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MAPPING TORUS AND THE
ASYMPTOTIC EXPANSION OF logT(M, ¢)(t)

YOONWEON LEE

ABSTRACT. In this paper we define a torsion function log T'(M, ) ()}
for t > 0 and show that it has an asymptotic expansion %x(M)t as
t — oo.

1. Introduction

Let (M, g) be a closed oriented Riemannian manifold of dimension
n. Given an orientation-preserving diffeomorphism ¢ : M — M, we

define a mapping torus M, by M, =M x I / (z,1) ~ (¢(x),0), where

I =1[0,1]. Then M, is a fiber bundle over S* and each fiber bundle
over S! can be obtained in this way.

Let m : M, — S' be the natural projection and denote by df the
1-form on S* with f g1 df = 1. Choose a Riemannian metric g; on M.,.
We define for ¢t > 0

dq(t) : Q1(M,) — Qq+1(M<p)
dy(t) = dg + tm™doA,

where Q9(M,,) is the set of smooth g-forms on M, and d, is the ex-
terior differential operator. Since dy(t)d,—1(t) = 0, we can define the
cohomology associated to d,(t) by

HY(M,,d,(t),R) = kerdq(t)/lmdq_l(t).
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We also define the Laplacian A, (t) associated to d,(t) by A,(t) =
dq(t)*dg(t) + dg—1(t)dg—1(t)*, where d,(t)* is the adjoint of d,(¢) with
respect to the given metric g1 on M,. Then Ay (t) = A, +tA +
t?||7*df||?, where A is a zero order operator and A, is the usual Lapla-
cian acting on Q9(M,,). It is a known fact (cf. [CFKS]) that A,(t) does
not have a zero eigenvalue for sufficiently large ¢ > 0 and hence A, (%)
is a positive definite elliptic differential operator for ¢ large enough. By
Hodge theorem

HY(M,,d4(t),R) = kerAy(t) = 0.
We define the torsion function To(M, ¢, g1)(t) for t > 0 by

n+1
1
To(M, i, 91)(t) = 5 > _(=1)" - g logDet(Aq(t)).
q=0
Since HY(M,,dq(t),R) =0 for t > 0, Ty(M, ¢, g1)(t) does not depend
on the choice of a Riemannian metric g; on M, (cf. [RS]). Hence we
can write To(M, ¢)(t) rather than To(M, ¢, g1)(t). In this paper we are
going to prove the following theorem.
THEOREM 1. Define T(M, ¢)(t) = 5 (To(M, @) (t) + To(M, 1) (t)).
Then the followings hold.
(1) If dimM is odd, then Ty(M,)(t) = —To(M, o~ 1)(t) so that
T(M,p)(t) =0.
(2) If dimM is even, T(M, )(t) = To(M, @) (t) = To(M,p~1)(t).
(3) T(M,)(t) ~ Ax(M)t as t — oo.
(4) If = 1d, T(M, p)(t) = b (M) (¢ + 2log(1 — e1)).

2. The case of M x S!

If ¢ = Id, then M, = M x S and we can choose the product metric
g®dh* on M x S*. Consider 7 : M x ST — S' and d(t) = d + =db,
where df is the canonical 1-form on S!, i.e. fsl df = 2m.

Then one can show that A, (t) = Aé‘/[XSl + %Id, where Aé“'xsl is

the usual Laplacian acting on Q4(M x S1). Set A = £ and note that

472

QUM x St) = C®°(M x SHQI(M)®



Mapping torus and the asymptotic expansion 19

QV(SH @ C™°(M x SHQ (M) ® Q' (SY).

Then
1
Ag(t) = AN 4 NId =
AM@Tdg +Idy@AS +AId 0
1 .
0 AV @Idg1+1dy AT +X1d
tre—tAa(t)

1 1
— 4y <€—t(A34®Idsl +I1dy @A +MId) i o tAM  @Idg1+1dy @AT +>\Id)>
_ _tAM _iASt i AM YNE
_ (tre 18, 2 e AT | et g oA >
. U AM a8t U AM a8t
= e M (t'r’e B tre B0 4 treTtPa1 L tre AT >

_ _ast _AM G AM
= e Mtre A0 (tre 12 ftre tArl),

. 1 1 )
since A5 and Ay are isospectral.

