SOME PROPERTIES OF FUZZY QUASI-PROXIMITY SPACES

Yong Chan Kim and Jin Won Park

Abstract

We will define the fuzzy quasi-proximity space and investigate some properties of fuzzy quasi-proximity spaces. We will prove the existences of initial fuzzy quasi-proximity structures. From this fact, we can define subspaces and products of fuzzy quasiproximity spaces.

1. Introduction and preliminaries

In [8, 9,10,11], S.K. Samanta introduced the concept of gradations of openness and proximity. M.H. Ghanim et al.[5] introduced fuzzy proximity spaces with somewhat different definition of S.K. Samanta [8].

In this paper, we will define the fuzzy quasi-proximity space in view of the definition of M.H. Ghanim et al.[5]. We will investigate some properties of fuzzy quasi-proximity spaces. We will study relationships between fuzzy quasi-proximity spaces and fuzzy topological spaces.

In particular, we will prove the existence of initial fuzzy quasiproximity structures. From this fact, we can define subspaces and products of fuzzy quasi-proximity spaces.

In this paper, all the notations and the definitions are standard in fuzzy set theory.

Definition 1.1. [11] Let X be a nonempty set. A function $\mathcal{T}: I^{X} \rightarrow I$ is called a gradation of openness on X if it satisfies the following conditions:
(c1) $\mathcal{T}(\tilde{0})=\mathcal{T}(\tilde{1})=1$,

[^0](c2) $\mathcal{T}\left(\mu_{1} \wedge \mu_{2}\right) \geq \mathcal{T}\left(\mu_{1}\right) \wedge \mathcal{T}\left(\mu_{2}\right)$,
(c3) $\mathcal{T}\left(\bigvee_{i \in \Delta} \mu_{i}\right) \geq \bigwedge_{i \in \Delta} \mathcal{T}\left(\mu_{i}\right)$.
The pair (X, \mathcal{T}) is called a fuzzy topological space.
Let \mathcal{T} be a gradation of openness on X and $\mathcal{F}: I^{X} \rightarrow I$ be defined by $\mathcal{F}(\mu)=\mathcal{T}\left(\mu^{c}\right)$. Then \mathcal{F} is called a gradation of closedness on X.

Let (X, \mathcal{T}) be a fuzzy topological space, then for each $r \in I, \mathcal{T}_{r}=$ $\left\{\mu \in I^{X} \mid \mathcal{T}(\mu) \geq r\right\}$ is a Chang's fuzzy topology on X.

Let (X, \mathcal{T}) and $\left(Y, \mathcal{T}^{*}\right)$ be fuzzy topological spaces. A function $f:(X, \mathcal{T}) \rightarrow\left(Y, \mathcal{T}^{*}\right)$ is called a gradation preserving map (gp-map) if $\mathcal{T}^{*}(\mu) \leq \mathcal{T}\left(f^{-1}(\mu)\right)$ for all $\mu \in I^{X}$.

A function $\delta: I^{X} \times I^{X} \rightarrow I$ is a fuzzy proximity on $X[8]$ if it satisfies the following conditions:
$(\mathrm{SFP} 1) \delta(\tilde{0}, \tilde{1})=0$.
(SFP2) $\delta(\lambda, \mu)=\delta(\mu, \lambda)$.
(SFP3) $\delta\left(\lambda_{1} \vee \lambda_{2}, \mu\right)=\delta\left(\lambda_{1}, \mu\right) \vee \delta\left(\lambda_{2}, \mu\right)$.
(SFP4) If $\delta(\lambda, \mu)<1-r$, then $\delta(c l(\lambda, r), \mu)<1-r$, where

$$
c l(\lambda, r)=\tilde{1}-\bigvee\left\{\rho \leq \lambda^{c} \mid \delta(\lambda, \rho)<1-r\right\} .
$$

The pair (X, δ) is called a Samanta type fuzzy proximity space.
We can easily prove the following lemma.
Lemma 1.2. If $f: X \rightarrow Y$, then we have the following properties for direct and inverse image of fuzzy sets under mappings:
(1) $\mu \geq f\left(f^{-1}(\mu)\right)$ with equality if f is surjective,
(2) $\nu \leq f^{-1}(f(\nu))$ with equality if f is injective,
(3) $f^{-1}\left(\mu^{c}\right)=f^{-1}(\mu)^{c}$,
(4) $f^{-1}\left(\bigvee_{i \in I} \mu_{i}\right)=\bigvee_{i \in I} f^{-1}\left(\mu_{i}\right)$,
(5) $f^{-1}\left(\bigwedge_{i \in I} \mu_{i}\right)=\bigwedge_{i \in I} f^{-1}\left(\mu_{i}\right)$,
(6) $f\left(\bigvee_{i \in I} \nu_{i}\right)=\bigvee_{i \in I} f\left(\nu_{i}\right)$,
(7) $f\left(\bigwedge_{i \in I} \mu_{i}\right) \leq \bigwedge_{i \in I} f\left(\mu_{i}\right)$ with equality if f is injective.

