MAPPING TORUS AND THE ASYMPTOTIC EXPANSION OF $\log T(M, \varphi)(t)$

Yoonweon Lee

Abstract. In this paper we define a torsion function $\log T(M, \varphi)(t)$ for $t \gg 0$ and show that it has an asymptotic expansion $\frac{1}{2} \chi(M) t$ as $t \rightarrow \infty$.

1. Introduction

Let (M, g) be a closed oriented Riemannian manifold of dimension n. Given an orientation-preserving diffeomorphism $\varphi: M \rightarrow M$, we define a mapping torus M_{φ} by $M_{\varphi}=M \times I /(x, 1) \sim(\varphi(x), 0)$, where $I=[0,1]$. Then M_{φ} is a fiber bundle over S^{1} and each fiber bundle over S^{1} can be obtained in this way.

Let $\pi: M_{\varphi} \rightarrow S^{1}$ be the natural projection and denote by $d \theta$ the 1-form on S^{1} with $\int_{S^{1}} d \theta=1$. Choose a Riemannian metric g_{1} on M_{φ}. We define for $t>0$

$$
\begin{gathered}
d_{q}(t): \Omega^{q}\left(M_{\varphi}\right) \rightarrow \Omega^{q+1}\left(M_{\varphi}\right) \\
d_{q}(t)=d_{q}+t \pi^{*} d \theta \wedge,
\end{gathered}
$$

where $\Omega^{q}\left(M_{\varphi}\right)$ is the set of smooth q -forms on M_{φ} and d_{q} is the exterior differential operator. Since $d_{q}(t) d_{q-1}(t)=0$, we can define the cohomology associated to $d_{q}(t)$ by

$$
H^{q}\left(M_{\varphi}, d_{q}(t), \mathbb{R}\right)=\operatorname{kerd}_{q}(t) / \operatorname{Imd}_{q-1}(t)
$$

Received September 3, 1996.
1991 Mathematics Subject Classification: 58G25, 58G26.
Key words and phrases: mapping torus, torsion, asymptotic expansion, zeta function.

This research is supported in part by 95 Inha Univ. Fund and BSRI-96-1436

We also define the Laplacian $\Delta_{q}(t)$ associated to $d_{q}(t)$ by $\Delta_{q}(t)=$ $d_{q}(t)^{*} d_{q}(t)+d_{q-1}(t) d_{q-1}(t)^{*}$, where $d_{q}(t)^{*}$ is the adjoint of $d_{q}(t)$ with respect to the given metric g_{1} on M_{φ}. Then $\Delta_{q}(t)=\Delta_{q}+t A+$ $t^{2}\left\|\pi^{*} d \theta\right\|^{2}$, where A is a zero order operator and Δ_{q} is the usual Laplacian acting on $\Omega^{q}\left(M_{\varphi}\right)$. It is a known fact (cf. [CFKS]) that $\Delta_{q}(t)$ does not have a zero eigenvalue for sufficiently large $t>0$ and hence $\Delta_{q}(t)$ is a positive definite elliptic differential operator for t large enough. By Hodge theorem

$$
H^{q}\left(M_{\varphi}, d_{q}(t), \mathbb{R}\right)=\operatorname{ker} \Delta_{q}(t)=0
$$

We define the torsion function $T_{0}\left(M, \varphi, g_{1}\right)(t)$ for $t \gg 0$ by

$$
T_{0}\left(M, \varphi, g_{1}\right)(t)=\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \log \operatorname{Det}\left(\Delta_{q}(t)\right)
$$

Since $H^{q}\left(M_{\varphi}, d_{q}(t), \mathbb{R}\right)=0$ for $t \gg 0, T_{0}\left(M, \varphi, g_{1}\right)(t)$ does not depend on the choice of a Riemannian metric g_{1} on M_{φ} (cf. [RS]). Hence we can write $T_{0}(M, \varphi)(t)$ rather than $T_{0}\left(M, \varphi, g_{1}\right)(t)$. In this paper we are going to prove the following theorem.

