \rightarrow \bar{S}_{\lambda \mu}{ }^{\nu}$ of the torsion tensor induced by the conformal change of the tensor $g_{\lambda \mu}$, using the recurrence relations and theorems introduced in the preceding chapter.

We say that X_{n} and \bar{X}_{n} are conformal if and only if

$$
\begin{equation*}
\bar{g} \lambda \mu(x)=e^{\Omega} g_{\lambda \mu}(x) \tag{3.1}
\end{equation*}
$$

where $\Omega=\Omega(x)$ is an at least twice differentiable function. This conformal change enforces a change of the torsion tensor $S_{\lambda \mu}{ }^{\nu}$. An explicit representation of the change of 6-dimensional torsion tensor $S_{\lambda \mu}{ }^{\nu}$ for the second class with the second category will be exhibited in this chapter.

Agreement 3.1. Throughout this section, we agree that, if T is a function of $g_{\lambda \mu}$, then we denote \bar{T} the same function of $\bar{g}_{\lambda \mu}$. In particular, if T is a tensor, so is \bar{T}. Furthermore, the indices of $T(\bar{T})$ will be raised and/or lowered by means of $h^{\lambda \nu}\left(\bar{h}^{\lambda \nu}\right)$ and/or $h_{\lambda \mu}\left(\bar{h}_{\lambda \mu}\right)$.

The results in the following theorems are needed in our further considerations. They may be referred to $\mathrm{CHO}([1], 1992,[2], 1994,[3], 1995)$.

Theorem 3.2. In n - g-UFT, the conformal change (3.1) induces the following changes :

$$
\begin{align*}
{ }^{(p)} \bar{k}_{\lambda \mu}=e^{\Omega(p)} k_{\lambda \mu}, \quad{ }^{(p)} \bar{k}_{\lambda}{ }^{\nu}={ }^{(p)} k_{\lambda}{ }^{\nu}, \\
{ }^{(p)} \bar{k}^{\lambda \nu}=e^{-\Omega(p)} k^{\lambda \nu} \tag{3.2}\\
\bar{g}=g, \quad \overline{K_{p}}=K_{p}, \quad(p=1,2, \cdots) . \tag{3.2}
\end{align*}
$$

Theorem 3.3. (For all classes in 6 - g-UFT). The change of the tensor $B_{\omega \mu \nu}$ induced by the conformal change (3.1) may be given by

$$
\begin{align*}
\bar{B}_{\omega \mu \nu}= & e^{\Omega}\left(B_{\omega \mu \nu}+k_{\nu[\omega} \Omega_{\mu]}-k_{\omega \mu} \Omega_{\nu}\right. \\
& \left.-h_{\nu[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta}+2^{(2)} k_{\nu[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta}+k_{\omega \mu}{ }^{(2)} k_{\nu}{ }^{\delta} \Omega_{\delta}\right) . \tag{3.3}
\end{align*}
$$

Now, we are ready to derive representations of the changes $S_{\omega \mu}{ }^{\nu} \rightarrow$ $\bar{S}_{\omega \mu}{ }^{\nu}$ in $6-g$-UFT for the second class with the second category induced by the conformal change (3.1).

Theorem 3.4. The conformal change (3.1) induces the following change :

$$
\begin{align*}
2 \stackrel{(10) 1}{B}_{\omega \mu \nu}= & e^{\Omega}\left[2 \stackrel{(10)}{B}_{\omega \mu \nu}+\left(-2^{(4)} k_{\nu[\omega} k_{\mu]}^{\delta}\right.\right. \tag{3.4}\\
& \left.\left.+2^{(2)} k_{\nu[\omega} k_{\mu]}^{\delta}-k_{\nu[\omega}{ }^{(2)} k_{\mu]}^{\delta}\right) \Omega_{\delta}-{ }^{(3)} k_{\nu[\omega} \Omega_{\mu]}\right] .
\end{align*}
$$