2. Fuzzy quasi-proximity and fuzzy topological spaces

From the definition of M.H. Ghanim [5], we can define a fuzzy quasiproximity.

Definition 2.1. A function $\delta: I^{X} \times I^{X} \rightarrow I$ is said to be a fuzzy quasi-proximity on X which satisfies the following conditions:
$(\mathrm{FQP} 1) \delta(\tilde{0}, \tilde{1})=0$ and $\delta(\tilde{1}, \tilde{0})=0$.
(FQP2) $\delta(\lambda \vee \rho, \mu)=\delta(\lambda, \mu) \vee \delta(\rho, \mu)$ and $\delta(\lambda, \mu \vee \nu)=\delta(\lambda, \mu) \vee \delta(\lambda, \nu)$.
(FQP3) If $\delta(\lambda, \mu)<r$, then there exists $\rho \in I^{X}$ such that $\delta(\lambda, \rho)<r$ and $\delta(\tilde{1}-\rho, \mu)<r$.
(FQP4) If $\delta(\lambda, \mu) \neq 1$, then $\lambda \leq \tilde{1}-\mu$.
The pair (X, δ) is called a fuzzy quasi-proximity space.
A fuzzy quasi-proximity space (X, δ) is called a fuzzy proximity space if (FP) $\delta(\lambda, \mu)=\delta(\mu, \lambda)$ for any $\lambda, \mu \in I^{X}$.

Let $\left(X, \delta_{1}\right),\left(X, \delta_{2}\right)$ be given. We say δ_{2} is finer than $\delta_{1}\left(\delta_{1}\right.$ is coarser than δ_{2}), denoted by $\delta_{1} \prec \delta_{2}$, iff for any $\lambda, \mu \in I^{X}, \delta_{2}(\lambda, \mu) \leq \delta_{1}(\lambda, \mu)$.

Remark 1. (1) If (X, δ) is a fuzzy quasi-proximity space and $\lambda \leq \mu$, then, by (FQP2), we have $\delta(\lambda, \nu) \leq \delta(\mu, \nu)$ and $\delta(\rho, \lambda) \leq \delta(\rho, \mu)$.
(2) Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda, \mu \in I^{X}$, we define $\delta^{-1}(\lambda, \mu)=\delta(\mu, \lambda)$. Then the structure δ^{-1} is a fuzzy quasiproximity on X.
(3) Every fuzzy proximity space in our sense is a Samanta type fuzzy proximity space. If $\delta(\lambda, \mu)<1-r$, by (FQP3), then there exists $\rho \in I^{X}$ such that $\delta(\lambda, \rho)<1-r$ and $\delta(\tilde{1}-\rho, \mu)<1-r$. Since $\delta(\lambda, \rho)<1-r$, by (FQP4) and the definition of $c l(\lambda, r)$, we have $\rho \leq \tilde{1}-\lambda$ and $\operatorname{cl}(\lambda, r) \leq \tilde{1}-\rho$. So, by (FQP2), $\delta(c l(\lambda, r), \mu)<1-r$. Thus (SFP4) holds.

Theorem 2.2. [5] Let (X, δ) be a fuzzy quasi-proximity space, then for each $r \in(0,1]$, the family $\delta_{r}=\left\{(\lambda, \mu) \in I^{X} \times I^{X} \mid \delta(\lambda, \mu) \geq r\right\}$ is a (classical) fuzzy quasi-proximity space on X.

Theorem 2.3. [5] Let δ be a fuzzy quasi-proximity on X. For each $r \in(0,1], \lambda \in I^{X}$, we define

$$
i_{\delta}(\lambda, r)=\bigvee\left\{\rho \in I^{X} \mid \delta(\rho, \tilde{1}-\lambda)<r\right\}
$$

The family $\left\{i_{\delta}(\lambda, r) \mid r \in(0,1]\right\}$ satisfies the followings properties:
(i) $i_{\delta}(\tilde{1}, r)=\tilde{1}$.
(ii) $i_{\delta}(\lambda, r) \leq \lambda$ and $i_{\delta}\left(\lambda_{1}, r\right) \leq i_{\delta}\left(\lambda_{2}, r\right)$, if $\lambda_{1} \leq \lambda_{2}$.
(iii) $i_{\delta}\left(i_{\delta}(\lambda, r), r\right)=i_{\delta}(\lambda, r)$.
(iv) $i_{\delta}(\lambda \wedge \mu, r)=i_{\delta}(\lambda, r) \wedge i_{\delta}(\mu, r)$.
(v) $i_{\delta}(\lambda, r) \leq i_{\delta}\left(\lambda, r^{\prime}\right)$, if $r \leq r^{\prime}$, where $r, r^{\prime} \in(0,1]$.

