Kangweon-Kyungki Math. Jour. 5 (1997), No. 1, pp. 35-49

SOME PROPERTIES OF FUZZY QUASI-PROXIMITY SPACES

YONG CHAN KIM AND JIN WON PARK

ABSTRACT. We will define the fuzzy quasi-proximity space and investigate some properties of fuzzy quasi-proximity spaces. We will prove the existences of initial fuzzy quasi-proximity structures. From this fact, we can define subspaces and products of fuzzy quasiproximity spaces.

1. Introduction and preliminaries

In [8, 9,10,11], S.K. Samanta introduced the concept of gradations of openness and proximity. M.H. Ghanim et al.[5] introduced fuzzy proximity spaces with somewhat different definition of S.K. Samanta [8].

In this paper, we will define the fuzzy quasi-proximity space in view of the definition of M.H. Ghanim et al.[5]. We will investigate some properties of fuzzy quasi-proximity spaces. We will study relationships between fuzzy quasi-proximity spaces and fuzzy topological spaces.

In particular, we will prove the existence of initial fuzzy quasiproximity structures. From this fact, we can define subspaces and products of fuzzy quasi-proximity spaces.

In this paper, all the notations and the definitions are standard in fuzzy set theory.

DEFINITION 1.1. [11] Let X be a nonempty set. A function $\mathcal{T}: I^X \to I$ is called a *gradation of openness* on X if it satisfies the following conditions:

(c1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$,

Received November 5, 1996.

1991 Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy quasi-proximity spaces, fuzzy quasi-proximity maps.

(c2)
$$\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2),$$

(c3) $\mathcal{T}(\bigvee_{i \in \Delta} \mu_i) \geq \bigwedge_{i \in \Delta} \mathcal{T}(\mu_i).$

The pair (X, \mathcal{T}) is called a *fuzzy topological space*.

Let \mathcal{T} be a gradation of openness on X and $\mathcal{F}: I^X \to I$ be defined by $\mathcal{F}(\mu) = \mathcal{T}(\mu^c)$. Then \mathcal{F} is called a *gradation of closedness* on X.

Let (X, \mathcal{T}) be a fuzzy topological space, then for each $r \in I$, $\mathcal{T}_r = \{\mu \in I^X \mid \mathcal{T}(\mu) \geq r\}$ is a Chang's fuzzy topology on X.

Let (X, \mathcal{T}) and (Y, \mathcal{T}^*) be fuzzy topological spaces. A function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}^*)$ is called a gradation preserving map (gp-map) if $\mathcal{T}^*(\mu) \leq \mathcal{T}(f^{-1}(\mu))$ for all $\mu \in I^X$.

A function $\delta: I^X \times I^X \to I$ is a *fuzzy proximity* on X [8] if it satisfies the following conditions:

(SFP1) $\delta(\tilde{0}, \tilde{1}) = 0.$ (SFP2) $\delta(\lambda, \mu) = \delta(\mu, \lambda).$ (SFP3) $\delta(\lambda_1 \lor \lambda_2, \mu) = \delta(\lambda_1, \mu) \lor \delta(\lambda_2, \mu).$ (SFP4) If $\delta(\lambda, \mu) < 1 - r$, then $\delta(cl(\lambda, r), \mu) < 1 - r$, where

$$cl(\lambda, r) = \tilde{1} - \bigvee \{ \rho \le \lambda^c \mid \delta(\lambda, \rho) < 1 - r \}.$$

The pair (X, δ) is called a Samanta type fuzzy proximity space. We can easily prove the following lemma.

LEMMA 1.2. If $f: X \to Y$, then we have the following properties for direct and inverse image of fuzzy sets under mappings:

(1) $\mu \geq f(f^{-1}(\mu))$ with equality if f is surjective, (2) $\nu \leq f^{-1}(f(\nu))$ with equality if f is injective, (3) $f^{-1}(\mu^c) = f^{-1}(\mu)^c$, (4) $f^{-1}(\bigvee_{i\in I}\mu_i) = \bigvee_{i\in I}f^{-1}(\mu_i)$, (5) $f^{-1}(\bigwedge_{i\in I}\mu_i) = \bigwedge_{i\in I}f^{-1}(\mu_i)$, (6) $f(\bigvee_{i\in I}\nu_i) = \bigvee_{i\in I}f(\nu_i)$, (7) $f(\bigwedge_{i\in I}\mu_i) \leq \bigwedge_{i\in I}f(\mu_i)$ with equality if f is injective.

2. Fuzzy quasi-proximity and fuzzy topological spaces

From the definition of M.H. Ghanim [5], we can define a fuzzy quasiproximity.

DEFINITION 2.1. A function $\delta: I^X \times I^X \to I$ is said to be a *fuzzy* quasi-proximity on X which satisfies the following conditions:

(FQP1) $\delta(0, 1) = 0$ and $\delta(1, 0) = 0$.

- (FQP2) $\delta(\lambda \lor \rho, \mu) = \delta(\lambda, \mu) \lor \delta(\rho, \mu)$ and $\delta(\lambda, \mu \lor \nu) = \delta(\lambda, \mu) \lor \delta(\lambda, \nu)$.
- (FQP3) If $\delta(\lambda, \mu) < r$, then there exists $\rho \in I^X$ such that $\delta(\lambda, \rho) < r$ and $\delta(\tilde{1} - \rho, \mu) < r$.
- (FQP4) If $\delta(\lambda, \mu) \neq 1$, then $\lambda \leq \tilde{1} \mu$.