Now "
1 n
3 Z(—l)‘”l - q - trexp (—t(AéVIXSl + AId))
q=0
L ey —tast — +1 —tAM —tAM
= 5e tre” "o Z(—l)q -q - (tre”""a Htre” 1)
q=0

1 IR
= 567’\%7’6*’5&? 2)(—1)qtreméw.
=

Since ZZ:O(—I)qtre_tAéw is equal to x (M), the Euler characteristic
of M (cf. [Gi]), we get

1 n+1

3 Z<_1)q+1 -q-trexp <—t(Aé‘4XSl + )Jd)) =
q=0

1 1
5x(M)tremp (—t(Ag + )Jd)) .



20 Yoonweon Lee

Define Zy(s) = >, p % where p runs over the eigenvalues of

Aflwxsl + AId. Then Z,(s) is holomorphic for Res > "+ and it has a
meromorphic continuation to the whole complex plane with a regular
value at 0 (cf. [Se]). Then

n+1
1
T(M x §') = 3 S (=1)7 g - logDet(AM*5" 4 AId)

q=0
1 n+1
=3 D (1) g Zy(0).
q=0

By Melline transformation

1R 1 [~ 1 .
S gz (s) = F(s)/ 7 X (M)treap(—H(AF +AId))dr
q=0 0

= XD +23 (0?7},

1 d oo
1\ 2\—s
T(M x §') = =5 x(M){~logh + 2 |s=o n§:1(A +n2)7°).
From [Vo] we get

d = _ et (o SI(TVAD)
— |s= A4n?) "¢ = —log [ e 20O 2220
dt | 0 nz::l( ) g ( W\/Xi

where ((s) is the Riemann zeta function. Since ¢’(0) = —logv/2m,
d S 2\— —2mv/X 1
— | s . 1— T - )
o ls=0 ng_l()\ +n”) ™V —log(1 —e )+ 2log)\

Therefore
1
T(M x S') = 5X(M){27r\/X+ 2log(1 — e 2™V},
Setting A = %, we get

T(M x §')(t) = 5 X(M)(t + 2log(1 — ¢ ™).
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3. The case of a general mapping torus

Let ¢ : M — M be an orientation preserving diffeomorphism of M
and df be a 1-form on S! with f g1 df = 1. Consider the fiber bundle
M — M, = S with d(t) = d + tx*d.

Let {Uj} be an atlas of M, and {py, } be a partition of unity subordi-
nate to {Uy}. Suppose that o(p—A, ()~ ~ Z;‘;O r_o_j(p,t,z,&) on
each Uy, where r_o_; is the homogeneous component of the asymptotic
symbol of (u— A, (¢))~! on Uy. Set

1 —s
qu(s,x) = % /Rn+1 df/y,u 7"727]'(/% 17x7€)dua

where v is a contour enclosing all the eigenvalues of Ay(t), i.e. for
sufficiently small € > 0,

v = {ue™ oo > u > e} U{ee™|r > 1p > —7m} U {ue e < u < 00}

Set
1

d
™ = Gy 0 2 /m T2 (s, @) pi () dvol (x),

and

1 q
q; = @n) 1 %:/Mso Ji(0, ) py(z)dvol(z).

Then from the appendix of [BFK] we get the following theorem.
THEOREM 2.

oo} n+1
logDet(Ag4(t)) ~ ijt”+1_j + Z q;it" T I logt
j=0 §=0

ast — +oo.