Theorem 2.4. Let δ be a fuzzy quasi-proximity on X. For each $r \in(0,1], \lambda \in I^{X}$, we define

$$
c_{\delta}(\lambda, r)=\bigwedge\left\{\rho^{c} \in I^{X} \mid \delta(\rho, \lambda)<r\right\}
$$

The family $\left\{c_{\delta}(\lambda, r) \mid r \in(0,1]\right\}$ satisfies the following properties:
(i) $c_{\delta}(\tilde{0}, r)=\tilde{0}, c_{\delta}(\tilde{1}, r)=\tilde{1}$.
(ii) $c_{\delta}(\lambda, r) \geq \lambda$.
(iii) $c_{\delta}\left(\lambda_{1}, r\right) \leq c_{\delta}\left(\lambda_{2}, r\right)$, if $\lambda_{1} \leq \lambda_{2}$.
(iv) $c_{\delta}(\lambda \vee \mu, r)=c_{\delta}(\lambda, r) \vee c_{\delta}(\mu, r)$.
(v) $c_{\delta}\left(c_{\delta}(\lambda, r), r\right)=c_{\delta}(\lambda, r)$.
(vi) $c_{\delta}(\lambda, r) \geq c_{\delta}\left(\lambda, r^{\prime}\right)$, if $r \leq r^{\prime}$, where $r, r^{\prime} \in(0,1]$.

Proof. (i),(iii) and (vi) are easily proved from the definition of c_{δ}.
(ii). Suppose that there exists $\lambda \in I^{X}$ such that for some $x_{0} \in X$, $c_{\delta}(\lambda, r)\left(x_{0}\right)<\lambda\left(x_{0}\right)$. By the definition of $c_{\delta}(\lambda, r)$, there exists $\rho \in I^{X}$ such that $(\tilde{1}-\rho)\left(x_{0}\right)<\lambda\left(x_{0}\right)$ and $\delta(\rho, \lambda)<r$.

On the other hand, since $(\tilde{1}-\rho)\left(x_{0}\right)<\lambda\left(x_{0}\right)$, by (FQP4), we have $\delta(\rho, \lambda)=1$. It is a contradiction.
(iv). By (iii), we have $c_{\delta}(\lambda \vee \mu, r) \geq c_{\delta}(\lambda, r) \vee c_{\delta}(\mu, r)$.

We will show that $c_{\delta}(\lambda \vee \mu, r) \leq c_{\delta}(\lambda, r) \vee c_{\delta}(\mu, r)$.
Suppose that there exist $\lambda, \mu \in I^{X}$ such that for some $x_{0} \in X$,

$$
c_{\delta}(\lambda \vee \mu, r)\left(x_{0}\right)>c_{\delta}(\lambda, r)\left(x_{0}\right) \vee c_{\delta}(\mu, r)\left(x_{0}\right)
$$

There exists $\rho_{1}, \rho_{2} \in I^{X}$ such that $\delta\left(\rho_{1}, \lambda\right)<r, \delta\left(\rho_{2}, \mu\right)<r$ and

$$
c_{\delta}(\lambda \vee \mu, r)\left(x_{0}\right)>\left(\tilde{1}-\rho_{1}\right)\left(x_{0}\right) \vee\left(\tilde{1}-\rho_{2}\right)\left(x_{0}\right) .
$$

On the other hand, by Remark 1 and (FQP2), since

$$
\delta\left(\rho_{1} \wedge \rho_{2}, \lambda \vee \mu\right) \leq \delta\left(\rho_{1}, \lambda\right) \vee \delta\left(\rho_{2}, \mu\right)<r
$$

we have $c_{\delta}(\lambda \vee \mu, r) \leq\left(\tilde{1}-\rho_{1}\right) \vee\left(\tilde{1}-\rho_{2}\right)$. It is a contradiction.
(v). By (ii), it suffices to show that $c_{\delta}\left(c_{\delta}(\lambda, r), r\right) \leq c_{\delta}(\lambda, r)$.

Suppose that there exists $\lambda \in I^{X}$ such that for some $x_{0} \in X$, $c_{\delta}\left(c_{\delta}(\lambda, r), r\right)\left(x_{0}\right)>c_{\delta}(\lambda, r)\left(x_{0}\right)$. There exists $\rho \in I^{X}$ such that

$$
c_{\delta}\left(c_{\delta}(\lambda, r), r\right)\left(x_{0}\right)>(\tilde{1}-\rho)\left(x_{0}\right), \quad \delta(\rho, \lambda)<r .
$$

Since $\delta(\rho, \lambda)<r$, there exists $\mu \in I^{X}$ such that $\delta(\rho, \mu)<r$ and $\delta(\tilde{1}-\mu, \lambda)<r$. Hence $c_{\delta}(\lambda, r) \leq \mu$. It follow that $\delta\left(\rho, c_{\delta}(\lambda, r)\right)<r$. Therefore $c_{\delta}\left(c_{\delta}(\lambda, r), r\right) \leq \tilde{1}-\rho$. It is a contradiction.

Theorem 2.5. [5] Let (X, δ) be a fuzzy quasi-proximity space. Define the function $\mathcal{T}_{\delta}: I^{X} \rightarrow I$ on X by

$$
\mathcal{I}_{\delta}(\lambda)=\bigvee\left\{r \in(0,1] \mid i_{\delta}(\lambda, r)=\lambda\right\}
$$

Then \mathcal{T}_{δ} is a gradation of openness on X.
Remark 2. Let \mathcal{T}_{δ} be a gradation of openness on X. By definitions of c_{δ} and i_{δ}, a function $\mathcal{F}_{\delta}(\mu)=\mathcal{T}_{\delta}\left(\mu^{c}\right)=\bigvee\left\{r \in(0,1] \mid c_{\delta}(\mu, r)=\mu\right\}$ is a gradation of closedness on X.

Let $\left(X, \delta_{1}\right)$ and $\left(X, \delta_{2}\right)$ be fuzzy quasi-proximity spaces. Unfortunately, a structure $\delta_{1} \wedge \delta_{2}$ defined by $\delta_{1} \wedge \delta_{2}(\lambda, \mu)=\delta_{1}(\lambda, \mu) \wedge \delta_{2}(\lambda, \mu)$ is not a fuzzy quasi-proximity on X.

We will construct the coarsest fuzzy quasi-proximity on X finer than δ_{1} and δ_{2}.

Theorem 2.6. Let $\left(X, \delta_{1}\right)$ and (X, δ_{2}) be fuzzy quasi-proximity spaces. We define, for all $\lambda, \mu \in I^{X}$,

$$
\delta_{1} \sqcap \delta_{2}(\lambda, \mu)=\inf \left\{\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)\right)\right\}
$$

where for every finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee \lambda_{j}$ and $\mu=$ $\bigvee \mu_{k}$. Then the structure $\delta_{1} \sqcap \delta_{2}$ is the coarsest fuzzy quasi-proximity on X finer than δ_{1} and δ_{2}.

Proof. First, we will show that $\delta_{1} \sqcap \delta_{2}$ is a fuzzy quasi-proximity on X.
(FQP1). Since, for each $\lambda \in I^{X}, \delta_{i}(\lambda, \tilde{0})=0$, it is easily proved.
(FQP2). For any $\lambda, \mu, \nu \in I^{X}$, we will show that

$$
\delta_{1} \sqcap \delta_{2}(\lambda, \mu \vee \nu) \leq \delta_{1} \sqcap \delta_{2}(\lambda, \mu) \vee \delta_{1} \sqcap \delta_{2}(\lambda, \nu) .
$$

Suppose that there exist $\lambda, \mu, \nu \in I^{X}$

$$
c=\delta_{1} \sqcap \delta_{2}(\lambda, \mu \vee \nu)>\delta_{1} \sqcap \delta_{2}(\lambda, \mu) \vee \delta_{1} \sqcap \delta_{2}(\lambda, \nu) .
$$

There are finite families $\left(\lambda_{j}\right),\left(\lambda_{m}^{\prime}\right),\left(\mu_{k}\right)$ and $\left(\nu_{l}\right)$ such that $\lambda=\bigvee \lambda_{j}=$ $\bigvee \lambda_{m}^{\prime}, \quad \mu=\bigvee \mu_{k}$ and $\nu=\bigvee \nu_{l}$ with

$$
c>\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)\right), \quad c>\bigvee_{m, l}\left(\delta_{1}\left(\lambda_{m}^{\prime}, \nu_{l}\right) \wedge \delta_{2}\left(\lambda_{m}^{\prime}, \nu_{l}\right)\right)
$$

