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SOME PROPERTIES OF FUZZY
QUASI-PROXIMITY SPACES

YoNG CHAN KiM AND JIN WON PARK

ABSTRACT. We will define the fuzzy quasi-proximity space and
investigate some properties of fuzzy quasi-proximity spaces. We
will prove the existences of initial fuzzy quasi-proximity structures.
From this fact, we can define subspaces and products of fuzzy quasi-
proximity spaces.

1. Introduction and preliminaries

In [ 8, 9,10,11], S.K. Samanta introduced the concept of gradations
of openness and proximity. M.H. Ghanim et al.[5] introduced fuzzy
proximity spaces with somewhat different definition of S.K. Samanta
8].

In this paper, we will define the fuzzy quasi-proximity space in view
of the definition of M.H. Ghanim et al.[5]. We will investigate some
properties of fuzzy quasi-proximity spaces. We will study relationships
between fuzzy quasi-proximity spaces and fuzzy topological spaces.

In particular, we will prove the existence of initial fuzzy quasi-
proximity structures. From this fact, we can define subspaces and
products of fuzzy quasi-proximity spaces.

In this paper, all the notations and the definitions are standard in
fuzzy set theory.

DEFINITION 1.1. [11] Let X be a nonempty set. A function
T : IX — I is called a gradation of openness on X if it satisfies the
following conditions:

(cl) T(0)=T(I) =1,
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(€2) T(p1 A p2) > T (1) NT (p2),
(€3) T(Vien ti) > Nien T (1)

The pair (X,7) is called a fuzzy topological space.

Let 7 be a gradation of openness on X and F : IX — I be defined
by F(u) =7 (u€). Then F is called a gradation of closedness on X.

Let (X,7) be a fuzzy topological space, then for each r € I, 7, =
{pue I*X|T(u) >r}isa Chang’s fuzzy topology on X.

Let (X,7) and (Y,7*) be fuzzy topological spaces. A function
f:(X,T)— (Y, T%) is called a gradation preserving map ( gp-map) if
T*(p) < T(f~Y(w)) for all u € IX.

A function 6 : IX x I — Iis a fuzzy prozimity on X [8] if it satisfies
the following conditions:

(SFP1) 6(0,1) = 0.

(SFP2) 60\, 1) = 6(j1, ).

(SEP3) (A1 V A, 1) = 0(Aq, 1) V O( A2, ).

(SEP4) If 6(\, p) <1 —r, then §(cl(A,7), ) < 1 —r, where

d(\r)=1-\/{p <X |3\ p) <1—r7}.

The pair (X, 9) is called a Samanta type fuzzy proximity space.
We can easily prove the following lemma.

LEMMA 1.2. If f: X — Y, then we have the following properties
for direct and inverse image of fuzzy sets under mappings:

(1) p= f(f Y(u)) with equality if f is surjective,

(2) v < f7Y(f(v)) with equality if f is injective,

(3) fHwe) = fHw)", 1

(4) ' (\/261 Hz) = Vig ' (Mi):

(5) ' (/\261 Hz) = /\ie] f_l(ﬁ%');

(6) f(Viervi) = Vier f(vi),
(7) f

(Aier i) < Nier f(pi) with equality if f is injective.

2. Fuzzy quasi-proximity and fuzzy topological spaces

From the definition of M.H. Ghanim [5], we can define a fuzzy quasi-
proximity.
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DEFINITION 2.1. A function § : IX x IX — I is said to be a fuzzy
quasi-prorimity on X which satisfies the following conditions:
(FQP1) 6(0,1) =0 and 6(1,0) = 0.
(FQP2) 6(AVp,p) =6(A, 1) V(p, p) and 6(A, pVv) = 6(A, 1) VI(A,v).
(FQP3) If 6(A, ) < r, then there exists p € I* such that 6(\, p) < r
and 6(1 — p,p) <.
(FQP4) If 6(\, pt) # 1, then A < 1 — p.
The pair (X, 9) is called a fuzzy quasi-proximity space.

A fuzzy quasi-proximity space (X, 9) is called a fuzzy proximity space
if (FP) 0(\, 1) = 6(p, A) for any A\, u € IX.