Theorem 1. Define $T(M, \varphi)(t)=\frac{1}{2}\left(T_{0}(M, \varphi)(t)+T_{0}\left(M, \varphi^{-1}\right)(t)\right)$. Then the followings hold.
(1) If $\operatorname{dim} M$ is odd, then $T_{0}(M, \varphi)(t)=-T_{0}\left(M, \varphi^{-1}\right)(t)$ so that $T(M, \varphi)(t) \equiv 0$.
(2) If dimM is even, $T(M, \varphi)(t)=T_{0}(M, \varphi)(t)=T_{0}\left(M, \varphi^{-1}\right)(t)$.
(3) $T(M, \varphi)(t) \sim \frac{1}{2} \chi(M) t$ as $t \rightarrow \infty$.
(4) If $\varphi=I d, T(M, \varphi)(t)=\frac{1}{2} \chi(M)\left(t+2 \log \left(1-e^{-t}\right)\right)$.

2. The case of $M \times S^{1}$

If $\varphi=I d$, then $M_{\varphi}=M \times S^{1}$ and we can choose the product metric $g \oplus d \theta^{2}$ on $M \times S^{1}$. Consider $\pi: M \times S^{1} \rightarrow S^{1}$ and $d(t)=d+\frac{t}{2 \pi} d \theta$, where $d \theta$ is the canonical 1-form on S^{1}, i.e. $\int_{S^{1}} d \theta=2 \pi$.

Then one can show that $\Delta_{q}(t)=\Delta_{q}^{M \times S^{1}}+\frac{t^{2}}{4 \pi^{2}} I d$, where $\Delta_{q}^{M \times S^{1}}$ is the usual Laplacian acting on $\Omega^{q}\left(M \times S^{1}\right)$. Set $\lambda=\frac{t^{2}}{4 \pi^{2}}$ and note that

$$
\Omega^{q}\left(M \times S^{1}\right)=C^{\infty}\left(M \times S^{1}\right) \Omega^{q}(M) \otimes
$$

$$
\Omega^{0}\left(S^{1}\right) \oplus C^{\infty}\left(M \times S^{1}\right) \Omega^{q-1}(M) \otimes \Omega^{1}\left(S^{1}\right)
$$

Then

$$
\begin{gathered}
\Delta_{q}(t)=\Delta_{q}^{M \times S^{1}}+\lambda I d= \\
\left(\begin{array}{cc}
\Delta_{q}^{M} \otimes I d_{S^{1}}+I d_{M} \otimes \Delta_{0}^{S^{1}}+\lambda I d & 0 \\
0 & \Delta_{q-1}^{M} \otimes I d_{S^{1}}+I d_{M} \otimes \Delta_{1}^{S^{1}}+\lambda I d
\end{array}\right) \\
t r e^{-t \Delta_{q}(t)} \\
=\operatorname{tr}\left(e^{-t\left(\Delta_{q}^{M} \otimes I d_{S^{1}}+I d_{M} \otimes \Delta_{0}^{S^{1}}+\lambda I d\right)}+e^{-t\left(\Delta_{q-1}^{M} \otimes I d_{S^{1}}+I d_{M} \otimes \Delta_{1}^{S^{1}}+\lambda I d\right)}\right) \\
=e^{-\lambda t}\left(t r e^{-t \Delta_{q}^{M}} \otimes e^{-t \Delta_{0}^{S^{1}}}+t r e^{-t \Delta_{q-1}^{M}} \otimes e^{-t \Delta_{1}^{S^{1}}}\right) \\
=e^{-\lambda t}\left(t r e^{-t \Delta_{q}^{M}} \cdot t r e^{-t \Delta_{0}^{S^{1}}}+t r e^{-t \Delta_{q-1}^{M}} \cdot t r e^{-t \Delta_{1}^{S^{1}}}\right) \\
=e^{-\lambda t} t r e^{-t \Delta_{0}^{S^{1}}}\left(t r e^{-t \Delta_{q}^{M}}+t r e^{-t \Delta_{q-1}^{M}}\right)
\end{gathered}
$$