The pair (X, δ) is called a *fuzzy quasi-proximity space*.

A fuzzy quasi-proximity space (X, δ) is called a *fuzzy proximity space* if (FP) $\delta(\lambda, \mu) = \delta(\mu, \lambda)$ for any $\lambda, \mu \in I^X$.

Let $(X, \delta_1), (X, \delta_2)$ be given. We say δ_2 is finer than δ_1 (δ_1 is coarser than δ_2), denoted by $\delta_1 \prec \delta_2$, iff for any $\lambda, \mu \in I^X, \, \delta_2(\lambda, \mu) \leq \delta_1(\lambda, \mu)$.

REMARK 1. (1) If (X, δ) is a fuzzy quasi-proximity space and $\lambda \leq \mu$, then, by (FQP2), we have $\delta(\lambda, \nu) \leq \delta(\mu, \nu)$ and $\delta(\rho, \lambda) \leq \delta(\rho, \mu)$.

(2) Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda, \mu \in I^X$, we define $\delta^{-1}(\lambda, \mu) = \delta(\mu, \lambda)$. Then the structure δ^{-1} is a fuzzy quasi-proximity on X.

(3) Every fuzzy proximity space in our sense is a Samanta type fuzzy proximity space. If $\delta(\lambda, \mu) < 1 - r$, by (FQP3), then there exists $\rho \in I^X$ such that $\delta(\lambda, \rho) < 1 - r$ and $\delta(\tilde{1} - \rho, \mu) < 1 - r$. Since $\delta(\lambda, \rho) < 1 - r$, by (FQP4) and the definition of $cl(\lambda, r)$, we have $\rho \leq \tilde{1} - \lambda$ and $cl(\lambda, r) \leq \tilde{1} - \rho$. So, by (FQP2), $\delta(cl(\lambda, r), \mu) < 1 - r$. Thus (SFP4) holds.

THEOREM 2.2. [5] Let (X, δ) be a fuzzy quasi-proximity space, then for each $r \in (0, 1]$, the family $\delta_r = \{(\lambda, \mu) \in I^X \times I^X \mid \delta(\lambda, \mu) \geq r\}$ is a (classical) fuzzy quasi-proximity space on X.

THEOREM 2.3. [5] Let δ be a fuzzy quasi-proximity on X. For each $r \in (0, 1], \lambda \in I^X$, we define

$$i_{\delta}(\lambda, r) = \bigvee \{ \rho \in I^X \mid \delta(\rho, \tilde{1} - \lambda) < r \}.$$

The family $\{i_{\delta}(\lambda, r) \mid r \in (0, 1]\}$ satisfies the followings properties:

- (i) $i_{\delta}(\tilde{1}, r) = \tilde{1}$.
- (ii) $i_{\delta}(\lambda, r) \leq \lambda$ and $i_{\delta}(\lambda_1, r) \leq i_{\delta}(\lambda_2, r)$, if $\lambda_1 \leq \lambda_2$.

Yong Chan Kim and Jin Won Park

- (iii) $i_{\delta}(i_{\delta}(\lambda, r), r) = i_{\delta}(\lambda, r).$ (iv) $i_{\delta}(\lambda \wedge \mu, r) = i_{\delta}(\lambda, r) \wedge i_{\delta}(\mu, r).$
- (v) $i_{\delta}(\lambda, r) \leq i_{\delta}(\lambda, r')$, if $r \leq r'$, where $r, r' \in (0, 1]$.

THEOREM 2.4. Let δ be a fuzzy quasi-proximity on X. For each $r \in (0, 1], \lambda \in I^X$, we define

$$c_{\delta}(\lambda, r) = \bigwedge \{ \rho^c \in I^X \mid \delta(\rho, \lambda) < r \}.$$

The family $\{c_{\delta}(\lambda, r) \mid r \in (0, 1]\}$ satisfies the following properties:

- (i) $c_{\delta}(\tilde{0}, r) = \tilde{0}, c_{\delta}(\tilde{1}, r) = \tilde{1}.$
- (ii) $c_{\delta}(\lambda, r) \geq \lambda$.
- (iii) $c_{\delta}(\lambda_1, r) \leq c_{\delta}(\lambda_2, r)$, if $\lambda_1 \leq \lambda_2$.
- (iv) $c_{\delta}(\lambda \lor \mu, r) = c_{\delta}(\lambda, r) \lor c_{\delta}(\mu, r).$
- (v) $c_{\delta}(c_{\delta}(\lambda, r), r) = c_{\delta}(\lambda, r).$
- (vi) $c_{\delta}(\lambda, r) \ge c_{\delta}(\lambda, r')$, if $r \le r'$, where $r, r' \in (0, 1]$.

Proof. (i),(iii) and (vi) are easily proved from the definition of c_{δ} .

(ii). Suppose that there exists $\lambda \in I^X$ such that for some $x_0 \in X$, $c_{\delta}(\lambda, r)(x_0) < \lambda(x_0)$. By the definition of $c_{\delta}(\lambda, r)$, there exists $\rho \in I^X$ such that $(\tilde{1} - \rho)(x_0) < \lambda(x_0)$ and $\delta(\rho, \lambda) < r$.

On the other hand, since $(1 - \rho)(x_0) < \lambda(x_0)$, by (FQP4), we have $\delta(\rho, \lambda) = 1$. It is a contradiction.