Let (X, d1), (X, d2) be given. We say 45 is finer than §; ( 07 is coarser
than &), denoted by d; < 8o, iff for any A\, u € I, Sa(\, p) < 61(A, p).

REMARK 1. (1) If (X, ¢) is a fuzzy quasi-proximity space and A < p,
then, by (FQP2), we have §(\,v) < §(u,v) and d(p, \) < d(p, p).

(2) Let (X, 6) be a fuzzy quasi-proximity space. For each \, u € I*X,
we define 671 (\, 1) = 6(u, A). Then the structure 61 is a fuzzy quasi-
proximity on X.

(3) Every fuzzy proximity space in our sense is a Samanta type
fuzzy proximity space. If §(A\, u) < 1 —r, by (FQP3), then there exists
p € I* such that 6(\,p) < 1 —7r and 6(1 — p,u) < 1 —r. Since
d(A,p) < 1 —=r, by (FQP4) and the definition of cl(\,r), we have
p<1—Xand cl()\r) <1—p. So, by (FQP2), §(cl(\,7),p) <1 —r.
Thus (SFP4) holds.

THEOREM 2.2. [5] Let (X, 0) be a fuzzy quasi-proximity space, then
for each v € (0,1], the family 6, = {(\, u) € I* x I | 6(\, ) > 7} is
a (classical) fuzzy quasi-proximity space on X.

THEOREM 2.3. [5] Let d be a fuzzy quasi-proximity on X . For each
r € (0,1],\ € I*, we define

is(Ar)=\{peI*|d(p,1-)) <r}.

The family {is(\,r) | r € (0,1]} satisfies the followings properties:

(i) ig(i,?“) =1.
(i) is(A\, 1) < X andis(A1,7r) <is(Ag,7), if A < Ao.
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(iii) i(s(ig()\, T),T’) = ig()\,T).
(IV) 25()‘ N, ’I“) = ié()‘v T) N Z'5<H7 T)'
(v) is(\,7r) <ig(\,r"), if r < 7', where r,7’" € (0,1].

THEOREM 2.4. Let 6 be a fuzzy quasi-proximity on X. For each
r € (0,1],\ € I*, we define

cs(\r) = N{p° € I* | 6(p,\) <1}

The family {cs(\,r) | r € (0,1]} satisfies the following properties:
(i) c5(0,7) =0,c5(1,7) = 1.
i'

o
(<2}
>
2
=
IN
)
(=9
>
g
=
:;
>
2
VAN
>
by

Proof. (i),(iii) and (vi) are easily proved from the definition of c¢s.

(ii). Suppose that there exists A € IX such that for some zy € X,
cs(\,7)(zg) < A(xp). By the definition of cs(\,7), there exists p € IX
such that (1 — p)(zo) < AM(xo) and §(p, \) < 7.

On the other hand, since (1 — p)(xg) < A(zo), by (FQP4), we have
d(p,A) = 1. It is a contradiction.

(iv). By (iii), we have c¢5(AV p,7r) > es(A,7) V es(p, 7).

We will show that cs(AV p,7r) < cs(A, 1)V es(p, ).

Suppose that there exist A, € IX such that for some zy € X,

cs( AV ) (x0) > es(A, 1) (o) V cs(p, ) (x0).-

There exists p1, p2 € IX such that §(py, \) <7, d(p2, i) <7 and

cs(AV ) (o) > (1= p1)(xo) V (1 = p2)(20)-

On the other hand, by Remark 1 and (FQP2), since

6(p1 A p2, AV p) < 6(p1,A) Vo(p2,p) <,
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we have cs(AV p,7) < (1 —p1) V (1 — po). It is a contradiction.
(v). By (ii), it suffices to show that cs(cs(A,7r),7) < cs5(\, 7).
Suppose that there exists A € IX such that for some zy € X,
cs(es(N\,1),7)(z0) > c5(\, 7)(x0). There exists p € IX such that

cs(es(N 1), ) (o) > (1 — p)(x0), d(p,A) <.

Since 6(p,\) < r, there exists u € I* such that d(p,u) < r and
6(1 — p,A) < r. Hence cs(A,7) < p. It follow that 6(p,cs(A, 7)) < 7.
Therefore cs(cs(A,7),r) <1 — p. It is a contradiction. O O

THEOREM 2.5. [5] Let (X,0) be a fuzzy quasi-proximity space. De-
fine the function T5 : I — I on X by

Ts(A\) = \/{r € (0,1] | is(A,r) = A}.
Then 75 is a gradation of openness on X.

REMARK 2. Let 75 be a gradation of openness on X. By definitions
of ¢s and i5, a function Fs(u) = Zs(u®) = \V{r € (0,1] | cs(u,7) = p}
is a gradation of closedness on X.

Let (X,4d1) and (X, d2) be fuzzy quasi-proximity spaces. Unfortu-
nately, a structure d; A do defined by 01 A da (A, 1) = 01(A, ) A d2 (A, 1)
is not a fuzzy quasi-proximity on X.

We will construct the coarsest fuzzy quasi-proximity on X finer than
(51 and (52.

THEOREM 2.6. Let (X,01) and (X,02) be fuzzy quasi-proximity
spaces. We define, for all A, € IX,

91 M (A ) = mf{\/(51(>\j,,uk) A G2(Aj, k) }
gk

where for every finite families (\;), (pr) such that A = \/ \; and p =
\ px. Then the structure 61 M d9 is the coarsest fuzzy quasi-proximity
on X finer than d; and 0s.
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Proof. First, we will show that d; Md5 is a fuzzy quasi-proximity on
X.

(FQP1). Since, for each A € IX, §;(\,0) = 0, it is easily proved.

(FQP2). For any \, i, v € IX, we will show that

(51 M 52()\, 1% V I/) S 51 M 62()\,#) V 51 M (52()\, V).
Suppose that there exist A, p, v € IX
c= (51 M 52()\, wvV l/) > 61 Il 52()\,/1,) V 51 M (52()\, V).

There are finite families (A;), (A7,), (ux) and (1) such that A = \/ \; =
VAL, w=\ pur and v =\/ vy, with

¢ >\ (610, 1) A 2N ), >\ (61N, 1) A B2(Nr 1)),
7.k m,l

It follows that A =V, (A; AA,) and p Vv = (V )V (Vw). Since

61()\]-,,1%) AN 52<)\j,/ulzk:) > 01
> (51()\3' A\ )\lm,Vl) N (52()\3‘ A\ )\;7L7Vl)7

(51()\%” Vl) A 52()\lm, I/l)
we have

¢ > (\/ (010 ) A S2 (g 1)) V (] (1A 1) A B2(A7,10))

7,k m,l
> (\/ (51 (Ag A X 1)) A Sa(Ag AN, k)
7,k
V(0105 A X 1) A G2(Aj A A, 1))
m,l

2(51[7(52()\,#\/1/)20.

It is a contradiction.
Similarly, we have d1 M d2(AV p, ) < 61 M d2(A, p) V 91 M d2(p, ).
(FQP3). If for any A\, u € IX, §; M da(\, ) < r, we will show that
there exists p € IX such that 6; (N, p) < 7 and 6, M2 (1—p, p) < 7.
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If for any A\, € I’X, §; Ma(\, p) < 7, then there are finite families
(Aj), (ux) such that X = Vi_ | A;,  p = Vi with for all j,k,
91 (Aj, k) AN d2(Aj, k) < r. For any j, k, there exists ¢ = i(j, k) € {1,2}
such that 6;(\;, pur) < 7. Since §; is a fuzzy quasi-proximity on X, there
exists pjr € IX such that 6;(\j, pjr) < 7 and &;(1 — pj, k) < 7.

Put . .
pj:\/pjkv P:/\pj-
k=1 j=1

Then, by the definition of §; Md2, we have §; Md2(A;, pj) < 7. Using
(FQP2) and Remark 1, we have d; Mda (A, p) < 7.

In a similar way, we have §; M 52(1 — Pjky k) < 5i(i — Pjks ) < T
Thus 61 Mé2(1— p;, ux) < r. By (FQP2), we have §; Mda(1—p, px) < 7
and 61 M (1 — p, ) < 7.

(FQP4). We will show that if X\ £ 1 — p, then 6; Mda(\, 1) = 1.