It follows that $\lambda=\bigvee_{j, m}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right)$ and $\mu \vee \nu=\left(\bigvee \mu_{k}\right) \vee\left(\bigvee \nu_{l}\right)$. Since

$$
\begin{aligned}
& \delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right) \geq \delta_{1}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \mu_{k}\right), \\
& \delta_{1}\left(\lambda_{m}^{\prime}, \nu_{l}\right) \wedge \delta_{2}\left(\lambda_{m}^{\prime}, \nu_{l}\right) \geq \delta_{1}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \nu_{l}\right) \wedge \delta_{2}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \nu_{l}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
c> & \left(\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)\right)\right) \vee\left(\bigvee_{m, l}\left(\delta_{1}\left(\lambda_{m}^{\prime}, \nu_{l}\right) \wedge \delta_{2}\left(\lambda_{m}^{\prime}, \nu_{l}\right)\right)\right) \\
\geq & \left.\left(\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \mu_{k}\right)\right) \wedge \delta_{2}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \mu_{k}\right)\right)\right) \\
& \vee\left(\bigvee_{m, l}\left(\delta_{1}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \nu_{l}\right) \wedge \delta_{2}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}, \nu_{l}\right)\right)\right) \\
\geq & \delta_{1} \sqcap \delta_{2}(\lambda, \mu \vee \nu)=c .
\end{aligned}
$$

It is a contradiction.
Similarly, we have $\delta_{1} \sqcap \delta_{2}(\lambda \vee \rho, \mu) \leq \delta_{1} \sqcap \delta_{2}(\lambda, \mu) \vee \delta_{1} \sqcap \delta_{2}(\rho, \mu)$.
(FQP3). If for any $\lambda, \mu \in I^{X}, \delta_{1} \sqcap \delta_{2}(\lambda, \mu)<r$, we will show that there exists $\rho \in I^{X}$ such that $\delta_{1} \sqcap \delta_{2}(\lambda, \rho)<r$ and $\delta_{1} \sqcap \delta_{2}(\tilde{1}-\rho, \mu)<r$.

If for any $\lambda, \mu \in I^{X}, \quad \delta_{1} \sqcap \delta_{2}(\lambda, \mu)<r$, then there are finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee_{j=1}^{p} \lambda_{j}, \quad \mu=\bigvee_{k=1}^{q} \mu_{k}$ with for all j, k, $\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)<r$. For any j, k, there exists $i=i(j, k) \in\{1,2\}$ such that $\delta_{i}\left(\lambda_{j}, \mu_{k}\right)<r$. Since δ_{i} is a fuzzy quasi-proximity on X, there exists $\rho_{j k} \in I^{X}$ such that $\delta_{i}\left(\lambda_{j}, \rho_{j k}\right)<r$ and $\delta_{i}\left(\tilde{1}-\rho_{j k}, \mu_{k}\right)<r$.

Put

$$
\rho_{j}=\bigvee_{k=1}^{q} \rho_{j k}, \quad \rho=\bigwedge_{j=1}^{p} \rho_{j} .
$$

Then, by the definition of $\delta_{1} \sqcap \delta_{2}$, we have $\delta_{1} \sqcap \delta_{2}\left(\lambda_{j}, \rho_{j}\right)<r$. Using (FQP2) and Remark 1, we have $\delta_{1} \sqcap \delta_{2}(\lambda, \rho)<r$.

In a similar way, we have $\delta_{1} \sqcap \delta_{2}\left(\tilde{1}-\rho_{j k}, \mu_{k}\right) \leq \delta_{i}\left(\tilde{1}-\rho_{j k}, \mu_{k}\right)<r$. Thus $\delta_{1} \sqcap \delta_{2}\left(\tilde{1}-\rho_{j}, \mu_{k}\right)<r$. By (FQP2), we have $\delta_{1} \sqcap \delta_{2}\left(\tilde{1}-\rho, \mu_{k}\right)<r$ and $\delta_{1} \sqcap \delta_{2}(\tilde{1}-\rho, \mu)<r$.
(FQP4). We will show that if $\lambda \not \leq \tilde{1}-\mu$, then $\delta_{1} \sqcap \delta_{2}(\lambda, \mu)=1$.
If $\lambda \not \leq \tilde{1}-\mu$, then, for every finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee \lambda_{j}$ and $\mu=\bigvee \mu_{k}$, there exist j_{0}, k_{0}, x_{0} such that $\lambda_{j_{0}}\left(x_{0}\right)+$ $\mu_{k_{0}}\left(x_{0}\right)>1$. Since δ_{1}, δ_{2} are fuzzy quasi-proximities on X, we have $\delta_{1}\left(\lambda_{j_{0}}, \mu_{k_{0}}\right)=1$ and $\delta_{2}\left(\lambda_{j_{0}}, \mu_{k_{0}}\right)=1$. Hence we have $\delta_{1} \sqcap \delta_{2}(\lambda, \mu)=1$.