(iv). By (iii), we have $c_{\delta}(\lambda \lor \mu, r) \ge c_{\delta}(\lambda, r) \lor c_{\delta}(\mu, r)$. We will show that $c_{\delta}(\lambda \lor \mu, r) \le c_{\delta}(\lambda, r) \lor c_{\delta}(\mu, r)$. Suppose that there exist $\lambda, \mu \in I^X$ such that for some $x_0 \in X$,

$$c_{\delta}(\lambda \lor \mu, r)(x_0) > c_{\delta}(\lambda, r)(x_0) \lor c_{\delta}(\mu, r)(x_0).$$

There exists $\rho_1, \rho_2 \in I^X$ such that $\delta(\rho_1, \lambda) < r$, $\delta(\rho_2, \mu) < r$ and

$$c_{\delta}(\lambda \lor \mu, r)(x_0) > (\tilde{1} - \rho_1)(x_0) \lor (\tilde{1} - \rho_2)(x_0).$$

On the other hand, by Remark 1 and (FQP2), since

$$\delta(\rho_1 \wedge \rho_2, \lambda \lor \mu) \le \delta(\rho_1, \lambda) \lor \delta(\rho_2, \mu) < r,$$

we have $c_{\delta}(\lambda \lor \mu, r) \leq (\tilde{1} - \rho_1) \lor (\tilde{1} - \rho_2)$. It is a contradiction.

(v). By (ii), it suffices to show that $c_{\delta}(c_{\delta}(\lambda, r), r) \leq c_{\delta}(\lambda, r)$.

Suppose that there exists $\lambda \in I^X$ such that for some $x_0 \in X$, $c_{\delta}(c_{\delta}(\lambda, r), r)(x_0) > c_{\delta}(\lambda, r)(x_0)$. There exists $\rho \in I^X$ such that

$$c_{\delta}(c_{\delta}(\lambda, r), r)(x_0) > (1-\rho)(x_0), \ \delta(\rho, \lambda) < r.$$

Since $\delta(\rho, \lambda) < r$, there exists $\mu \in I^X$ such that $\delta(\rho, \mu) < r$ and $\delta(\tilde{1} - \mu, \lambda) < r$. Hence $c_{\delta}(\lambda, r) \leq \mu$. It follow that $\delta(\rho, c_{\delta}(\lambda, r)) < r$. Therefore $c_{\delta}(c_{\delta}(\lambda, r), r) \leq \tilde{1} - \rho$. It is a contradiction. \Box

THEOREM 2.5. [5] Let (X, δ) be a fuzzy quasi-proximity space. Define the function $\mathcal{T}_{\delta} : I^X \to I$ on X by

$$\mathcal{T}_{\delta}(\lambda) = \bigvee \{ r \in (0,1] \mid i_{\delta}(\lambda, r) = \lambda \}.$$

Then \mathcal{T}_{δ} is a gradation of openness on X.

REMARK 2. Let \mathcal{T}_{δ} be a gradation of openness on X. By definitions of c_{δ} and i_{δ} , a function $\mathcal{F}_{\delta}(\mu) = \mathcal{T}_{\delta}(\mu^c) = \bigvee \{ r \in (0,1] \mid c_{\delta}(\mu,r) = \mu \}$ is a gradation of closedness on X.

Let (X, δ_1) and (X, δ_2) be fuzzy quasi-proximity spaces. Unfortunately, a structure $\delta_1 \wedge \delta_2$ defined by $\delta_1 \wedge \delta_2(\lambda, \mu) = \delta_1(\lambda, \mu) \wedge \delta_2(\lambda, \mu)$ is not a fuzzy quasi-proximity on X.

We will construct the coarsest fuzzy quasi-proximity on X finer than δ_1 and δ_2 .

THEOREM 2.6. Let (X, δ_1) and (X, δ_2) be fuzzy quasi-proximity spaces. We define, for all $\lambda, \mu \in I^X$,

$$\delta_1 \sqcap \delta_2(\lambda, \mu) = \inf\{\bigvee_{j,k} (\delta_1(\lambda_j, \mu_k) \land \delta_2(\lambda_j, \mu_k))\}$$

where for every finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee \lambda_j$ and $\mu = \bigvee \mu_k$. Then the structure $\delta_1 \sqcap \delta_2$ is the coarsest fuzzy quasi-proximity on X finer than δ_1 and δ_2 .

Proof. First, we will show that $\delta_1 \sqcap \delta_2$ is a fuzzy quasi-proximity on X.

(FQP1). Since, for each $\lambda \in I^X$, $\delta_i(\lambda, \tilde{0}) = 0$, it is easily proved. (FQP2). For any $\lambda, \mu, \nu \in I^X$, we will show that

$$\delta_1 \sqcap \delta_2(\lambda, \mu \lor \nu) \le \delta_1 \sqcap \delta_2(\lambda, \mu) \lor \delta_1 \sqcap \delta_2(\lambda, \nu).$$

Suppose that there exist $\lambda, \mu, \nu \in I^X$

$$c = \delta_1 \sqcap \delta_2(\lambda, \mu \lor \nu) > \delta_1 \sqcap \delta_2(\lambda, \mu) \lor \delta_1 \sqcap \delta_2(\lambda, \nu).$$