If A\ £ 1 — p, then, for every finite families (\;), (ux) such that
A= VA and p =\ g, there exist jo, ko, zo such that Aj (zo) +
fko (xg) > 1. Since 61,02 are fuzzy quasi-proximities on X, we have
91 (Njg, ike) = 1 and d2(Nj,, i, ) = 1. Hence we have §; M da(A, p) = 1.

Second, it is proved that &; Mdy = &1 from the following:

61165 (\, ) = inf {\/(51(Nj, ) A Sa (Mg k) }
Jk
<inf{\ (61(\js )}
7,k
=61(\ p) (by FQP 2).

Similarly, we have d; M dy = do.
Finally, if 61 < 0 and d2 < 9, then we have

01 M 05 (A, 1) = inf {\/(01(Nj, i) A Sa (N k) }
7,k
> inf{\/6(\j, )} (since §; < 6)
7,k
=d(\, 1) (by FQP 2).

It follows that d; M dy < 6. O O
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Let (X,0) be a fuzzy quasi-proximity space. For each A\, € I'X, we
define 6*(\, ;) = 6 1167 1(\, u). By the above theorem, we can easily
prove that (X, d*) is a fuzzy proximity space.

THEOREM 2.7. Let A\, € IX be given in a fuzzy quasi-proximity
space on (X, §). Then for each r € (0, 1], the followings are equivalent:

(1) oA, p) =,
(2) o(cs= (A7), e (s 7))
(3) d(cs—1(A, ), cs(p, 7))

r,
r

v v

Proof. Since A < cs« (A, 1) < c5-1(A,r) and p < s (p, 1) < es(p, 1),
we have (1) = (2) = (3) from the following:

5(}\,#) < 5(05* <)‘7T)7 Cs* (/J,?“)) < 5(65*1()‘77“)7 05(:“7 T))

We will show that (3) = (1). Suppose that there exists A\, u € I
such that

5()‘7 :u) <r< 5(05_1 <)‘7 ’f’), 05(:“7 T))
Since 6(\, 1) < r, by (FQP3), there exists p € I such that

SN, p)<r, 6(1—p,p)<r

Since §(1 — p,p) < r, we have cs(u,r) < p. Since 6(\,p) < r and
es(p, ) < p, we have §(\, ¢s(p, 7)) < r. Again, since 6(\, es(p, 7)) < r,
there exists v € IX such that

S\ v)<r, §(1—wv,cs(p,r)) <r.

Now, since 671 (v, \)
)

= §(\,v) < r, we have c5-1(\,7) < 1 — v. Hence
6(05_1(/\7T)7C6(M7T ) <r

. It is a contradiction. O O

DEFINITION 2.8. Let (X,071) and (Y, d2) be fuzzy quasi-proximity
spaces. A function f: (X,d1) — (Y, 02) is a fuzzy quasi-proximity map
if it satisfies 01 (u,v) < 2(f(u), f(v)), for every u,v € IX

Using the above definition, we can easily prove the following lemma.
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LEMMA 2.9. If f: (X, d1) — (Y, d2) is a fuzzy quasi-proximity map,
then:

(a) f:(X,0;7") — (Y,65 1) is a fuzzy quasi-proximity map,
(b) f:(X,07) — (Y,03) is a fuzzy quasi-proximity map.

We will investigate relationships between fuzzy topological spaces
and fuzzy quasi-proximity spaces.

THEOREM 2.10. If a function f : (X,01) — (Y, 62) is a fuzzy quasi-
proximity map, then:

(a) f : (X7 ,]:51) - (Y7 7:52) is a gp-map,
(b> /e (Xv 7:51_1) - (Ya 7:32_1) is a gp-map,
(c) f:(X,Ts;) — (Y, T5;) is a gp-map.

Proof. (a). Suppose that f is not a gp-map. Then there exists
A € IY such that T5,(A\) > Z5, (f~1()\)). Hence there exists r € I such
that 75, (\) > r > 75, (f~*()\)). Since 75,()\) > r, for some ¢ > r, then

A=is,(N\c)= \/{p|52p,1— A) < c}.

