POSITIVE SOLUTIONS ON NONLINEAR BIHARMONIC EQUATION

Q-Heung Choi ${ }^{1}$ and Tacksun Jung ${ }^{2}$

Abstract

In this paper we investigate the existence of positive solutions of a nonlinear biharmonic equation under Dirichlet boundary condition in a bounded open set Ω in \mathbf{R}^{n}, i.e.,

$$
\begin{array}{ll}
\Delta^{2} u+c \Delta u=b u^{+}+s & \text { in } \Omega, \\
u=0, \Delta u=0 & \text { on } \partial \Omega .
\end{array}
$$

0. Introduction

Let Ω be a bounded open set in \mathbf{R}^{n} with smooth boundary $\partial \Omega$. In this paper, we shall concern with the nonlinear biharmonic problem

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega \\
& u=0, \Delta u=0 \quad \text { on } \partial \Omega \tag{0.1}
\end{align*}
$$

where $u^{+}=\max \{u, 0\}, c$ is not an eigenvalue of $-\Delta, s \in \mathbf{R}$, and Δ^{2} denotes the biharmonic operator. Throughout this paper, we assume that b is a bounded real number. Equations with nonlinearities of this type have been extensively studied in the context of second order elliptic operators (cf. [6]).

In section 1, we introduce the Banach space spanned by eigenfunctions of $\Delta^{2}+c \Delta$ and investigate properties of it in the Banach space.

In section 2, we study the positive solutions of (0.1) when $\lambda_{1}<c<$ $\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $s>0$.

Received October 16, 1996.
1991 Mathematics Subject Classification: 34C15, 34C25, 35Q72.
Key words and phrases: Weak solution, positive solution, Dirichlet boundary condition, Eigenfunction.
${ }^{1}$ Research supported in part by GARC-KOSEF and Inha University Research Foundation.
${ }^{2}$ Research supported in part by BSRI Program BSRI-96-1436.

1. The Banach space spanned by eigenfunctions

In this section we investigate the multiplicity of solutions of the biharmonic equation under the Dirichlet boundary condition

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega, \\
& u=0, \Delta u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{align*}
$$

where c is not an eigenvalue of $-\triangle, s \in \mathbf{R}$. Here we assume that the nonlinearity $b u^{+}$crosses eigenvalues of $\Delta^{2}+c \triangle$.

Let $\lambda_{k}(k=1,2, \cdots)$ denote the eigenvalues and $\phi_{k}(k=1,2, \cdots)$ the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem

$$
\begin{aligned}
& \Delta u+\lambda u=0 \quad \text { in } \Omega, \\
& u=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

where each eigenvalue λ is repeated as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots, \lambda_{i} \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$.

Hence the eigenvalue problem

$$
\begin{array}{lc}
\Delta^{2} u+c \Delta u=\mu u & \text { in } \Omega, \\
u=0, \Delta u=0 & \text { on } \partial \Omega
\end{array}
$$

has infinitely many eigenvalues

$$
\mu_{k}=\lambda_{k}\left(\lambda_{k}-c\right) \quad k=1,2, \cdots,
$$

and the corresponding eigenfunctions $\phi_{k}(x)$.
The set of functions $\left\{\phi_{k}\right\}$ is an orthonormal base for $L^{2}(\Omega)$. Let us denote an element u, in $L^{2}(\Omega)$, as

$$
u=\Sigma h_{k} \phi_{k}, \quad \Sigma h_{k}^{2}<\infty .
$$

Now we define a subspace H of $L^{2}(\Omega)$, which will contain all solutions of equation (1.1), as follows

$$
H=\left\{u \in L^{2}(\Omega): \Sigma\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}<\infty\right\} .
$$

Then this is a complete normed space with a norm

$$
|\|u\||=\left[\Sigma\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .
$$

Since $\lambda_{k} \rightarrow+\infty$ and c is not an eigenvalue of $-\Delta$, we have the following simple properties of the Hilbert space H.

Proposition 1.1. Let c be not an eigenvalue of $-\Delta$. Then we have:
(1) $\Delta^{2} u+c \Delta u \in H$ implies $u \in H$.
(2) $\mid\|u\|\|\geq C\| u \|_{L^{2}(\Omega)}$ for some $C>0$.
(3) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $|\|u\||=0$.

Proof. (1) Suppose c is not an eigenvalue of $-\Delta$. We write

$$
\Delta^{2} u+c \Delta u=\Sigma \lambda_{k}\left(\lambda_{k}-c\right) h_{k} \phi_{k} .
$$

Then

$$
\begin{aligned}
\infty & >\left|\left\|\Delta^{2} u+c \Delta u\right\|\right|^{2}=\Sigma\left|\lambda_{k}\left(\lambda_{k}-c\right)\right|\left(\lambda_{k}\left(\lambda_{k}-c\right)\right)^{2} h_{k}^{2} \\
& \geq \Sigma C\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}=C \mid\|u\| \|^{2},
\end{aligned}
$$

where $C=\inf _{k}\left\{\left|\lambda_{k}\left(\lambda_{k}-c\right)\right|: k=1,2, \cdots\right\}$.
(2) and (3) are trivial.