There are finite families $(\lambda_j), (\lambda'_m), (\mu_k)$ and (ν_l) such that $\lambda = \bigvee \lambda_j =$ $\bigvee \lambda'_m, \ \mu = \bigvee \mu_k \text{ and } \nu = \bigvee \nu_l \text{ with }$

$$c > \bigvee_{j,k} (\delta_1(\lambda_j, \mu_k) \land \delta_2(\lambda_j, \mu_k)), \quad c > \bigvee_{m,l} (\delta_1(\lambda'_m, \nu_l) \land \delta_2(\lambda'_m, \nu_l)).$$

It follows that $\lambda = \bigvee_{j,m} (\lambda_j \wedge \lambda'_m)$ and $\mu \vee \nu = (\bigvee \mu_k) \vee (\bigvee \nu_l)$. Since

$$\delta_1(\lambda_j,\mu_k) \wedge \delta_2(\lambda_j,\mu_k) \ge \delta_1(\lambda_j \wedge \lambda'_m,\mu_k) \wedge \delta_2(\lambda_j \wedge \lambda'_m,\mu_k),\\ \delta_1(\lambda'_m,\nu_l) \wedge \delta_2(\lambda'_m,\nu_l) \ge \delta_1(\lambda_j \wedge \lambda'_m,\nu_l) \wedge \delta_2(\lambda_j \wedge \lambda'_m,\nu_l),$$

we have

$$c > (\bigvee_{j,k} (\delta_1(\lambda_j, \mu_k) \land \delta_2(\lambda_j, \mu_k))) \lor (\bigvee_{m,l} (\delta_1(\lambda'_m, \nu_l) \land \delta_2(\lambda'_m, \nu_l)))$$

$$\geq (\bigvee_{j,k} (\delta_1(\lambda_j \land \lambda'_m, \mu_k)) \land \delta_2(\lambda_j \land \lambda'_m, \mu_k)))$$

$$\lor (\bigvee_{m,l} (\delta_1(\lambda_j \land \lambda'_m, \nu_l) \land \delta_2(\lambda_j \land \lambda'_m, \nu_l)))$$

$$\geq \delta_1 \sqcap \delta_2(\lambda, \mu \lor \nu) = c.$$

It is a contradiction.

Similarly, we have $\delta_1 \sqcap \delta_2(\lambda \lor \rho, \mu) \leq \delta_1 \sqcap \delta_2(\lambda, \mu) \lor \delta_1 \sqcap \delta_2(\rho, \mu)$. (FQP3). If for any $\lambda, \mu \in I^X$, $\delta_1 \sqcap \delta_2(\lambda, \mu) < r$, we will show that there exists $\rho \in I^X$ such that $\delta_1 \sqcap \delta_2(\lambda, \rho) < r$ and $\delta_1 \sqcap \delta_2(\tilde{1} - \rho, \mu) < r$.

If for any $\lambda, \mu \in I^X$, $\delta_1 \sqcap \delta_2(\lambda, \mu) < r$, then there are finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee_{j=1}^p \lambda_j, \quad \mu = \bigvee_{k=1}^q \mu_k$ with for all j, k, $\delta_1(\lambda_j, \mu_k) \land \delta_2(\lambda_j, \mu_k) < r$. For any j, k, there exists $i = i(j, k) \in \{1, 2\}$ such that $\delta_i(\lambda_j, \mu_k) < r$. Since δ_i is a fuzzy quasi-proximity on X, there exists $\rho_{jk} \in I^X$ such that $\delta_i(\lambda_j, \rho_{jk}) < r$ and $\delta_i(\tilde{1} - \rho_{jk}, \mu_k) < r$.

Put

$$\rho_j = \bigvee_{k=1}^q \rho_{jk}, \quad \rho = \bigwedge_{j=1}^p \rho_j.$$

Then, by the definition of $\delta_1 \sqcap \delta_2$, we have $\delta_1 \sqcap \delta_2(\lambda_j, \rho_j) < r$. Using (FQP2) and Remark 1, we have $\delta_1 \sqcap \delta_2(\lambda, \rho) < r$.

In a similar way, we have $\delta_1 \sqcap \delta_2(1 - \rho_{jk}, \mu_k) \leq \delta_i(1 - \rho_{jk}, \mu_k) < r$. Thus $\delta_1 \sqcap \delta_2(1 - \rho_j, \mu_k) < r$. By (FQP2), we have $\delta_1 \sqcap \delta_2(1 - \rho, \mu_k) < r$ and $\delta_1 \sqcap \delta_2(1 - \rho, \mu) < r$.

(FQP4). We will show that if $\lambda \not\leq \tilde{1} - \mu$, then $\delta_1 \sqcap \delta_2(\lambda, \mu) = 1$.

If $\lambda \not\leq 1 - \mu$, then, for every finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee \lambda_j$ and $\mu = \bigvee \mu_k$, there exist j_0, k_0, x_0 such that $\lambda_{j_0}(x_0) + \mu_{k_0}(x_0) > 1$. Since δ_1, δ_2 are fuzzy quasi-proximities on X, we have $\delta_1(\lambda_{j_0}, \mu_{k_0}) = 1$ and $\delta_2(\lambda_{j_0}, \mu_{k_0}) = 1$. Hence we have $\delta_1 \sqcap \delta_2(\lambda, \mu) = 1$. Second, it is proved that $\delta_1 \sqcap \delta_2 \succ \delta_1$ from the following:

$$\delta_{1} \sqcap \delta_{2}(\lambda, \mu) = \inf\{\bigvee_{j,k} (\delta_{1}(\lambda_{j}, \mu_{k}) \land \delta_{2}(\lambda_{j}, \mu_{k}))\}$$
$$\leq \inf\{\bigvee_{j,k} (\delta_{1}(\lambda_{j}, \mu_{k}))\}$$
$$= \delta_{1}(\lambda, \mu) \text{ (by FQP 2).}$$

Similarly, we have $\delta_1 \sqcap \delta_2 \succ \delta_2$.