Let us consider M x S* with the product metric g ® df?, where g is
a Riemannian metric on M and df? is the normalized canonical metric
on S' with [o, d0 = 1. Let {U} be an atlas of M and {pi} be a
partition of unity subordinate to {Uy}. Then A, (t) = Aé\/‘lxsl + t1d
and from Theorem 2 and the statement (4) of Theorem 1 we get
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n+1 le’e) n+1
1 1 N
B g (=1)7" . g logDet(A,(t)) ~ g c;t" T 4 g d;t" 1 ogt
q=0 Jj=0 J=0
1
— Sy (M)t
5 X(M)

as t — oo for some constants c¢;’s and d;’s. Hence each d; = 0 and
n+1

1 d
- _1yetl ., - =
¢ =5 (=) g (27)"+1 ds [s=0

q=0

Z/stl Ji(s,2,0)pr(x)dvol (M x 1)

k
1n§+jl< pettg L4y os / J2(s, 2)pi () dvol(M)
_ = _ .q- — |sz (s, o x)dvo
2q:0 e (2m)nt+l ds 0 —~ Jm J Pl
1

since J J‘? does not depend on S'-variable .

Now let us denote S = [0,1]/0 ~ 1 and let V; = (1, 2), Vo = (£, %),
Vs =1[0,2+€)U(2—¢1], Vi = (2—¢ 2 +e¢) for sufficiently small € > 0.
Let {nr}1<k<a be a partition of unity subordinate to {Vj}1<x<a. We
denote by g1, go Riemannian metrics on M. Choose a nondecreasing
function w(r) on R such that w(r) =0 for r < 0, 1 for r > 1 and w(r)

is symmetric to the line r = %

Set w1(r) = w(br — 1) and wa(r) = w(br — 3). We define a new
metric G(r,0) on M x S! as follows.

(g1 @ db?, for0 <6< 3

(1 —wi(0))g1 +w1(8)g2) ® db?, for L <6 <2

G(r,0) = ¢ g2 @ db?, for 2 <0<
((1 — CUQ(H))QQ +(.U2(8)gl) D d92, for g S 0 S %

[ g1 D db?, for £ <6<1
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Then
1 n+1

¢; = 22 q+1 q- Zd_|3 0 n+1

q=0

/M - pi()ni(0)J7 (s, 2, 0)dvol (M x S*)

1
= §X (M)dy;
Note that J; (s, x,6) coming from the product metric of the form g&d6?

does not depend on the S'-variable 6.

n+1
G=3 30 e DY A
q=0 I k#1,2

/M 51p( )i (0)J7 (s, x, 0)dvol (M x s

n+1

1
Ja+t
</ pi(x)n1(0) ] dvol (M x SH+
MxS1t

/ pi(2)n2(0)J] dvol (M x Sl))
MxS?t

n+1
[ o) 3 S s

q=0
k#£1,2

| @) avol(3) + Clor. ) + o)

= —x(M)d,; Z /sl nk(0)do | + C(g1,92) + C(g2,91)-

k#1,2
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Here
1 n+1
C(g1,g2)=§z Hatt.q- Zd |s=0 @yt
q=0
/ p1(z)m (0) T dvol(M x 5%,
MxS1t
1 n+1
Clg92,01) = 52 1att.q- Zd_ |s=0 (@)t
q=0
/ pi()n2(0)J dvol (M x Sh.
MxS1t
Hence
1 1
§X(M)6Tbj = §X(M)5nj Z /51 nk(0)d0 | + C(g1,92) + C(g2,91)
k

k#1,2
Since S%_, Js i (6)dO = 1,

(1) C(g1,92) +C(g2,91) = %X(M)dnj (/31 n1(0)do + /sl 772(9)d9) :

Now we consider a general mapping torus. Let (M, g) be an oriented
Riemannian manifold and ¢ : M — M be an orientation preserving
diffeomorphism. Then ¢ is an isometry from (M, ¢*g) to (M, g). Note
that

My =M xI/(z,1) ~ (¢~ (2),0) = M x I/(z,0) ~ (p(z),1).

Define ® : M, — M1 by [z,t] — [z,1 —t]. We give metrics G1(z,0)
and Ga(x,0) on M, and M -1 respectively as follows.

((0*g ® db?, for0<@ <1
Gi(z,0) = ¢ (1 —wi(0)p* g +wi(0)g) & db?, for + <0 <2
\g@déﬂ, for%ﬁ@ﬁl.
(g @ dh?, for0<g <2
Ga(x,0) = ¢ (1 —wa(f))g + wa(B)p*g) ®dO?, for 2 <6< 3
[ p*g @ db?, for%§9§1.
Then @ is an (orientation-reversing) isometry from (M,,G1) to

(M1, Ga).
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LEMMA 3. To(M,p)(t) = (=1)"To(M, 1) (t) for t > 0, where n
is the dimension of M.

Proof. Denote by A,(t), A,(t) the Laplacians on (M, G1) and
(M,-1,G3) respectively. By Hodge theorem

QM) = Imdy—1(t) & Imdy(t)" = Q5 (M) & Q7 (M),

where Q% (M) = Imdg_1(t) and Q7 (M,) = Imdg(t)*. Let AF(t)
be the Laplacians acting on Q% (M,,) respectively. Then from the fact
that
logDet(Ay(t)) = logDet(Af (t)) + logDet(A; (t))
= logDet(AF (t)) + logDet(AL, (t))

= logDet(A, (1)) + logDet(A (t)),

we get
n+1
To(M, )(t) = 5 3 (~1)logDet(A; (1)
q=0
1 n+1
(2) =—3 > (~1)%logDet(A[ (t)).
q=0

If we denote by * the Hodge operator on M, then one can check that

+ _ * * * *

Ay (t)* = (d(t) +tr*dO)(d(t)" + t(m"db)" )x
= *(d(t)" — t(7*dh)*)(d(t) — t(7*dP))
= *A;Ll_q(—t).

Hence Af(t) and A, (—t) are isospectral. From ® : M, — M,
defined by [z,t] + [z,1 — ], one can check that AF(—t) o &* =
(I~>* o Aflt (t) and AF(—t) and A;‘E (t) are isospectral. Hence Af(t) and
A, 11 ,(t) are also isospectral. From the equation (2),

1 n+1

To(M,0)(t) = 5 S (~1)og Det(A (1)
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n—|—1
__Z 1)%log Det(A nt1—q(t))

= (=1)"5 Y _(=1)%ogDet(A; (1)) = (=1)"To(M, ™ 1)(?).

Hence the statements (1) and (2) of the Theorem 1 are proved. [0 O

From now on we assume that the dimension of M is even. Suppose

that .
1

T(M,9)(t) = 5 D (=D)T g logDet(Ay(t)) ~

n+1

Zc A t=d g Zd "I ogt

as t — 0o. Then
19 d
3 (0 g o 3 [ )m0)72 s, 0)dol O x 5)

- %Z(—Uqﬂ ¢ s Z

=0

q
> / e / prJ{dvol(M)dvol(S*)+
Vi U,

k#1

/ m / pljgdvoz(M)dvd(Sl)).
Vi U,

Ifk#1,on VxSt Jf(s,m, 0) comes from the product metric and so
it does not depend on 6. Hence

Cj= Onyj /SZW )do | +C(v g, 9).

k#1
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From the same argument on M, -1,

1 *
= 36 | [ S m(0)0 | +Cla.io)
k#£2

From (1), we know that

C(e*g,9) +Clg:¢"g) = %X(M)% </S m (0)do + /S

ng(a)da) .

Therefore )
¢ = §X(M)5nj-

We can use the same argument to show that d; = 0.

REMARK. This is a weak result of J. Marcsik (cf. [Ma]) but the

method is more elementary. In fact, he proved that on a general ori-
n)e—nt

entable mapping torus My, T(M, ¢)(t) = sx(M)t + > 07, L("DT

for t > 0, where L(¢™) is the Lefschetz number of ¢™.
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