Lemma 1.1. Let c be not an eigenvalue of $-\Delta$. Suppose d is not an eigenvalue of $\Delta^{2}+c \Delta$ and $u \in L^{2}(\Omega)$. Then $\left(\Delta^{2}+c \Delta-d\right)^{-1} u$ belongs to H.

Proof. Suppose that d is not an eigenvalue of $\Delta^{2}+c \Delta$ and finite. We know that the number of $\left\{\lambda_{k}\left(\lambda_{k}-c\right):\left|\lambda_{k}\left(\lambda_{k}-c\right)\right|<|d|\right\}$ is finite, where $\lambda_{k}\left(\lambda_{k}-c\right)$ is an eigenvalue of $\Delta^{2}+c \Delta$. Let $u=\Sigma h_{k} \phi_{k}$. Then

$$
\left(\Delta^{2}+c \Delta-d\right)^{-1} u=\Sigma \frac{1}{\lambda_{k}\left(\lambda_{k}-c\right)-d} h_{k} \phi_{k} .
$$

Hence we have the inequality

$$
\left|\left\|\left(\Delta^{2}+c \Delta-d\right)^{-1} u\right\|\right|=\Sigma\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| \frac{1}{\left(\lambda_{k}\left(\lambda_{k}-c\right)-d\right)^{2}} h_{k}^{2} \leq C \Sigma h_{k}^{2}
$$

for some C, which means that

$$
\left\|\left\|\left(\Delta^{2}+c \Delta-d\right)^{-1} u\right\|\right\| \leq C_{1}\|u\|_{L^{2}(\Omega)}, \quad C_{1}=\sqrt{C}
$$

With Lemma 1.1, we can obtain the following lemma.

LEMMA 1.2. Let $f \in L^{2}(\Omega)$. Let b be not an eigenvalue of $\Delta^{2}+$ $c \Delta$. Then all solutions in $L^{2}(\Omega)$ of

$$
\Delta^{2} u+c \Delta u=b u^{+}+f(x) \quad \text { in } E^{2}(\Omega)
$$

belong to H.
With aid of Lemma 1.2, it is enough to investigate the existence of solutions in the subspace H of $L^{2}(\Omega)$ of (1.1).

Let $\lambda_{k}<c<\lambda_{k+1}$ and $\lambda_{k}\left(\lambda_{k}-c\right), \lambda_{k+1}\left(\lambda_{k+1}-c\right)$ be successive eigenvalues of $\Delta^{2}+c \Delta$ such that there is no eigenvalue between $\lambda_{k}\left(\lambda_{k}-\right.$ $c)$ and $\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. Then $\lambda_{k}\left(\lambda_{k}-c\right)<0<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$ and we have the uniqueness theorem.

2. Existence of positive solution

Now, we investigate the existence of the positive solution of (1.1).
LEMMA 2.1. Let $\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $s>0$. Then the unique solution of the linear problem

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b u+s \quad \text { in } \Omega, \\
& u=0, \Delta u=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{align*}
$$

is positive.
Proof. Let $\lambda_{1}<c<\lambda_{2}$ and $b<\lambda_{1}\left(\lambda_{1}-c\right)$. Then the problem

$$
\begin{array}{ll}
\Delta^{2} u+c \Delta u-b u= & \mu u \quad \text { in } \Omega, \\
u=0, \Delta u=0 & \text { on } \partial \Omega
\end{array}
$$

has eigenvalues $\lambda_{k}\left(\lambda_{k}-c\right)-b$ and they are positive. Since the inverse $\left(\Delta^{2}+c \Delta-b\right)^{-1}$ of the operator $\Delta^{2}+c \Delta-b$ is positive, the solution $u=\left(\Delta^{2}+c \Delta-b\right)^{-1}(s)$ of (2.4) is positive.

This proves the lemma.
An easy consequence of Lemma 2.1 is
THEOREM 2.1. Let $\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $s>0$. Then the boundary value problem (2.1) has a positive solution u_{1}.

Proof. The solution u_{1} of the linear problem (2.1) is positive, hence it is also a solution of (1.1).

References

1. H. Amann, Saddle points and multiple solutions of differential equation, Math. Z. (1979), 127-166.
2. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Analysis 14 (1973), 349-381.
3. Q.H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, Journal of Differential Equations 117 (1995), 390-410.
4. D. Gilberg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlarg, New York/Berlin (1983).
5. A.C. Lazer and P.J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. in Partial Differential Equations 11(15) (1986), 1653-1676.
6. A.C. Lazer and P.J. McKenna, Large amplitude periodic oscillations in suspension bridges : Some new connections with nonlinear analysis, SIAM Review 32 (1990), 537-578.
7. P.J. McKenna and W.Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis 98 (1987), 167-177.
8. M. Protter and H. Weinberger, Maximum principles in differential equations, Springer-Verlag (1984).
9. P.H. Rabinowitz, Minimax methods in critical points theory with applications to differential equations, CBMS Resional Conf. Ser. Math., Providence, Rhode Island 65 (1986).
10. J. Schröder, Operator Inequalities, Academic Press (1980).
11. G. Tarantello, A note on a semilinear elliptic problem, Differential and Integral Equations 5 (1992), 561-566.

Q-Heung Choi
Department of Mathematics
Inha University
Incheon 402-751, Korea

Tacksun Jung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea

