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MAPPING TORUS AND THE
ASYMPTOTIC EXPANSION OF log T (M,ϕ)(t)

Yoonweon Lee

Abstract. In this paper we define a torsion function log T (M, ϕ)(t)

for t� 0 and show that it has an asymptotic expansion 1
2
χ(M)t as

t→∞.

1. Introduction

Let (M, g) be a closed oriented Riemannian manifold of dimension
n. Given an orientation-preserving diffeomorphism ϕ : M → M , we

define a mapping torus Mϕ by Mϕ = M × I
/

(x, 1) ∼ (ϕ(x), 0), where

I = [0, 1]. Then Mϕ is a fiber bundle over S1 and each fiber bundle
over S1 can be obtained in this way.

Let π : Mϕ → S1 be the natural projection and denote by dθ the
1-form on S1 with

∫
S1 dθ = 1. Choose a Riemannian metric g1 on Mϕ.

We define for t > 0

dq(t) : Ωq(Mϕ) → Ωq+1(Mϕ)

dq(t) = dq + tπ∗dθ∧,

where Ωq(Mϕ) is the set of smooth q-forms on Mϕ and dq is the ex-
terior differential operator. Since dq(t)dq−1(t) = 0, we can define the
cohomology associated to dq(t) by

Hq(Mϕ, dq(t),R) = kerdq(t)
/
Imdq−1(t).
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We also define the Laplacian ∆q(t) associated to dq(t) by ∆q(t) =
dq(t)∗dq(t) + dq−1(t)dq−1(t)∗, where dq(t)∗ is the adjoint of dq(t) with
respect to the given metric g1 on Mϕ. Then ∆q(t) = ∆q + tA +
t2‖π∗dθ‖2, where A is a zero order operator and ∆q is the usual Lapla-
cian acting on Ωq(Mϕ). It is a known fact (cf. [CFKS]) that ∆q(t) does
not have a zero eigenvalue for sufficiently large t > 0 and hence ∆q(t)
is a positive definite elliptic differential operator for t large enough. By
Hodge theorem

Hq(Mϕ, dq(t),R) = ker∆q(t) = 0.

We define the torsion function T0(M,ϕ, g1)(t) for t� 0 by

T0(M,ϕ, g1)(t) =
1
2

n+1∑
q=0

(−1)q+1 · q · logDet(∆q(t)).

Since Hq(Mϕ, dq(t),R) = 0 for t� 0, T0(M,ϕ, g1)(t) does not depend
on the choice of a Riemannian metric g1 on Mϕ (cf. [RS]). Hence we
can write T0(M,ϕ)(t) rather than T0(M,ϕ, g1)(t). In this paper we are
going to prove the following theorem.

Theorem 1. Define T (M,ϕ)(t) = 1
2 (T0(M,ϕ)(t)+T0(M,ϕ−1)(t)).

Then the followings hold.

(1) If dimM is odd, then T0(M,ϕ)(t) = −T0(M,ϕ−1)(t) so that
T (M,ϕ)(t) ≡ 0.

(2) If dimM is even, T (M,ϕ)(t) = T0(M,ϕ)(t) = T0(M,ϕ−1)(t).
(3) T (M,ϕ)(t) ∼ 1

2χ(M)t as t→∞.

(4) If ϕ = Id, T (M,ϕ)(t) = 1
2χ(M)(t+ 2log(1− e−t)).

2. The case of M × S1

If ϕ = Id, then Mϕ = M×S1 and we can choose the product metric
g ⊕ dθ2 on M × S1. Consider π : M × S1 → S1 and d(t) = d+ t

2πdθ,
where dθ is the canonical 1-form on S1, i.e.

∫
S1 dθ = 2π.

Then one can show that ∆q(t) = ∆M×S1

q + t2

4π2 Id, where ∆M×S1

q is
the usual Laplacian acting on Ωq(M ×S1). Set λ = t2

4π2 and note that

Ωq(M × S1) = C∞(M × S1)Ωq(M)⊗
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Ω0(S1)⊕ C∞(M × S1)Ωq−1(M)⊗ Ω1(S1).