THEOREM 3.5. The conformal change (3.1) induces the following change :

$$
\begin{align*}
{\stackrel{\bar{p}}{B^{p p q}}}_{\omega \mu \nu}= & e^{\Omega}\left[{ }^{p p q} B_{\omega \mu \nu}+(-1)^{p}\left\{2^{(p+q+2)} k_{\nu[\omega}{ }^{(p+1)} k_{\mu]}{ }^{\delta}\right.\right. \\
& +{ }^{(2 p+1)} k_{\omega \mu}{ }^{(2+q)} k_{\nu}{ }^{\delta}-{ }^{(2 p+1)} k_{\omega \mu}{ }^{(q)} k_{\nu}{ }^{\delta} \\
+ & \left.\left.+{ }^{(p+q+1)} k_{\nu[\omega}{ }^{(p)} k_{\mu]}{ }^{\delta}-{ }^{(p+q)} k_{\nu[\omega}{ }^{(p+1)} k_{\mu]}{ }^{\delta}\right\} \Omega_{\delta}\right] . \tag{3.5}\\
& \binom{p=0,1,2,3,4, \cdots}{q=0,1,2,3,4, \cdots}
\end{align*}
$$

THEOREM 3.6. The change $S_{\omega \mu}{ }^{\nu} \rightarrow \bar{S}_{\omega \mu}{ }^{\nu}$ induced by conformal change (3.1) may be represented by

$$
\begin{align*}
\bar{S}_{\omega \mu}{ }^{\nu}= & S_{\omega \mu}{ }^{\nu}+\frac{1}{C}\left[a_{1} k_{\omega \mu} \Omega^{\nu}+a_{2} k^{\nu}{ }_{[\omega} \Omega_{\mu]}\right. \\
& +a_{3} h^{\nu}{ }_{[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta}+a_{4} \delta^{\nu}{ }_{[\omega} k_{\mu]} \\
& +a_{5} k^{\nu}{ }_{[\omega}{ }^{(2)} k_{\mu]}^{\delta} \Omega_{\delta}+a_{6}{ }^{(2)} k^{\nu}{ }_{[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta} \\
& +a_{7} k_{\omega \mu}{ }^{(2)} k^{\nu \delta} \Omega_{\delta}+a_{8}{ }^{(3)} k_{\omega \mu} \Omega^{\nu} \tag{3.6}\\
& +a_{9}{ }^{(3)} k^{\nu}{ }_{[\omega} \Omega_{\mu]}+a_{10} \delta^{\nu}{ }_{[\omega}{ }^{(3)} k_{\mu]}{ }^{\delta} \Omega_{\delta} \\
& +2 a_{11}{ }^{(3)} k^{\nu}{ }_{[\omega}{ }^{(2)} k_{\mu]}{ }^{\delta} \Omega_{\delta}+2 a_{12}{ }^{(2)} k^{\nu}{ }_{[\omega}{ }^{(3)} k_{\mu]}{ }^{\delta} \Omega_{\delta} \\
& \left.+a_{13}{ }^{(3)} k_{\omega \mu}{ }^{(2)} k^{\nu \delta} \Omega_{\delta}\right],
\end{align*}
$$

where

$$
\begin{aligned}
a_{1}= & \alpha^{2} \beta(1+4 \beta)-2 \alpha \beta\left(1+\beta+2 \beta^{2}\right)+\beta\left(1-13 \beta^{2}\right)-C, \\
a_{2}= & 2 \alpha^{3} \beta-\alpha^{2} \beta(\alpha-2 \beta)+2 \alpha \beta^{2}(1-2 \beta)+\beta^{2}(3 \beta-4)+C, \\
a_{3}= & \beta^{2}\left(2 \alpha^{2}-5 \alpha-9 \beta+7\right)-C, \\
a_{4}= & -2 \alpha^{3} \beta+\alpha^{2} \beta(1+12 \beta)-9 \alpha \beta^{2}-\beta\left(3+5 \beta+18 \beta^{2}\right), \\
a_{5}= & 2 \alpha^{4}-\alpha^{3}(2 \beta+3)-\alpha^{2}\left(1+9 \beta+4 \beta^{2}\right) \\
& +\alpha\left(2-10 \beta-\beta^{2}+8 \beta^{3}\right)+\beta\left(6+13 \beta+19 \beta^{2}\right), \\
a_{6}= & -2 \alpha^{4}+\alpha^{3}(1+18 \beta)+2 \alpha^{2} \beta(1-8 \beta)-\alpha(2+16 \beta \\
& \left.+59 \beta^{2}+8 \beta^{3}\right)+\beta\left(27 \beta^{2}-58 \beta-10\right)-1+2 C, \\
a_{7}= & -\alpha^{2} \beta(1+4 \beta)+2 \alpha \beta(1+\beta)+\beta\left(13 \beta^{2}+4 \alpha \beta^{2}-1\right)+C, \\
a_{8}= & 3 \alpha^{3}+\alpha^{2}\left(5 \beta+8 \beta^{2}-4\right)-\alpha\left(2+36 \beta+5 \beta^{2}\right) \\
& +7 \beta\left(2-6 \beta-3 \beta^{2}\right)+3, \\
a_{9}= & \alpha^{2}(1-8 \beta)-2 \alpha\left(1-6 \beta^{2}\right)+\beta\left(8 \beta^{2}+35 \beta-12\right)+1, \\
a_{10}= & 2 \alpha^{2} \beta(-5+2 \beta)+2 \alpha \beta\left(3-6 \beta+4 \beta^{2}\right)+4 \beta\left(1+2 \beta-2 \beta^{2}\right), \\
a_{11}= & 2 \alpha^{4}-\alpha^{3}(1+3 \beta)-4 \alpha^{2} \beta^{2}+\alpha\left(1+7 \beta+4 \beta^{2}\right) \\
& -\beta(3-7 \alpha-4 \alpha \beta)-2, \\
a_{12}= & 2 \alpha^{4}+\alpha^{3}(2 \beta-15)+\alpha^{2}\left(22-19 \beta+4 \beta^{2}\right) \\
& +\alpha\left(-8+35 \beta-6 \beta^{2}\right)-3 \beta+1,
\end{aligned}
$$