Finally, if $\delta_1 \prec \delta$ and $\delta_2 \prec \delta$, then we have

$$\delta_{1} \sqcap \delta_{2}(\lambda, \mu) = \inf\{ \bigvee_{j,k} (\delta_{1}(\lambda_{j}, \mu_{k}) \land \delta_{2}(\lambda_{j}, \mu_{k})) \}$$

$$\geq \inf\{ \bigvee_{j,k} \delta(\lambda_{j}, \mu_{k}) \} \text{ (since } \delta_{i} \prec \delta)$$

$$= \delta(\lambda, \mu) \text{ (by FQP 2).}$$

It follows that $\delta_1 \sqcap \delta_2 \prec \delta$.

Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda, \mu \in I^X$, we define $\delta^*(\lambda, \mu) = \delta \sqcap \delta^{-1}(\lambda, \mu)$. By the above theorem, we can easily prove that (X, δ^*) is a fuzzy proximity space.

THEOREM 2.7. Let $\lambda, \mu \in I^X$ be given in a fuzzy quasi-proximity space on (X, δ) . Then for each $r \in (0, 1]$, the followings are equivalent:

- (1) $\delta(\lambda,\mu) \ge r$,
- $(2) \ \delta(c_{\delta^*}(\lambda, r), c_{\delta^*}(\mu, r)) \ge r,$
- (3) $\delta(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)) \ge r.$

Proof. Since $\lambda \leq c_{\delta^*}(\lambda, r) \leq c_{\delta^{-1}}(\lambda, r)$ and $\mu \leq c_{\delta^*}(\mu, r) \leq c_{\delta}(\mu, r)$, we have $(1) \Rightarrow (2) \Rightarrow (3)$ from the following:

$$\delta(\lambda,\mu) \le \delta(c_{\delta^*}(\lambda,r), c_{\delta^*}(\mu,r)) \le \delta(c_{\delta^{-1}}(\lambda,r), c_{\delta}(\mu,r)).$$

We will show that (3) \Rightarrow (1). Suppose that there exists $\lambda, \mu \in I^X$ such that

$$\delta(\lambda,\mu) < r \le \delta(c_{\delta^{-1}}(\lambda,r),c_{\delta}(\mu,r)).$$

Since $\delta(\lambda, \mu) < r$, by (FQP3), there exists $\rho \in I^X$ such that

$$\delta(\lambda, \rho) < r, \ \delta(\tilde{1} - \rho, \mu) < r.$$

Since $\delta(\tilde{1} - \rho, \mu) < r$, we have $c_{\delta}(\mu, r) \leq \rho$. Since $\delta(\lambda, \rho) < r$ and $c_{\delta}(\mu, r) \leq \rho$, we have $\delta(\lambda, c_{\delta}(\mu, r)) < r$. Again, since $\delta(\lambda, c_{\delta}(\mu, r)) < r$, there exists $\nu \in I^X$ such that

$$\delta(\lambda, \nu) < r, \quad \delta(1 - \nu, c_{\delta}(\mu, r)) < r.$$

Now, since $\delta^{-1}(\nu, \lambda) = \delta(\lambda, \nu) < r$, we have $c_{\delta^{-1}}(\lambda, r) \leq \tilde{1} - \nu$. Hence $\delta(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)) < r$. It is a contradiction. \Box

DEFINITION 2.8. Let (X, δ_1) and (Y, δ_2) be fuzzy quasi-proximity spaces. A function $f: (X, \delta_1) \to (Y, \delta_2)$ is a *fuzzy quasi-proximity map* if it satisfies $\delta_1(\mu, \nu) \leq \delta_2(f(\mu), f(\nu))$, for every $\mu, \nu \in I^X$.

Using the above definition, we can easily prove the following lemma.

LEMMA 2.9. If $f: (X, \delta_1) \to (Y, \delta_2)$ is a fuzzy quasi-proximity map, then:

- (a) $f: (X, \delta_1^{-1}) \to (Y, \delta_2^{-1})$ is a fuzzy quasi-proximity map, (b) $f: (X, \delta_1^*) \to (Y, \delta_2^*)$ is a fuzzy quasi-proximity map.

We will investigate relationships between fuzzy topological spaces and fuzzy quasi-proximity spaces.

THEOREM 2.10. If a function $f: (X, \delta_1) \to (Y, \delta_2)$ is a fuzzy quasiproximity map, then:

(a) $f: (X, \mathcal{T}_{\delta_1}) \to (Y, \mathcal{T}_{\delta_2})$ is a gp-map, (a) $f: (X, \mathcal{T}_{\delta_1^{-1}}) \to (Y, \mathcal{T}_{\delta_2^{-1}})$ is a gp-map, (c) $f: (X, \mathcal{T}_{\delta_1^{*}}) \to (Y, \mathcal{T}_{\delta_2^{*}})$ is a gp-map.