Then
∆q(t) = ∆M×S1

q + λId =(
∆M

q ⊗IdS1+IdM⊗∆S1
0 +λId 0

0 ∆M
q−1⊗IdS1+IdM⊗∆S1

1 +λId

)
.

tre−t∆q(t)

= tr
(
e−t(∆

M
q ⊗IdS1+IdM⊗∆S1

0 +λId) + e−t(∆
M
q−1⊗IdS1+IdM⊗∆S1

1 +λId)
)

= e−λt
(
tre−t∆

M
q ⊗ e−t∆

S1
0 + tre−t∆

M
q−1 ⊗ e−t∆

S1
1

)
= e−λt

(
tre−t∆

M
q · tre−t∆

S1
0 + tre−t∆

M
q−1 · tre−t∆

S1
1

)
= e−λttre−t∆

S1
0

(
tre−t∆

M
q + tre−t∆

M
q−1

)
,

since ∆S1

0 and ∆S1

1 are isospectral.
Now

1
2

n+1∑
q=0

(−1)q+1 · q · trexp
(
−t(∆M×S1

q + λId)
)

=
1
2
e−λttre−t∆

S1
0

n+1∑
q=0

(−1)q+1 · q · (tre−t∆
M
q + tre−t∆

M
q−1)

=
1
2
e−λttre−t∆

S1
0

n∑
q=0

(−1)qtre−t∆
M
q .

Since
∑n
q=0(−1)qtre−t∆

M
q is equal to χ(M), the Euler characteristic

of M (cf. [Gi]), we get

1
2

n+1∑
q=0

(−1)q+1 · q · trexp
(
−t(∆M×S1

q + λId)
)

=

1
2
χ(M)trexp

(
−t(∆S1

0 + λId)
)
.



20 Yoonweon Lee

Define Zq(s) =
∑
µ µ

−s, where µ runs over the eigenvalues of
∆M×S1

q + λId. Then Zq(s) is holomorphic for Res > n+1
2 and it has a

meromorphic continuation to the whole complex plane with a regular
value at 0 (cf. [Se]). Then

T (M × S1) =
1
2

n+1∑
q=0

(−1)q+1 · q · logDet(∆M×S1

q + λId)

= −1
2

n+1∑
q=0

(−1)q+1 · q · Z ′q(0).

By Melline transformation

1
2

n+1∑
q=0

(−1)q+1 ·q ·Zq(s) =
1

Γ(s)

∫ ∞

0

ts−1 1
2
χ(M)trexp(−t(∆S1

0 +λId))dt

=
1
2
χ(M){λ−s + 2

∞∑
n=1

(λ+ n2)−s}.

T (M × S1) = −1
2
χ(M){−logλ+ 2

d

dt
|s=0

∞∑
n=1

(λ+ n2)−s}.

From [Vo] we get

d

dt
|s=0

∞∑
n=1

(λ+ n2)−s = −log

(
e−2ζ′(0) sin(π

√
λi)

π
√
λi

)
,

where ζ(s) is the Riemann zeta function. Since ζ ′(0) = −log
√

2π,

d

dt
|s=0

∞∑
n=1

(λ+ n2)−s = −π
√
λ− log(1− e−2π

√
λ) +

1
2
logλ.

Therefore

T (M × S1) =
1
2
χ(M){2π

√
λ+ 2log(1− e−2π

√
λ)}.

Setting λ = t2

4π2 , we get

T (M × S1)(t) =
1
2
χ(M)(t+ 2log(1− e−t)).
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3. The case of a general mapping torus

Let ϕ : M → M be an orientation preserving diffeomorphism of M
and dθ be a 1-form on S1 with

∫
S1 dθ = 1. Consider the fiber bundle

M →Mϕ
π−→ S1 with d(t) = d+ tπ∗dθ.