since $\Delta_{0}^{S^{1}}$ and $\Delta_{1}^{S^{1}}$ are isospectral.
Now

$$
\begin{gathered}
\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \operatorname{trexp}\left(-t\left(\Delta_{q}^{M \times S^{1}}+\lambda I d\right)\right) \\
=\frac{1}{2} e^{-\lambda t} t r e^{-t \Delta_{0}^{S^{1}}} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot\left(t r e^{-t \Delta_{q}^{M}}+t r e^{-t \Delta_{q-1}^{M}}\right) \\
=\frac{1}{2} e^{-\lambda t} t r e^{-t \Delta_{0}^{S_{1}^{1}}} \sum_{q=0}^{n}(-1)^{q} t r e^{-t \Delta_{q}^{M}}
\end{gathered}
$$

Since $\sum_{q=0}^{n}(-1)^{q} t r e^{-t \Delta_{q}^{M}}$ is equal to $\chi(M)$, the Euler characteristic of M (cf. [Gi]), we get

$$
\begin{gathered}
\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \operatorname{trexp}\left(-t\left(\Delta_{q}^{M \times S^{1}}+\lambda I d\right)\right)= \\
\frac{1}{2} \chi(M) \operatorname{trexp}\left(-t\left(\Delta_{0}^{S^{1}}+\lambda I d\right)\right)
\end{gathered}
$$

Define $Z_{q}(s)=\sum_{\mu} \mu^{-s}$, where μ runs over the eigenvalues of $\Delta_{q}^{M \times S^{1}}+\lambda I d$. Then $Z_{q}(s)$ is holomorphic for Res $>\frac{n+1}{2}$ and it has a meromorphic continuation to the whole complex plane with a regular value at 0 (cf. [Se]). Then

$$
\begin{aligned}
T\left(M \times S^{1}\right) & =\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \log \operatorname{Det}\left(\Delta_{q}^{M \times S^{1}}+\lambda I d\right) \\
& =-\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot Z_{q}^{\prime}(0) .
\end{aligned}
$$

By Melline transformation

$$
\begin{gathered}
\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot Z_{q}(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \frac{1}{2} \chi(M) \operatorname{trexp}\left(-t\left(\Delta_{0}^{S^{1}}+\lambda I d\right)\right) d t \\
=\frac{1}{2} \chi(M)\left\{\lambda^{-s}+2 \sum_{n=1}^{\infty}\left(\lambda+n^{2}\right)^{-s}\right\} . \\
T\left(M \times S^{1}\right)=-\frac{1}{2} \chi(M)\left\{-\log \lambda+\left.2 \frac{d}{d t}\right|_{s=0} \sum_{n=1}^{\infty}\left(\lambda+n^{2}\right)^{-s}\right\} .
\end{gathered}
$$

From [Vo] we get

$$
\left.\frac{d}{d t}\right|_{s=0} \sum_{n=1}^{\infty}\left(\lambda+n^{2}\right)^{-s}=-\log \left(e^{-2 \zeta^{\prime}(0)} \frac{\sin (\pi \sqrt{\lambda} i)}{\pi \sqrt{\lambda} i}\right)
$$

where $\zeta(s)$ is the Riemann zeta function. Since $\zeta^{\prime}(0)=-\log \sqrt{2 \pi}$,

$$
\left.\frac{d}{d t}\right|_{s=0} \sum_{n=1}^{\infty}\left(\lambda+n^{2}\right)^{-s}=-\pi \sqrt{\lambda}-\log \left(1-e^{-2 \pi \sqrt{\lambda}}\right)+\frac{1}{2} \log \lambda .
$$

Therefore

$$
T\left(M \times S^{1}\right)=\frac{1}{2} \chi(M)\left\{2 \pi \sqrt{\lambda}+2 \log \left(1-e^{-2 \pi \sqrt{\lambda}}\right)\right\} .
$$

Setting $\lambda=\frac{t^{2}}{4 \pi^{2}}$, we get

$$
T\left(M \times S^{1}\right)(t)=\frac{1}{2} \chi(M)\left(t+2 \log \left(1-e^{-t}\right)\right) .
$$

3. The case of a general mapping torus

Let $\varphi: M \rightarrow M$ be an orientation preserving diffeomorphism of M and $d \theta$ be a 1 -form on S^{1} with $\int_{S^{1}} d \theta=1$. Consider the fiber bundle $M \rightarrow M_{\varphi} \xrightarrow{\pi} S^{1}$ with $d(t)=d+t \pi^{*} d \theta$.