Second, it is proved that $\delta_{1} \sqcap \delta_{2} \succ \delta_{1}$ from the following:

$$
\begin{aligned}
\delta_{1} \sqcap \delta_{2}(\lambda, \mu) & =\inf \left\{\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)\right)\right\} \\
& \leq \inf \left\{\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right)\right\}\right. \\
& =\delta_{1}(\lambda, \mu)(\text { by FQP } 2) .
\end{aligned}
$$

Similarly, we have $\delta_{1} \sqcap \delta_{2} \succ \delta_{2}$.
Finally, if $\delta_{1} \prec \delta$ and $\delta_{2} \prec \delta$, then we have

$$
\begin{aligned}
\delta_{1} \sqcap \delta_{2}(\lambda, \mu) & =\inf \left\{\bigvee_{j, k}\left(\delta_{1}\left(\lambda_{j}, \mu_{k}\right) \wedge \delta_{2}\left(\lambda_{j}, \mu_{k}\right)\right)\right\} \\
& \geq \inf \left\{\bigvee_{j, k} \delta\left(\lambda_{j}, \mu_{k}\right)\right\} \quad\left(\text { since } \delta_{i} \prec \delta\right) \\
& =\delta(\lambda, \mu)(\text { by FQP } 2) .
\end{aligned}
$$

It follows that $\delta_{1} \sqcap \delta_{2} \prec \delta$.

Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda, \mu \in I^{X}$, we define $\delta^{*}(\lambda, \mu)=\delta \sqcap \delta^{-1}(\lambda, \mu)$. By the above theorem, we can easily prove that $\left(X, \delta^{*}\right)$ is a fuzzy proximity space.

Theorem 2.7. Let $\lambda, \mu \in I^{X}$ be given in a fuzzy quasi-proximity space on (X, δ). Then for each $r \in(0,1]$, the followings are equivalent:
(1) $\delta(\lambda, \mu) \geq r$,
(2) $\delta\left(c_{\delta^{*}}(\lambda, r), c_{\delta^{*}}(\mu, r)\right) \geq r$,
(3) $\delta\left(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)\right) \geq r$.

Proof. Since $\lambda \leq c_{\delta^{*}}(\lambda, r) \leq c_{\delta^{-1}}(\lambda, r)$ and $\mu \leq c_{\delta^{*}}(\mu, r) \leq c_{\delta}(\mu, r)$, we have $(1) \Rightarrow(2) \Rightarrow(3)$ from the following:

$$
\delta(\lambda, \mu) \leq \delta\left(c_{\delta^{*}}(\lambda, r), c_{\delta^{*}}(\mu, r)\right) \leq \delta\left(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)\right)
$$

We will show that $(3) \Rightarrow(1)$. Suppose that there exists $\lambda, \mu \in I^{X}$ such that

$$
\delta(\lambda, \mu)<r \leq \delta\left(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)\right)
$$

Since $\delta(\lambda, \mu)<r$, by (FQP3), there exists $\rho \in I^{X}$ such that

$$
\delta(\lambda, \rho)<r, \quad \delta(\tilde{1}-\rho, \mu)<r .
$$

Since $\delta(\tilde{1}-\rho, \mu)<r$, we have $c_{\delta}(\mu, r) \leq \rho$. Since $\delta(\lambda, \rho)<r$ and $c_{\delta}(\mu, r) \leq \rho$, we have $\delta\left(\lambda, c_{\delta}(\mu, r)\right)<r$. Again, since $\delta\left(\lambda, c_{\delta}(\mu, r)\right)<r$, there exists $\nu \in I^{X}$ such that

$$
\delta(\lambda, \nu)<r, \quad \delta\left(\tilde{1}-\nu, c_{\delta}(\mu, r)\right)<r
$$

Now, since $\delta^{-1}(\nu, \lambda)=\delta(\lambda, \nu)<r$, we have $c_{\delta^{-1}}(\lambda, r) \leq \tilde{1}-\nu$. Hence $\delta\left(c_{\delta^{-1}}(\lambda, r), c_{\delta}(\mu, r)\right)<r$. It is a contradiction.

Definition 2.8. Let $\left(X, \delta_{1}\right)$ and $\left(Y, \delta_{2}\right)$ be fuzzy quasi-proximity spaces. A function $f:\left(X, \delta_{1}\right) \rightarrow\left(Y, \delta_{2}\right)$ is a fuzzy quasi-proximity map if it satisfies $\delta_{1}(\mu, \nu) \leq \delta_{2}(f(\mu), f(\nu))$, for every $\mu, \nu \in I^{X}$.

Using the above definition, we can easily prove the following lemma.

Lemma 2.9. If $f:\left(X, \delta_{1}\right) \rightarrow\left(Y, \delta_{2}\right)$ is a fuzzy quasi-proximity map, then:
(a) $f:\left(X, \delta_{1}^{-1}\right) \rightarrow\left(Y, \delta_{2}^{-1}\right)$ is a fuzzy quasi-proximity map,
(b) $f:\left(X, \delta_{1}^{*}\right) \rightarrow\left(Y, \delta_{2}^{*}\right)$ is a fuzzy quasi-proximity map.