Let {Uk} be an atlas of Mϕ and {ρk} be a partition of unity subordi-
nate to {Uk}. Suppose that σ(µ−∆q(t))−1 ∼

∑∞
j=0 r−2−j(µ, t, x, ξ) on

each Uk, where r−2−j is the homogeneous component of the asymptotic
symbol of (µ−∆q(t))−1 on Uk. Set

Jqj (s, x) =
1

2πi

∫
Rn+1

dξ

∫
γ

µ−sr−2−j(µ, 1, x, ξ)dµ,

where γ is a contour enclosing all the eigenvalues of ∆q(t), i.e. for
sufficiently small ε > 0,

γ = {ueiπ|∞ > u ≥ ε} ∪ {εeiψ|π ≥ ψ ≥ −π} ∪ {ue−iπ|ε ≤ u <∞}.

Set
πj =

1
(2π)n+1

d

ds
|s=0

∑
k

∫
Mϕ

Jqj (s, x)ρk(x)dvol(x),

and
qj =

1
(2π)n+1

∑
k

∫
Mϕ

Jqj (0, x)ρk(x)dvol(x).

Then from the appendix of [BFK] we get the following theorem.

Theorem 2.

logDet(∆q(t)) ∼
∞∑
j=0

πjt
n+1−j +

n+1∑
j=0

qjt
n+1−j logt

as t→ +∞.

Let us consider M ×S1 with the product metric g⊕ dθ2, where g is
a Riemannian metric on M and dθ2 is the normalized canonical metric
on S1 with

∫
S1 dθ = 1. Let {Uk} be an atlas of M and {ρk} be a

partition of unity subordinate to {Uk}. Then ∆q(t) = ∆M×S1

q + t2Id
and from Theorem 2 and the statement (4) of Theorem 1 we get
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1
2

n+1∑
q=0

(−1)q+1 · q · logDet(∆q(t)) ∼
∞∑
j=0

cjt
n+1−j +

n+1∑
j=0

djt
n+1−j logt

=
1
2
χ(M)t

as t→∞ for some constants cj ’s and dj ’s. Hence each dj = 0 and

cj =
1
2

n+1∑
q=0

(−1)q+1 · q · 1
(2π)n+1

d

ds
|s=0

∑
k

∫
M×S1

Jqj (s, x, θ)ρk(x)dvol(M × S1)

=
1
2

n+1∑
q=0

(−1)q+1 · q · 1
(2π)n+1

d

ds
|s=0

∑
k

∫
M

Jqj (s, x)ρk(x)dvol(M)

=
1
2
χ(M)δnj ,

since Jqj does not depend on S1-variable θ.
Now let us denote S1 = [0, 1]/0 ∼ 1 and let V1 = ( 1

5 ,
2
5 ), V2 = (3

5 ,
4
5 ),

V3 = [0, 1
5 +ε)∪( 4

5−ε, 1], V4 = (2
5−ε,

3
5 +ε) for sufficiently small ε > 0.

Let {ηk}1≤k≤4 be a partition of unity subordinate to {Vk}1≤k≤4. We
denote by g1, g2 Riemannian metrics on M . Choose a nondecreasing
function ω(r) on R such that ω(r) = 0 for r ≤ 0, 1 for r ≥ 1 and ω(r)
is symmetric to the line r = 1

2 .
Set ω1(r) = ω(5r − 1) and ω2(r) = ω(5r − 3). We define a new

metric G(r, θ) on M × S1 as follows.

G(r, θ) =



g1 ⊕ dθ2, for 0 ≤ θ ≤ 1
5

((1− ω1(θ))g1 + ω1(θ)g2)⊕ dθ2, for 1
5 ≤ θ ≤ 2

5

g2 ⊕ dθ2, for 2
5 ≤ θ ≤ 3

5

((1− ω2(θ))g2 + ω2(θ)g1)⊕ dθ2, for 3
5 ≤ θ ≤ 4

5

g1 ⊕ dθ2, for 4
5 ≤ θ ≤ 1.
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Then

cj =
1
2

n+1∑
q=0

(−1)q+1 · q ·
∑
l,k

d

ds
|s=0

1
(2π)n+1

∫
M×S1

ρl(x)ηk(θ)J
q
j (s, x, θ)dvol(M × S1)

=
1
2
χ(M)δnj .