$$
\begin{aligned}
a_{13}= & -4 \alpha^{4}-\alpha^{3}(1-8 \beta)+11 \alpha^{2} \beta-\alpha\left(8-16 \beta+21 \beta^{2}\right) \\
& +\beta\left(5 \beta^{2}+2 \beta-10\right)-3,
\end{aligned}
$$

where $\alpha=K_{2}, \beta=K_{4}$,

$$
\begin{equation*}
C=(1+\alpha+\beta)\left[(1-\alpha+5 \beta)^{2}-4 \beta(2-\alpha)^{2}\right] . \tag{3.7}
\end{equation*}
$$

Proof. In virtue of (2.18) and Agreement (3.1), we have

$$
\begin{align*}
& (\bar{S}-\bar{B})\left(1+\overline{K_{2}}+\overline{K_{4}}\right) \times\left[\left(1-\bar{K}_{2}+5 \bar{K}_{4}\right)^{2}-4 \bar{K}_{4}\left(2-\bar{K}_{2}\right)^{2}\right] \tag{3.8}\\
= & 4 \bar{B}\left(\bar{K}_{4}-1\right)+\bar{B}_{2}\left(1-\bar{K}_{2}+5 \bar{K}_{4}\right)+2 \bar{B}\left(1-2 \bar{K}_{2}+\left(\bar{K}_{2}\right)^{2}-5 \bar{K}_{4}\right) .
\end{align*}
$$

The relation (3.6) follows by substituting (3.2), (3.3), (3.4), (3.5), (2.16), (3.7) into (3.8).

References

[1] C.H. Cho, Conformal change of the connection in 3- and 5-dimensional ${ }^{*} g^{\lambda \nu}$ unified Field Theory, BIBS, Inha Univ. 13 (1992).
[2] C.H. Cho, Conformal change of the connection for the first class in 5-dimensional ${ }^{*} g^{\lambda \nu}$-unified Field Theory, Kangweon-Kyungki Math. Jour. 2 (1994), 19-33.
[3] C.H. Cho, Conformal change of the torsion tensor in 6-dimensional g-unified field theory, Kangweon-Kyungki Math. Jour. 3, No. 1 (1995), 71-79.
[4] C.H. Cho and G.T. Yang, On the recurrence relations in X_{6}, BIBS, Inha Univ. 14 (1993), 13-22.
[5] K.T. Chung, Three- and Five-dimensional considerations of the geometry of Einstein's *g-unified field theory, International Journal of Theoretical Physics 27(9) (1988).
[6] K.T. Chung, Conformal change in Einstein's ${ }^{*} g^{\lambda \nu}$-unified field theory, Nuove Cimento (X) 58B (1968).
[7] K.T. Chung, Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuove Cimento (X) 27 (1963).
[8] V. HLAVATÝ, Geometry of Einstein's unified field theory, P. Noordhoff Ltd (1957).

Department of Mathematics
Inha University
Incheon 402-751, Korea

[^0]: ${ }^{1}$ Throughout the present paper, we assumed that $n \geq 2$.
 ${ }^{2}$ Throughout this paper, Greek indices are used for holonomic components of tensors. In X_{n} all indices take the values $1, \cdots, n$ and follow the summation convention.