Proof. (a). Suppose that f is not a gp-map. Then there exists $\lambda \in I^Y$ such that $\mathcal{T}_{\delta_2}(\lambda) > \mathcal{T}_{\delta_1}(f^{-1}(\lambda))$. Hence there exists $r \in I$ such that $\mathcal{T}_{\delta_2}(\lambda) > r > \mathcal{T}_{\delta_1}(f^{-1}(\lambda))$. Since $\mathcal{T}_{\delta_2}(\lambda) > r$, for some c > r, then

$$\lambda = i_{\delta_2}(\lambda, c) = \bigvee \{ \rho \mid \delta_2(\rho, \tilde{1} - \lambda) < c \}.$$

Since f is a fuzzy quasi-proximity map, by Lemma 1.2, we have

$$f^{-1}(\lambda) = \bigvee \{ f^{-1}(\rho) \mid \delta_2(\rho, \tilde{1} - \lambda) < c \}$$

$$\leq \bigvee \{ f^{-1}(\rho) \mid \delta_1(f^{-1}(\rho), \tilde{1} - f^{-1}(\lambda)) < c \}$$

$$\leq i_{\delta_1}(f^{-1}(\lambda), c).$$

So, by Theorem 2.3 (ii), we have $i_{\delta_1}(f^{-1}(\lambda), c) = f^{-1}(\lambda)$. It follows that $\mathcal{T}_{\delta_1}(f^{-1}(\lambda)) \geq c > r$. It is a contradiction.

(b) and (c) are easy from Lemma 2.9 and (a).

3. Initial fuzzy quasi-proximity structures

Now we will prove the existence of initial fuzzy quasi-proximity structures.

DEFINITION 3.1. Let $(X_i, \delta_i)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \Delta$, $f_i : X \to X_i$ a function. The *initial structure* δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \Delta$, f_i is a fuzzy quasi-proximity map.

THEOREM 3.2. (Existence of initial structures) Let $(X_i, \delta_i)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \Delta, f_i : X \to X_i$ a mapping. Define the function $\delta : I^X \times I^X \to I$ on X by

$$\delta(\lambda,\mu) = \inf\{\bigvee_{j,k} \inf_{i \in \Delta} \delta_i(f_i(\lambda_j), f_i(\mu_k))\},\$$

where for every finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee_{j=1}^n \lambda_j$ and $\mu = \bigvee_{k=1}^m \mu_k$. Then:

- (1) δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \Delta$, f_i is a fuzzy quasi-proximity map.
- (2) A map $f: (Y, \delta') \to (X, \delta)$ is a fuzzy quasi-proximity map iff each $f_i \circ f: (Y, \delta') \to (X_i, \delta_i)$ is a fuzzy quasi-proximity map.

Proof. (1). First, we will show that δ is a fuzzy quasi-proximity on X.

(FQP1). Since $\delta_i(f_i(\lambda), \tilde{0}) = 0$ for all $\lambda \in I^X$, it is clear. (FQP2). For any $\lambda, \mu, \nu \in I^X$, we will show that

$$\delta(\lambda, \mu \lor \nu) \le \delta(\lambda, \mu) \lor \delta(\lambda, \nu).$$

Suppose that there exist $\lambda, \mu, \nu \in I^X$ such that

$$c = \delta(\lambda, \mu \lor \nu) > \delta(\lambda, \mu) \lor \delta(\lambda, \nu).$$

There are finite families $(\lambda_j), (\lambda'_m), (\mu_k)$ and (ν_l) such that $\lambda = \bigvee \lambda_j = \bigvee \lambda'_m, \ \mu = \bigvee \mu_k$ and $\nu = \bigvee \nu_l$ with

$$c > \bigvee_{j,k} (inf_{i \in \triangle} \delta_i(f_i(\lambda_j), f_i(\mu_k))), \quad c > \bigvee_{m,l} (inf_{i \in \triangle} \delta_i(f_i(\lambda'_m), f_i(\nu_l))).$$

It follows that $\lambda = \bigvee_{j,m} (\lambda_j \wedge \lambda'_m)$ and $\mu \vee \nu = (\bigvee \mu_k) \vee (\bigvee \nu_l)$.

Some properties of fuzzy quasi-proximity spaces

Since $inf_{i\in\Delta}\delta_i(f_i(\lambda_i), f_i(\mu_k)) \ge inf_{i\in\Delta}\delta_i(f_i(\lambda_i \wedge \lambda'_m), f_i(\mu_k))$ and $inf_{i\in\Delta}\delta_i(f_i(\lambda'_m), f_i(\nu_l)) \ge inf_{i\in\Delta}\delta_i(f_i(\lambda_j \wedge \lambda'_m), f_i(\nu_l)),$

$$c > (\bigvee_{j,k} \inf_{i \in \Delta} \delta_i(f_i(\lambda_j), f_i(\mu_k))) \lor (\bigvee_{m,l} \inf_{i \in \Delta} \delta_i(f_i(\lambda'_m), f_i(\nu_l)))$$

$$\geq (\bigvee_{j,k} \inf_{i \in \Delta} \delta_i(f_i(\lambda_j \land \lambda'_m), f_i(\mu_k)))$$

$$\lor (\bigvee_{m,l} \inf_{i \in \Delta} \delta_i(f_i(\lambda_j \land \lambda'_m), f_i(\nu_l)))$$

$$\geq \delta(\lambda, \mu \lor \nu) = c.$$

It is a contradiction.

Similarly, we have $\delta(\lambda \lor \rho, \mu) \le \delta(\lambda, \mu) \lor \delta(\rho, \mu)$. (FQP3). If for any $\lambda, \mu \in I^X$, $\delta(\lambda, \mu) < r$, we will show that there exists $\rho \in I^X$ such that $\delta(\lambda, \rho) < r$ and $\delta(\tilde{1} - \rho, \mu) < r$.