Note that Jj(s, x, θ) coming from the product metric of the form g⊕dθ2
does not depend on the S1-variable θ.

cj =
1
2

n+1∑
q=0

(−1)q+1 · q ·
∑
l

∑
k 6=1,2

d

ds
|s=0

1
(2π)n+1

∫
M×S1

ρl(x)ηk(θ)J
q
j (s, x, θ)dvol(M × S1)

+
1
2

n+1∑
q=0

(−1)q+1 · q ·
∑
l

d

ds
|s=0

1
(2π)n+1

×

(∫
M×S1

ρl(x)η1(θ)J
q
j dvol(M × S1)+

∫
M×S1

ρl(x)η2(θ)J
q
j dvol(M × S1)

)

=

∑
k

k 6=1,2

∫
S1
ηk(θ)dθ

 · 1
2
·
n+1∑
q=0

(−1)q+1 · q ·
∑
l

d

ds
|s=0

1
(2π)n+1

∫
M

ρl(x)J
q
j dvol(M) + C(g1, g2) + C(g2, g1)

=
1
2
χ(M)δnj

∑
k

k 6=1,2

∫
S1
ηk(θ)dθ

+ C(g1, g2) + C(g2, g1).
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Here

C(g1, g2) =
1
2

n+1∑
q=0

(−1)q+1 · q ·
∑
l

d

ds
|s=0

1
(2π)n+1∫

M×S1
ρl(x)η1(θ)J

q
j dvol(M × S1),

C(g2, g1) =
1
2

n+1∑
q=0

(−1)q+1 · q ·
∑
l

d

ds
|s=0

1
(2π)n+1∫

M×S1
ρl(x)η2(θ)J

q
j dvol(M × S1).

Hence

1
2
χ(M)δnj =

1
2
χ(M)δnj

∑
k

k 6=1,2

∫
S1
ηk(θ)dθ

+ C(g1, g2) + C(g2, g1).

Since
∑4
k=1

∫
S1 ηk(θ)dθ = 1,

(1) C(g1, g2) + C(g2, g1) =
1
2
χ(M)δnj

(∫
S1
η1(θ)dθ +

∫
S1
η2(θ)dθ

)
.

Now we consider a general mapping torus. Let (M, g) be an oriented
Riemannian manifold and ϕ : M → M be an orientation preserving
diffeomorphism. Then ϕ is an isometry from (M,ϕ∗g) to (M, g). Note
that

Mϕ−1 = M × I/(x, 1) ∼ (ϕ−1(x), 0) = M × I/(x, 0) ∼ (ϕ(x), 1).

Define Φ : Mϕ →Mϕ−1 by [x, t] 7→ [x, 1− t]. We give metrics G1(x, θ)
and G2(x, θ) on Mϕ and Mϕ−1 respectively as follows.

G1(x, θ) =


ϕ∗g ⊕ dθ2, for 0 ≤ θ ≤ 1

5

((1− ω1(θ))ϕ∗g + ω1(θ)g)⊕ dθ2, for 1
5 ≤ θ ≤ 2

5

g ⊕ dθ2, for 2
5 ≤ θ ≤ 1.

G2(x, θ) =


g ⊕ dθ2, for 0 ≤ θ ≤ 3

5

((1− ω2(θ))g + ω2(θ)ϕ∗g)⊕ dθ2, for 3
5 ≤ θ ≤ 4

5

ϕ∗g ⊕ dθ2, for 4
5 ≤ θ ≤ 1.

Then Φ is an (orientation-reversing) isometry from (Mϕ, G1) to
(Mϕ−1 , G2).
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Lemma 3. T0(M,ϕ)(t) = (−1)nT0(M,ϕ−1)(t) for t � 0, where n
is the dimension of M .