Let $\left\{U_{k}\right\}$ be an atlas of M_{φ} and $\left\{\rho_{k}\right\}$ be a partition of unity subordinate to $\left\{U_{k}\right\}$. Suppose that $\sigma\left(\mu-\Delta_{q}(t)\right)^{-1} \sim \sum_{j=0}^{\infty} r_{-2-j}(\mu, t, x, \xi)$ on each U_{k}, where r_{-2-j} is the homogeneous component of the asymptotic symbol of $\left(\mu-\Delta_{q}(t)\right)^{-1}$ on U_{k}. Set

$$
J_{j}^{q}(s, x)=\frac{1}{2 \pi i} \int_{\mathbb{R}^{n+1}} d \xi \int_{\gamma} \mu^{-s} r_{-2-j}(\mu, 1, x, \xi) d \mu
$$

where γ is a contour enclosing all the eigenvalues of $\Delta_{q}(t)$, i.e. for sufficiently small $\epsilon>0$,

$$
\gamma=\left\{u e^{i \pi} \mid \infty>u \geq \epsilon\right\} \cup\left\{\epsilon e^{i \psi} \mid \pi \geq \psi \geq-\pi\right\} \cup\left\{u e^{-i \pi} \mid \epsilon \leq u<\infty\right\}
$$

Set

$$
\pi_{j}=\left.\frac{1}{(2 \pi)^{n+1}} \frac{d}{d s}\right|_{s=0} \sum_{k} \int_{M_{\varphi}} J_{j}^{q}(s, x) \rho_{k}(x) \operatorname{dvol}(x)
$$

and

$$
q_{j}=\frac{1}{(2 \pi)^{n+1}} \sum_{k} \int_{M_{\varphi}} J_{j}^{q}(0, x) \rho_{k}(x) d v o l(x) .
$$

Then from the appendix of [BFK] we get the following theorem.

Theorem 2.

$$
\log \operatorname{Det}\left(\Delta_{q}(t)\right) \sim \sum_{j=0}^{\infty} \pi_{j} t^{n+1-j}+\sum_{j=0}^{n+1} q_{j} t^{n+1-j} \log t
$$

as $t \rightarrow+\infty$.
Let us consider $M \times S^{1}$ with the product metric $g \oplus d \theta^{2}$, where g is a Riemannian metric on M and $d \theta^{2}$ is the normalized canonical metric on S^{1} with $\int_{S^{1}} d \theta=1$. Let $\left\{U_{k}\right\}$ be an atlas of M and $\left\{\rho_{k}\right\}$ be a partition of unity subordinate to $\left\{U_{k}\right\}$. Then $\Delta_{q}(t)=\Delta_{q}^{M \times S^{1}}+t^{2} I d$ and from Theorem 2 and the statement (4) of Theorem 1 we get

$$
\begin{gathered}
\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \log \operatorname{Det}\left(\Delta_{q}(t)\right) \sim \sum_{j=0}^{\infty} c_{j} t^{n+1-j}+\sum_{j=0}^{n+1} d_{j} t^{n+1-j} \log t \\
=\frac{1}{2} \chi(M) t
\end{gathered}
$$

as $t \rightarrow \infty$ for some constants c_{j} 's and d_{j} 's. Hence each $d_{j}=0$ and

$$
\begin{gathered}
c_{j}=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \frac{1}{(2 \pi)^{n+1}} \frac{d}{d s}\right|_{s=0} \\
\sum_{k} \int_{M \times S^{1}} J_{j}^{q}(s, x, \theta) \rho_{k}(x) d v o l\left(M \times S^{1}\right) \\
=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \frac{1}{(2 \pi)^{n+1}} \frac{d}{d s}\right|_{s=0} \sum_{k} \int_{M} J_{j}^{q}(s, x) \rho_{k}(x) \operatorname{dvol}(M) \\
=\frac{1}{2} \chi(M) \delta_{n j},
\end{gathered}
$$