If for any $\lambda, \mu \in I^X$, $\delta(\lambda, \mu) < r$, then there are finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee_{j=1}^p \lambda_j, \ \mu = \bigvee_{k=1}^q \mu_k$ with

$$\delta(\lambda,\mu) \leq \bigvee_{j,k} \inf_{i \in \triangle} (\delta_i(f_i(\lambda_j), f_i(\mu_k)) < r$$

i.e., for all $j, k, inf_{i \in \Delta}(\delta_i(f_i(\lambda_j), f_i(\mu_k)) < r$. It follows that for any j, k, there exists an $i_{jk} \in \Delta$ such that $\delta_{i_{jk}}(f_{i_{jk}}(\lambda_j), f_{i_{jk}}(\mu_k)) < r$. Since $\delta_{i_{jk}}$ is a fuzzy quasi-proximity on $X_{i_{jk}}$, by (FQP3), there exists $\rho_{jk} \in I^{X_{i_{jk}}}$ such that $\delta_{i_{jk}}(f_{i_{jk}}(\lambda_j), \rho_{jk})) < r$ and $\delta_{i_{jk}}(\tilde{1} - \rho_{jk}, f_{i_{jk}}(\mu_k)) < r$.

Put

$$\rho_j = \bigvee_{k=1}^q f_{i_{jk}}^{-1}(\rho_{jk}), \quad \rho = \bigwedge_{j=1}^p \rho_j.$$

Since $f_{i_{jk}}(f_{i_{jk}}^{-1}(\rho_{jk})) \leq \rho_{jk}$, then

$$\delta(\lambda_j, \rho_j) \le \bigvee_{k=1}^q \delta_{i_{jk}}(f_{i_{jk}}(\lambda_j), f_{i_{jk}}(f_{i_{jk}}^{-1}(\rho_{jk})))$$
$$\le \bigvee_{k=1}^q \delta_{i_{jk}}(f_{i_{jk}}(\lambda_j), \rho_{jk}) < r.$$

Using (FQP2) and Remark 1, we have $\delta(\lambda, \rho) < r$.

In a similar way, by the definition of δ , for all k = 1, ..., q,

$$\delta(f_{i_{jk}}^{-1}(\tilde{1}-\rho_{jk}),\mu_k) \le \delta_{i_{jk}}(\tilde{1}-\rho_{jk},\mu_k) < r,$$

because $f_{i_{jk}}(f_{i_{jk}}^{-1}(\tilde{1}-\rho_{jk})) \leq \tilde{1}-\rho_{jk}$. By Remark 1, we have $\delta(\tilde{1}-\rho_{j},\mu_{k}) < r$. By (FQP2), we have $\delta(\tilde{1}-\rho,\mu_{k}) < r$ and $\delta(\tilde{1}-\rho,\mu) < r$.

(FQP4). We will show that if $\lambda \not\leq \tilde{1} - \mu$, then $\delta(\lambda, \mu) = 1$.

If $\lambda \leq \hat{1} - \mu$, then, for every finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee \lambda_j$ and $\mu = \bigvee \mu_k$, there exist j_0, k_0, x_0 such that $\lambda_{j_0}(x_0) + \mu_{k_0}(x_0) > 1$. It follows that, for all $i \in \Delta$,

$$f_i(\lambda_{j_0})(f_i(x_0)) + f_i(\mu_{k_0})(f_i(x_0)) \ge \lambda_{j_0}(x_0) + \mu_{k_0}(x_0) > 1.$$

Since for each $i \in \Delta$, δ_i is a fuzzy quasi-proximity on X_i , we have $\delta_i(\lambda_{j_0}, \mu_{k_0}) = 1$. Hence $\delta(\lambda, \mu) = 1$.

Second, from the definition of δ , since

$$\begin{split} \delta(\lambda,\mu) &= \inf\{\bigvee_{j,k} \inf_{i\in\Delta} \delta_i(f_i(\lambda_j), f_i(\mu_k))\}\\ &\leq \inf\{\bigvee_{j,k} \delta_i(f_i(\lambda_j), f_i(\mu_k))\}\\ &= \delta_i(f_i(\lambda), f_i(\mu)) \text{ (by FQP 2)}, \end{split}$$

for each $i \in \Delta$, $f_i : (X, \delta) \to (X_i, \delta_i)$ is a fuzzy quasi-proximity map.

If $f_i: (X, \delta') \to (X_i, \delta_i)$ is a fuzzy quasi-proximity map, then, for every $i \in \Delta$, since

$$\delta(\lambda,\mu) = \inf\{\bigvee_{j,k} \inf_{i \in \Delta} \delta_i(f_i(\lambda_j), f_i(\mu_k))\}$$

$$\geq \inf\{\bigvee_{j,k} \delta'(\lambda_j, \mu_k)\}$$

$$= \delta'(\lambda,\mu) \text{ (by FQP 2)},$$

we have $\delta'(\lambda,\mu) \leq \delta(\lambda,\mu), \ \forall \lambda,\mu \in I^X.$

(2). Necessity of the composition condition is clear since the composition of fuzzy quasi-proximity maps is a fuzzy quasi-proximity map.