We will investigate relationships between fuzzy topological spaces and fuzzy quasi-proximity spaces.

Theorem 2.10. If a function $f:\left(X, \delta_{1}\right) \rightarrow\left(Y, \delta_{2}\right)$ is a fuzzy quasiproximity map, then:
(a) $f:\left(X, \mathcal{T}_{\delta_{1}}\right) \rightarrow\left(Y, \mathcal{T}_{\delta_{2}}\right)$ is a gp-map,
(b) $f:\left(X, \mathcal{T}_{\delta_{1}^{-1}}\right) \rightarrow\left(Y, \mathcal{T}_{\delta_{2}^{-1}}\right)$ is a $g p-m a p$,
(c) $f:\left(X, \mathcal{T}_{\delta_{1}^{*}}\right) \rightarrow\left(Y, \mathcal{T}_{\delta_{2}^{*}}\right)$ is a gp-map.

Proof. (a). Suppose that f is not a gp-map. Then there exists $\lambda \in I^{Y}$ such that $\mathcal{T}_{\delta_{2}}(\lambda)>\mathcal{T}_{\delta_{1}}\left(f^{-1}(\lambda)\right)$. Hence there exists $r \in I$ such that $\mathcal{T}_{\delta_{2}}(\lambda)>r>\mathcal{T}_{\delta_{1}}\left(f^{-1}(\lambda)\right)$. Since $\mathcal{T}_{\delta_{2}}(\lambda)>r$, for some $c>r$, then

$$
\lambda=i_{\delta_{2}}(\lambda, c)=\bigvee\left\{\rho \mid \delta_{2}(\rho, \tilde{1}-\lambda)<c\right\}
$$

Since f is a fuzzy quasi-proximity map, by Lemma 1.2 , we have

$$
\begin{aligned}
f^{-1}(\lambda) & =\bigvee\left\{f^{-1}(\rho) \mid \delta_{2}(\rho, \tilde{1}-\lambda)<c\right\} \\
& \leq \bigvee\left\{f^{-1}(\rho) \mid \delta_{1}\left(f^{-1}(\rho), \tilde{1}-f^{-1}(\lambda)\right)<c\right\} \\
& \leq i_{\delta_{1}}\left(f^{-1}(\lambda), c\right)
\end{aligned}
$$

So, by Theorem 2.3 (ii), we have $i_{\delta_{1}}\left(f^{-1}(\lambda), c\right)=f^{-1}(\lambda)$. It follows that $\mathcal{T}_{\delta_{1}}\left(f^{-1}(\lambda)\right) \geq c>r$. It is a contradiction.
(b) and (c) are easy from Lemma 2.9 and (a).

3. Initial fuzzy quasi-proximity structures

Now we will prove the existence of initial fuzzy quasi-proximity structures.

Definition 3.1. Let $\left(X_{i}, \delta_{i}\right)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \triangle, f_{i}: X \rightarrow X_{i}$ a function. The initial structure δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \triangle, f_{i}$ is a fuzzy quasi-proximity map.

Theorem 3.2. (Existence of initial structures) Let $\left(X_{i}, \delta_{i}\right)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let X be a set and, for each $i \in \triangle, f_{i}: X \rightarrow X_{i}$ a mapping. Define the function $\delta: I^{X} \times I^{X} \rightarrow I$ on X by

$$
\delta(\lambda, \mu)=\inf \left\{\bigvee_{j, k} \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right\},
$$

where for every finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee_{j=1}^{n} \lambda_{j}$ and $\mu=\bigvee_{k=1}^{m} \mu_{k}$. Then:
(1) δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \triangle, f_{i}$ is a fuzzy quasi-proximity map.
(2) A map $f:\left(Y, \delta^{\prime}\right) \rightarrow(X, \delta)$ is a fuzzy quasi-proximity map iff each $f_{i} \circ f:\left(Y, \delta^{\prime}\right) \rightarrow\left(X_{i}, \delta_{i}\right)$ is a fuzzy quasi-proximity map.