since J_{j}^{q} does not depend on S^{1}-variable θ.
Now let us denote $S^{1}=[0,1] / 0 \sim 1$ and let $V_{1}=\left(\frac{1}{5}, \frac{2}{5}\right), V_{2}=\left(\frac{3}{5}, \frac{4}{5}\right)$, $V_{3}=\left[0, \frac{1}{5}+\epsilon\right) \cup\left(\frac{4}{5}-\epsilon, 1\right], V_{4}=\left(\frac{2}{5}-\epsilon, \frac{3}{5}+\epsilon\right)$ for sufficiently small $\epsilon>0$. Let $\left\{\eta_{k}\right\}_{1 \leq k \leq 4}$ be a partition of unity subordinate to $\left\{V_{k}\right\}_{1 \leq k \leq 4}$. We denote by g_{1}, g_{2} Riemannian metrics on M. Choose a nondecreasing function $\omega(r)$ on \mathbb{R} such that $\omega(r)=0$ for $r \leq 0,1$ for $r \geq 1$ and $\omega(r)$ is symmetric to the line $r=\frac{1}{2}$.

Set $\omega_{1}(r)=\omega(5 r-1)$ and $\omega_{2}(r)=\omega(5 r-3)$. We define a new metric $G(r, \theta)$ on $M \times S^{1}$ as follows.

$$
G(r, \theta)= \begin{cases}g_{1} \oplus d \theta^{2}, & \text { for } 0 \leq \theta \leq \frac{1}{5} \\ \left(\left(1-\omega_{1}(\theta)\right) g_{1}+\omega_{1}(\theta) g_{2}\right) \oplus d \theta^{2}, & \text { for } \frac{1}{5} \leq \theta \leq \frac{2}{5} \\ g_{2} \oplus d \theta^{2}, & \text { for } \frac{2}{5} \leq \theta \leq \frac{3}{5} \\ \left(\left(1-\omega_{2}(\theta)\right) g_{2}+\omega_{2}(\theta) g_{1}\right) \oplus d \theta^{2}, & \text { for } \frac{3}{5} \leq \theta \leq \frac{4}{5} \\ g_{1} \oplus d \theta^{2}, & \text { for } \frac{4}{5} \leq \theta \leq 1\end{cases}
$$

Then

$$
\begin{gathered}
c_{j}=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l, k} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \\
\int_{M \times S^{1}} \rho_{l}(x) \eta_{k}(\theta) J_{j}^{q}(s, x, \theta) \operatorname{dvol}\left(M \times S^{1}\right) \\
=\frac{1}{2} \chi(M) \delta_{n j} .
\end{gathered}
$$

Note that $J_{j}(s, x, \theta)$ coming from the product metric of the form $g \oplus d \theta^{2}$ does not depend on the S^{1}-variable θ.

$$
\begin{gathered}
c_{j}=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l} \sum_{k \neq 1,2} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \\
\int_{M \times S^{1}} \rho_{l}(x) \eta_{k}(\theta) J_{j}^{q}(s, x, \theta) d v o l\left(M \times S^{1}\right) \\
+\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \times \\
\left(\int_{M \times S^{1}} \rho_{l}(x) \eta_{1}(\theta) J_{j}^{q} d v o l\left(M \times S^{1}\right)+\right. \\
=\left(\sum_{M \times S^{1}} \rho_{l}(x) \eta_{2}(\theta) J_{j}^{q} d v o l\left(M \times S^{1}\right)\right) \\
\left.\int_{k \neq 1,2} \eta_{k}(\theta) d \theta\right)\left.\cdot \frac{1}{2} \cdot \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \\
\int_{M} \rho_{l}(x) J_{j}^{q} d v o l(M)+C\left(g_{1}, g_{2}\right)+C\left(g_{2}, g_{1}\right) \\
=\frac{1}{2} \chi(M) \delta_{n j}\left(\sum_{k}^{k} \int_{S^{1}} \eta_{k}(\theta) d \theta\right)+C\left(g_{1}, g_{2}\right)+C\left(g_{2}, g_{1}\right) .
\end{gathered}
$$