Conversely, suppose f is not a fuzzy quasi-proximity map. Then there exists $\lambda, \mu \in I^Y$ such that

$$\delta'(\lambda,\mu) > \delta(f(\lambda),f(\mu)).$$

Therefore there are finite families $(\lambda'_j), (\mu'_k)$ such that $f(\lambda) = \bigvee_{j=1}^p \lambda'_j, f(\mu) = \bigvee_{k=1}^q \mu'_k$, and

$$\delta'(\lambda,\mu) > \bigvee_{j,k} \inf_{i \in \triangle} \delta_i(f_i(\lambda'_j), f_i(\mu'_k)).$$

It follows that for any j, k, there exists an $i_{jk} \in \Delta$ such that

$$\delta_{i_{jk}}(f_{i_{jk}}(\lambda'_j), f_{i_{jk}}(\mu'_k)) < \delta'(\lambda, \mu).$$

On the other hand, $f_i \circ f$ is a fuzzy quasi-proximity map. For any j, k, by Lemma 1.2, since $f_i(f(f^{-1}(\lambda'_j))) \leq f_i(\lambda'_j)$,

$$\delta'(f^{-1}(\lambda'_j), f^{-1}(\mu'_k)) \le \delta_{i_{jk}}(f_{i_{jk}}(\lambda'_j), f_{i_{jk}}(\mu'_k))$$

Since $\lambda \leq f^{-1}(f(\lambda)) = \bigvee_{j=1}^p f^{-1}(\lambda'_j)$, we have

$$\begin{split} \delta'(\lambda,\mu) &\leq \bigvee_{j,k} \delta'(f^{-1}(\lambda'_j), f^{-1}(\mu'_k)) \text{ (by FQP 2 and Lemma 1.2)} \\ &\leq \bigvee_{j,k} \delta_{i_{jk}}(f_{i_{jk}}(\lambda'_j), f_{i_{jk}}(\mu'_k)) \\ &< \delta'(\lambda,\mu). \end{split}$$

It is a contradiction.

By the above theorem, we can define subspaces and products in the obvious way.

DEFINITION 3.3. Let (X, δ) be a fuzzy quasi-proximity and A be a subset of X. The pair (A, δ_A) is said to be a *subspace* of (X, δ) if it is endowed with the initial fuzzy quasi-proximity structure with respect to the inclusion map.

DEFINITION 3.4. Let X be the product $\prod_{i \in \Delta} X_i$ of the family $\{(X_i, \delta_i) \mid i \in \Delta\}$ of fuzzy quasi-proximity spaces. An initial fuzzy quasi-proximity structure $\delta = \otimes \delta_i$ on X with respect to all the projections $\pi_i : X \to X_i$ is called the *product fuzzy quasi-proximity structure* of $\{\delta_i \mid i \in \Delta\}$, and $(X, \otimes \delta_i)$ is called the *product fuzzy quasi-proximity space*.

Using Theorem 3.2, we have the following corollary.

COROLLARY 3.5. Let $(X_i, \delta_i)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let $X = \prod_{i \in \Delta} X_i$ be a set and, for each $i \in \Delta$, $\pi_i : X \to X_i$ a mapping. The structure $\delta = \otimes \delta_i$ on X is defined by

$$\delta(\lambda,\mu) = \inf\{\bigvee_{j,k} \inf_{i \in \Delta} \delta_i(\pi_i(\lambda_j), \pi_i(\mu_k))\},\$$

where for every finite families $(\lambda_j), (\mu_k)$ such that $\lambda = \bigvee_{j=1}^n \lambda_j$ and $\mu = \bigvee_{k=1}^m \mu_k$. Then:

- (1) δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \Delta$, π_i is a fuzzy quasi-proximity map.
- (2) A map $f: (Y, \delta') \to (X, \delta)$ is a fuzzy quasi-proximity map iff each $\pi_i \circ f: (Y, \delta') \to (X_i, \delta_i)$ is a fuzzy quasi-proximity map.

References

- G.Artico and R.Moresco, Fuzzy proximities compatible with Lowen fuzzy uniformities, Fuzzy sets and Systems 21 (1987), 85–98.
- A.K. Katsaras and C.G. Petalas, On fuzzy syntopogenous structures, J. Math. Anal. Appl 99(1) (1984), 219–236.
- A.K. Katsaras, Operations on fuzzy syntopogenous structures, Fuzzy sets and Systems 43 (1991), 199–217.
- A.K. Katsaras, Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy sets and Systems 27 (1988), 335–343.
- M.H. Ghanim, O.A. Tantawy and Fawzia M. Selim, Gradations of uniformity and gradations of proximity, Fuzzy sets and Systems 79 (1996), 373–382.
- A.S. Mashhour, R. Badard and A.A. Ramadan, Smooth preuniform and preproximity spaces, Fuzzy sets and Systems 59 (1993), 95–107.
- A.A. Ramadan, Smooth topological spaces, Fuzzy sets and Systems 48 (1992), 371–375.

- 8. S.K. Samanta, *Fuzzy proximities and fuzzy uniformities*, Fuzzy sets and Systems **70** (1995), 97–105.
- S.K. Samanta and K.C. Chattopadhyay, *Fuzzy topology*, Fuzzy sets and Systems 54 (1993), 207–212.
- 10. R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, *Fuzzy topology redefined*, Fuzzy sets and Systems **45** (1992), 79–82.
- 11. R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, *Gradation of openness: Fuzzy topology*, Fuzzy sets and Systems **49(2)** (1992), 237–242.

Yong Chan Kim Department of Mathematics Kangnung National University Kangnung 210-702, Korea

Jin Won Park Department of Mathematics Education Cheju National University Cheju 690-756, Korea