Since f is a fuzzy quasi-proximity map, by Lemma 1.2, we have

=\ () | 62(p, 1= N) < c}
<\ o) 10 ), 1= 1) < ¢
< i(sl(f_l()\),C)-
So, by Theorem 2.3 (ii), we have is, (f~1(\),c) = f~1(\). It follows

that 75, (f~1(\)) > ¢ > r. It is a contradiction.
(b) and (c) are easy from Lemma 2.9 and (a). O O

3. Initial fuzzy quasi-proximity structures

Now we will prove the existence of initial fuzzy quasi-proximity
structures.
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DEFINITION 3.1. Let (X, d;):cn be a family of fuzzy quasi-proximity
spaces. Let X be a set and, for each i € A, f; : X — X, a function.
The initial structure § is the coarsest fuzzy quasi-proximity on X with
respect to which for each ¢ € A, f; is a fuzzy quasi-proximity map.

THEOREM 3.2. (Existence of initial structures) Let (X;,0;)icn be
a family of fuzzy quasi-proximity spaces. Let X be a set and, for each
i € A, fi : X — X, a mapping. Define the function § : IX x IX — T
on X by

S\ ) = inf{\/ inficadi(fi(\), fi(u))},
3k

where for every finite families ();), (1) such that A = \/;L:1 Aj and
p=\yy bk Then:

(1) § is the coarsest fuzzy quasi-proximity on X with respect to
which for each © € /\, f; is a fuzzy quasi-proximity map.

(2) A map f:(Y,d8) — (X,9) is a fuzzy quasi-proximity map iff
each f;o f: (Y,0") — (X;,0;) is a fuzzy quasi-proximity map.

Proof. (1). First, we will show that § is a fuzzy quasi-proximity on
X.

(FQP1). Since 6;(f;(\),0) =0 for all A € I¥, it is clear.

(FQP2). For any A, u, v € I, we will show that

(A, uVr) < s p) Vo).

Suppose that there exist A, p, v € IX such that
c=0\puVr)>oAp VIiAv).
There are finite families ()\;), (A,), (k) and (1) such that A =
VA =VAL, =V and v =\ v, with

¢ > \[(inficadi(fi(\), filur))), e > \/(infieadi(fi(N,), fi())).
gk m,l

It follows that A =\/,  (A; AAG,) and pV v = (V) V (V)
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Since in fiead; (fz( i)s filpw)) = infiendi(fi(Aj AL, filpr))
and in fie A0 (fi (N, ) fi()) = infiendi(fi(X\j AN, fi(v),

¢ > (\infieadi (i), Fi(m) V (\ infieadi(F:(X,), fi(1)))

gk m,l
> (\/infieadi(fi(\s AN, i)
7,k

Vv (\ infieadi(fi(Nj AN, fi(1n)))

m,l

>0\ puVr)=c

It is a contradiction.

Similarly, we have §(AV p, p) < (A, 1) V d(p, ).

(FQP3). If for any A\, u € I, §(\, u) < 7, we will show that there
exists p € I such that §(\, p) <7 and 6(1 — p,p) <7

If for any A\, u € I, §(\, u) < 7, then there are finite families
(Aj)s (ur) such that A = \/¥_, Aj, = Vi_, px with

S\ 1) <\ infien(S:(fi(N), filur)) <7

Jk

i.e., forall j,k, infica (0;(fi(X;), fi(1x)) < r. It follows that for any 7, k,
there exists an i;, € A such that 6;,, (fi,. (N;), fi,, (&) < r. Since d;,,

is a fuzzy quasi-proximity on X;,, , by (FQP3), there exists pjx € I Xijh
such that &;, (fi,. (Aj), pjr)) <7 and 6;,, (1 — pjr, fi,, (ur)) <7

Put .
pi=\ fi oir), p= /\pg
k=1

Since fzjk(fz:kl(pjk)) < Pjk; then

q

]7p] \/ Tk fzyk: fzgk<fz:kl(pjk)))

ng flgk pjk)

IN
|| <a ||
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Using (FQP2) and Remark 1, we have 6(\, p) < r.
In a similar way, by the definition of §, for all k =1, ..., ¢,