Proof. Denote by ∆q(t), ∆̃q(t) the Laplacians on (Mϕ, G1) and
(Mϕ−1 , G2) respectively. By Hodge theorem

Ωq(Mϕ) = Imdq−1(t)⊕ Imdq(t)∗ = Ωq+(Mϕ)⊕ Ωq−(Mϕ),

where Ωq+(Mϕ) = Imdq−1(t) and Ωq−(Mϕ) = Imdq(t)∗. Let ∆±
q (t)

be the Laplacians acting on Ωq±(Mϕ) respectively. Then from the fact
that

logDet(∆q(t)) = logDet(∆+
q (t)) + logDet(∆−

q (t))

= logDet(∆+
q (t)) + logDet(∆+

q+1(t))

= logDet(∆−
q−1(t)) + logDet(∆−

q (t)),

we get

T0(M,ϕ)(t) =
1
2

n+1∑
q=0

(−1)qlogDet(∆−
q (t))

(2) = −1
2

n+1∑
q=0

(−1)qlogDet(∆+
q (t)).

If we denote by ∗ the Hodge operator on Mϕ, then one can check that

∆+
q (t)∗ = (d(t) + tπ∗dθ)(d(t)∗ + t(π∗dθ)∗)∗

= ∗(d(t)∗ − t(π∗dθ)∗)(d(t)− t(π∗dθ))

= ∗∆−
n+1−q(−t).

Hence ∆+
q (t) and ∆−

n+1−q(−t) are isospectral. From Φ : Mϕ → Mϕ−1

defined by [x, t] 7→ [x, 1 − t], one can check that ∆±
q (−t) ◦ Φ∗ =

Φ∗ ◦ ∆̃±
q (t) and ∆±

q (−t) and ∆̃±
q (t) are isospectral. Hence ∆+

q (t) and
∆̃−
n+1−q(t) are also isospectral. From the equation (2),

T0(M,ϕ)(t) = −1
2

n+1∑
q=0

(−1)qlogDet(∆+
q (t))
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= −1
2

n+1∑
q=0

(−1)qlogDet(∆̃−
n+1−q(t))

= (−1)n
1
2

n+1∑
q=0

(−1)qlogDet(∆̃−
q (t)) = (−1)nT0(M,ϕ−1)(t).

Hence the statements (1) and (2) of the Theorem 1 are proved. � �

From now on we assume that the dimension of M is even. Suppose
that

T (M,ϕ)(t) =
1
2

n+1∑
q=0

(−1)q+1 · q · logDet(∆q(t)) ∼

∞∑
j=0

cjt
n+1−j +

n+1∑
j=0

djt
n+1−j logt

as t→∞. Then
cj =

1
2

n+1∑
j=0

(−1)q+1 · q · d
ds

|s=0

∑
l,k

∫
Mϕ

ρl(x)ηk(θ)J
q
j (s, x, θ)dvol(M × S1)

=
1
2

n+1∑
q=0

(−1)q+1 · q · d
ds

|s=0

∑
l∑

k 6=1

∫
Vk

ηk

∫
Ul

ρlJ
q
j dvol(M)dvol(S1)+

∫
V1

η1

∫
Ul

ρlJ
q
j dvol(M)dvol(S1)

)
.

If k 6= 1, on Vk × S1 Jqj (s, x, θ) comes from the product metric and so
it does not depend on θ. Hence

cj =
1
2
χ(M)δnj

∫
S1

∑
k 6=1

ηk(θ)dθ

+ C(ϕ∗g, g).
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From the same argument on Mϕ−1 ,

cj =
1
2
χ(M)δnj

∫
S1

∑
k 6=2

ηk(θ)dθ

+ C(g, ϕ∗g).

From (1), we know that

C(ϕ∗g, g) + C(g, ϕ∗g) =
1
2
χ(M)δnj

(∫
S1
η1(θ)dθ +

∫
S1
η2(θ)dθ

)
.

Therefore
cj =

1
2
χ(M)δnj .

We can use the same argument to show that dj = 0.

Remark. This is a weak result of J. Marcsik (cf. [Ma]) but the
method is more elementary. In fact, he proved that on a general ori-
entable mapping torus Mϕ, T (M,ϕ)(t) = 1

2χ(M)t +
∑∞
n=1

L(ϕn)e−nt

n
for t� 0, where L(ϕn) is the Lefschetz number of ϕn.
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