Here

$$
\begin{gathered}
C\left(g_{1}, g_{2}\right)=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \\
\int_{M \times S^{1}} \rho_{l}(x) \eta_{1}(\theta) J_{j}^{q} d v o l\left(M \times S^{1}\right) \\
C\left(g_{2}, g_{1}\right)=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \sum_{l} \frac{d}{d s}\right|_{s=0} \frac{1}{(2 \pi)^{n+1}} \\
\int_{M \times S^{1}} \rho_{l}(x) \eta_{2}(\theta) J_{j}^{q} d v o l\left(M \times S^{1}\right) .
\end{gathered}
$$

Hence

$$
\frac{1}{2} \chi(M) \delta_{n j}=\frac{1}{2} \chi(M) \delta_{n j}\left(\sum_{\substack{k \\ k \neq 1,2}} \int_{S^{1}} \eta_{k}(\theta) d \theta\right)+C\left(g_{1}, g_{2}\right)+C\left(g_{2}, g_{1}\right)
$$

Since $\sum_{k=1}^{4} \int_{S^{1}} \eta_{k}(\theta) d \theta=1$,
(1) $C\left(g_{1}, g_{2}\right)+C\left(g_{2}, g_{1}\right)=\frac{1}{2} \chi(M) \delta_{n j}\left(\int_{S^{1}} \eta_{1}(\theta) d \theta+\int_{S^{1}} \eta_{2}(\theta) d \theta\right)$.

Now we consider a general mapping torus. Let (M, g) be an oriented Riemannian manifold and $\varphi: M \rightarrow M$ be an orientation preserving diffeomorphism. Then φ is an isometry from $\left(M, \varphi^{*} g\right)$ to (M, g). Note that

$$
M_{\varphi^{-1}}=M \times I /(x, 1) \sim\left(\varphi^{-1}(x), 0\right)=M \times I /(x, 0) \sim(\varphi(x), 1)
$$

Define $\Phi: M_{\varphi} \rightarrow M_{\varphi^{-1}}$ by $[x, t] \mapsto[x, 1-t]$. We give metrics $G_{1}(x, \theta)$ and $G_{2}(x, \theta)$ on M_{φ} and $M_{\varphi^{-1}}$ respectively as follows.

$$
\begin{aligned}
& G_{1}(x, \theta)= \begin{cases}\varphi^{*} g \oplus d \theta^{2}, & \text { for } 0 \leq \theta \leq \frac{1}{5} \\
\left(\left(1-\omega_{1}(\theta)\right) \varphi^{*} g+\omega_{1}(\theta) g\right) \oplus d \theta^{2}, & \text { for } \frac{1}{5} \leq \theta \leq \frac{2}{5} \\
g \oplus d \theta^{2}, & \text { for } \frac{2}{5} \leq \theta \leq 1\end{cases} \\
& G_{2}(x, \theta)= \begin{cases}g \oplus d \theta^{2}, & \text { for } 0 \leq \theta \leq \frac{3}{5} \\
\left(\left(1-\omega_{2}(\theta)\right) g+\omega_{2}(\theta) \varphi^{*} g\right) \oplus d \theta^{2}, & \text { for } \frac{3}{5} \leq \theta \leq \frac{4}{5} \\
\varphi^{*} g \oplus d \theta^{2}, & \text { for } \frac{4}{5} \leq \theta \leq 1 .\end{cases}
\end{aligned}
$$

Then Φ is an (orientation-reversing) isometry from $\left(M_{\varphi}, G_{1}\right)$ to $\left(M_{\varphi^{-1}}, G_{2}\right)$.

Lemma 3. $T_{0}(M, \varphi)(t)=(-1)^{n} T_{0}\left(M, \varphi^{-1}\right)(t)$ for $t \gg 0$, where n is the dimension of M.