5(]2,3@ — i), i) < 63,0 (1= pjn, pu) <,

because fijk(fi;:(i — pik)) < 1-— pjk- By Remark 1, we have (5(1 —
pj, k) < 1. By (FQP2), we have §(1 — p, ux) < 7 and 6(1 — p, ) < 7.
(FQP4). We will show that if A £ T — u , then §(\, p) = 1.
If A\ £ 1 — p, then, for every finite families ();), (%) such that A\ =
V Aj and p =/ p, there exist jo, ko, 2o such that A;, (zo) + ik, (z0) >
1. It follows that, for all i € A,

fi(\jo ) (fi(z0)) + filkeo ) (fi(20)) = Njo (T0) + ko (T0) > 1.

Since for each i € A, §; is a fuzzy quasi-proximity on X;, we have
9i(Njo, ko) = 1. Hence (A, ) = 1.
Second, from the definition of ¢, since

S\ 1) = inf{\ inficadi(f:(N;), fi(ur))}

gk

<inf{\/ 6:(fi(N), Fili))}
gk
= 6;(fi(N), fi(i)) (by FQP 2),

for each i € A, f; : (X,9) — (X;,0;) is a fuzzy quasi-proximity map.
If f;:(X,0") — (X;,0;) is a fuzzy quasi-proximity map, then, for
every i € A\, since

S\, ) = inf{\/ inficadi(fi(\), fi(ur))}
7.k
> inf{\/ 6" (Aj, )}
7.k
= 6'(A\, 1) (by FQP 2),

we have 6'(\, ) < 5(\, i), VA, p e I,
(2). Necessity of the composition condition is clear since the com-
position of fuzzy quasi-proximity maps is a fuzzy quasi-proximity map.
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Conversely, suppose f is not a fuzzy quasi-proximity map. Then
there exists A, u € I¥ such that

&' (A, ) > (F(N), f())-

Therefore there are finite families ()\}), (113,) such that
fO) = Vi Ny, f(w) = ViiZy #, and

8\ ) > \/infieA(Si(fi()\;)a filiy))-

gk
It follows that for any j, k, there exists an i, € A such that
5ijk (fljk ()‘;)7 fijk (:u;c)) < 5/()‘a N)'

On the other hand, f; o f is a fuzzy quasi-proximity map. For any j, k,
by Lemma 1.2, since fi(f(f~"(\}))) < fi( X)),

5/(]0_1()“/7')7 f_l(M;c)) < 5lgk(fljk()‘;)7 flw(/ﬁc))

Since A < fH(f(N) = Vi, f71(N)), we have
F0) <V F (05,7 (1) (by FQP 2 and Lemma 1.2
I

J.k

<8 (A p).
It is a contradiction. O O

By the above theorem, we can define subspaces and products in the
obvious way.

DEFINITION 3.3. Let (X, d) be a fuzzy quasi-proximity and A be a
subset of X. The pair (A,d4) is said to be a subspace of (X, 9) if it is
endowed with the initial fuzzy quasi-proximity structure with respect
to the inclusion map.
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DEFINITION 3.4. Let X be the product [],cA X; of the family
{(X;,0;) | i € A} of fuzzy quasi-proximity spaces. An initial fuzzy
quasi-proximity structure 6 = ®J; on X with respect to all the projec-
tions m; : X — X is called the product fuzzy quasi-prorimity structure
of {6; | i € A}, and (X, ®4;) is called the product fuzzy quasi-prozimity
space.

Using Theorem 3.2, we have the following corollary.

COROLLARY 3.5. Let (X;,0;)ien be a family of fuzzy quasi-proximity
spaces. Let X = [[,.» X; be a set and, for eachi € A, m; : X — X; a
mapping. The structure 6 = ®J; on X is defined by

S\ 1) = inf{\/ inficadi(mi(X;), (1))},

gk

where for every finite families (\;), (p) such that A = \/?:1 A; and
p=\pey pg. Then:
(1) § is the coarsest fuzzy quasi-proximity on X with respect to
which for each i € /\, 7; is a fuzzy quasi-proximity map.
(2) A map f:(Y,d8) — (X,0) is a fuzzy quasi-proximity map iff
each ;o f : (YV,0') — (X;,0;) is a fuzzy quasi-proximity map.
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