Proof. Denote by $\Delta_{q}(t), \tilde{\Delta}_{q}(t)$ the Laplacians on $\left(M_{\varphi}, G_{1}\right)$ and $\left(M_{\varphi^{-1}}, G_{2}\right)$ respectively. By Hodge theorem

$$
\Omega^{q}\left(M_{\varphi}\right)=\operatorname{Imd}_{q-1}(t) \oplus \operatorname{Imd}_{q}(t)^{*}=\Omega_{+}^{q}\left(M_{\varphi}\right) \oplus \Omega_{-}^{q}\left(M_{\varphi}\right),
$$

where $\Omega_{+}^{q}\left(M_{\varphi}\right)=\operatorname{Imd}_{q-1}(t)$ and $\Omega_{-}^{q}\left(M_{\varphi}\right)=\operatorname{Imd}_{q}(t)^{*}$. Let $\Delta_{q}^{ \pm}(t)$ be the Laplacians acting on $\Omega_{ \pm}^{q}\left(M_{\varphi}\right)$ respectively. Then from the fact that

$$
\begin{gathered}
\log \operatorname{Det}\left(\Delta_{q}(t)\right)=\log \operatorname{Det}\left(\Delta_{q}^{+}(t)\right)+\log \operatorname{Det}\left(\Delta_{q}^{-}(t)\right) \\
=\log \operatorname{Det}\left(\Delta_{q}^{+}(t)\right)+\log \operatorname{Det}\left(\Delta_{q+1}^{+}(t)\right) \\
=\log \operatorname{Det}\left(\Delta_{q-1}^{-}(t)\right)+\log \operatorname{Det}\left(\Delta_{q}^{-}(t)\right)
\end{gathered}
$$

we get

$$
T_{0}(M, \varphi)(t)=\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q} \log \operatorname{Det}\left(\Delta_{q}^{-}(t)\right)
$$

$$
\begin{equation*}
=-\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q} \log \operatorname{Det}\left(\Delta_{q}^{+}(t)\right) . \tag{2}
\end{equation*}
$$

If we denote by $*$ the Hodge operator on M_{φ}, then one can check that

$$
\begin{gathered}
\Delta_{q}^{+}(t) *=\left(d(t)+t \pi^{*} d \theta\right)\left(d(t)^{*}+t\left(\pi^{*} d \theta\right)^{*}\right) * \\
=*\left(d(t)^{*}-t\left(\pi^{*} d \theta\right)^{*}\right)\left(d(t)-t\left(\pi^{*} d \theta\right)\right) \\
=* \Delta_{n+1-q}^{-}(-t) .
\end{gathered}
$$

Hence $\Delta_{q}^{+}(t)$ and $\Delta_{n+1-q}^{-}(-t)$ are isospectral. From $\Phi: M_{\varphi} \rightarrow M_{\varphi^{-1}}$ defined by $[x, t] \mapsto[x, 1-t]$, one can check that $\Delta_{q}^{ \pm}(-t) \circ \Phi^{*}=$ $\Phi^{*} \circ \tilde{\Delta}_{q}^{ \pm}(t)$ and $\Delta_{q}^{ \pm}(-t)$ and $\tilde{\Delta}_{q}^{ \pm}(t)$ are isospectral. Hence $\Delta_{q}^{+}(t)$ and $\tilde{\Delta}_{n+1-q}^{-}(t)$ are also isospectral. From the equation (2),

$$
T_{0}(M, \varphi)(t)=-\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q} \log \operatorname{Det}\left(\Delta_{q}^{+}(t)\right)
$$

$$
\begin{gathered}
=-\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q} \log \operatorname{Det}\left(\tilde{\Delta}_{n+1-q}^{-}(t)\right) \\
=(-1)^{n} \frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q} \log \operatorname{Det}\left(\tilde{\Delta}_{q}^{-}(t)\right)=(-1)^{n} T_{0}\left(M, \varphi^{-1}\right)(t) .
\end{gathered}
$$

Hence the statements (1) and (2) of the Theorem 1 are proved.
From now on we assume that the dimension of M is even. Suppose that

$$
\begin{gathered}
T(M, \varphi)(t)=\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \log \operatorname{Det}\left(\Delta_{q}(t)\right) \sim \\
\sum_{j=0}^{\infty} c_{j} t^{n+1-j}+\sum_{j=0}^{n+1} d_{j} t^{n+1-j} \log t
\end{gathered}
$$

as $t \rightarrow \infty$. Then

$$
\begin{gathered}
c_{j}= \\
\left.\frac{1}{2} \sum_{j=0}^{n+1}(-1)^{q+1} \cdot q \cdot \frac{d}{d s}\right|_{s=0} \sum_{l, k} \int_{M_{\varphi}} \rho_{l}(x) \eta_{k}(\theta) J_{j}^{q}(s, x, \theta) \operatorname{dvol}\left(M \times S^{1}\right) \\
=\left.\frac{1}{2} \sum_{q=0}^{n+1}(-1)^{q+1} \cdot q \cdot \frac{d}{d s}\right|_{s=0} \sum_{l} \\
\left(\sum_{k \neq 1} \int_{V_{k}} \eta_{k} \int_{U_{l}} \rho_{l} J_{j}^{q} d v o l(M) \operatorname{dvol}\left(S^{1}\right)+\right. \\
\left.\int_{V_{1}} \eta_{1} \int_{U_{l}} \rho_{l} J_{j}^{q} d v o l(M) \operatorname{dvol}\left(S^{1}\right)\right)
\end{gathered}
$$

If $k \neq 1$, on $V_{k} \times S^{1} J_{j}^{q}(s, x, \theta)$ comes from the product metric and so it does not depend on θ. Hence

$$
c_{j}=\frac{1}{2} \chi(M) \delta_{n j}\left(\int_{S^{1}} \sum_{k \neq 1} \eta_{k}(\theta) d \theta\right)+C\left(\varphi^{*} g, g\right)
$$

From the same argument on $M_{\varphi^{-1}}$,

$$
c_{j}=\frac{1}{2} \chi(M) \delta_{n j}\left(\int_{S^{1}} \sum_{k \neq 2} \eta_{k}(\theta) d \theta\right)+C\left(g, \varphi^{*} g\right)
$$

From (1), we know that

$$
C\left(\varphi^{*} g, g\right)+C\left(g, \varphi^{*} g\right)=\frac{1}{2} \chi(M) \delta_{n j}\left(\int_{S^{1}} \eta_{1}(\theta) d \theta+\int_{S^{1}} \eta_{2}(\theta) d \theta\right) .
$$

Therefore

$$
c_{j}=\frac{1}{2} \chi(M) \delta_{n j}
$$

We can use the same argument to show that $d_{j}=0$.
Remark. This is a weak result of J. Marcsik (cf. [Ma]) but the method is more elementary. In fact, he proved that on a general orientable mapping torus $M_{\varphi}, T(M, \varphi)(t)=\frac{1}{2} \chi(M) t+\sum_{n=1}^{\infty} \frac{L\left(\varphi^{n}\right) e^{-n t}}{n}$ for $t \gg 0$, where $L\left(\varphi^{n}\right)$ is the Lefschetz number of φ^{n}.

References

[BFK] D.Burghelea, L.Friedlander, T.Kappeler, Mayer-Vietoris type formula for determinants of elliptic differential operators, J. of Funct. Anal 107 (1992), 34-65.
[CFKS] H.L.Cycon, R.G. Froese, W.Kirsch, B.Simon, Schrodinger operators with applications to quantum mechanics and global geometry, Springer-Verlag, 1987, p. 217-237.
[Gi] P.Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theory, Publish or perish, 1984.
[Ma] J.Marcsik, Analytic torsion and closed one form, preprint (1995).
[RS] D.Ray, I.Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210.
[Se] R.Seeley, Complex powers of elliptic operators, Proceedings of Symposia on Singular Integrals, Amer. Math. Soc., RI. (1967 vol 10), 288-307.
[Vo] A.Voros, Spectral functions, special functions and Selberg zeta function, Comm. Math. Phys. 110 (1987), 439-465.

Department of Mathematics
Inha University
Inchon 402-751, Korea
E-mail: ywlee@math.inha.ac.kr