Proof. (1). First, we will show that δ is a fuzzy quasi-proximity on X.
(FQP1). Since $\delta_{i}\left(f_{i}(\lambda), \tilde{0}\right)=0$ for all $\lambda \in I^{X}$, it is clear.
(FQP2). For any $\lambda, \mu, \nu \in I^{X}$, we will show that

$$
\delta(\lambda, \mu \vee \nu) \leq \delta(\lambda, \mu) \vee \delta(\lambda, \nu)
$$

Suppose that there exist $\lambda, \mu, \nu \in I^{X}$ such that

$$
c=\delta(\lambda, \mu \vee \nu)>\delta(\lambda, \mu) \vee \delta(\lambda, \nu)
$$

There are finite families $\left(\lambda_{j}\right),\left(\lambda_{m}^{\prime}\right),\left(\mu_{k}\right)$ and $\left(\nu_{l}\right)$ such that $\lambda=$ $\bigvee \lambda_{j}=\bigvee \lambda_{m}^{\prime}, \quad \mu=\bigvee \mu_{k}$ and $\nu=\bigvee \nu_{l}$ with

$$
c>\bigvee_{j, k}\left(i n f_{i \in \triangle} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right), \quad c>\bigvee_{m, l}\left(i n f_{i \in \triangle} \delta_{i}\left(f_{i}\left(\lambda_{m}^{\prime}\right), f_{i}\left(\nu_{l}\right)\right)\right)
$$

It follows that $\lambda=\bigvee_{j, m}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right)$ and $\mu \vee \nu=\left(\bigvee \mu_{k}\right) \vee\left(\bigvee \nu_{l}\right)$.

$$
\begin{aligned}
& \text { Since } \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right) \geq \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right), f_{i}\left(\mu_{k}\right)\right) \\
& \text { and } \inf f_{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{m}^{\prime}\right), f_{i}\left(\nu_{l}\right)\right) \geq \inf f_{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right), f_{i}\left(\nu_{l}\right)\right) \\
& c>\left(\bigvee_{j, k} \inf f_{i \in \triangle} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right) \vee\left(\bigvee_{m, l} \operatorname{in} f_{i \in \triangle} \delta_{i}\left(f_{i}\left(\lambda_{m}^{\prime}\right), f_{i}\left(\nu_{l}\right)\right)\right) \\
& \geq\left(\bigvee_{j, k} \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right), f_{i}\left(\mu_{k}\right)\right)\right) \\
& \quad \vee\left(\bigvee_{m, l} \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j} \wedge \lambda_{m}^{\prime}\right), f_{i}\left(\nu_{l}\right)\right)\right) \\
& \quad \geq \delta(\lambda, \mu \vee \nu)=c .
\end{aligned}
$$

It is a contradiction.
Similarly, we have $\delta(\lambda \vee \rho, \mu) \leq \delta(\lambda, \mu) \vee \delta(\rho, \mu)$.
(FQP3). If for any $\lambda, \mu \in I^{X}, \delta(\lambda, \mu)<r$, we will show that there exists $\rho \in I^{X}$ such that $\delta(\lambda, \rho)<r$ and $\delta(\tilde{1}-\rho, \mu)<r$.

If for any $\lambda, \mu \in I^{X}, \delta(\lambda, \mu)<r$, then there are finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee_{j=1}^{p} \lambda_{j}, \quad \mu=\bigvee_{k=1}^{q} \mu_{k}$ with

$$
\delta(\lambda, \mu) \leq \bigvee_{j, k} i n f_{i \in \Delta}\left(\delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)<r\right.
$$

i.e., for all $j, k, \inf f_{i \in \Delta}\left(\delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)<r\right.$. It follows that for any j, k, there exists an $i_{j k} \in \triangle$ such that $\delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}\right), f_{i_{j k}}\left(\mu_{k}\right)\right)<r$. Since $\delta_{i_{j k}}$ is a fuzzy quasi-proximity on $X_{i_{j k}}$, by (FQP3), there exists $\rho_{j k} \in I^{X_{i_{j k}}}$ such that $\left.\delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}\right), \rho_{j k}\right)\right)<r$ and $\delta_{i_{j k}}\left(\tilde{1}-\rho_{j k}, f_{i_{j k}}\left(\mu_{k}\right)\right)<r$.

Put

$$
\rho_{j}=\bigvee_{k=1}^{q} f_{i_{j k}}^{-1}\left(\rho_{j k}\right), \quad \rho=\bigwedge_{j=1}^{p} \rho_{j} .
$$

Since $f_{i_{j k}}\left(f_{i_{j k}}^{-1}\left(\rho_{j k}\right)\right) \leq \rho_{j k}$, then

$$
\begin{aligned}
\delta\left(\lambda_{j}, \rho_{j}\right) & \leq \bigvee_{k=1}^{q} \delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}\right), f_{i_{j k}}\left(f_{i_{j k}}^{-1}\left(\rho_{j k}\right)\right)\right) \\
& \leq \bigvee_{k=1}^{q} \delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}\right), \rho_{j k}\right)<r .
\end{aligned}
$$

Using (FQP2) and Remark 1, we have $\delta(\lambda, \rho)<r$.
In a similar way, by the definition of δ, for all $k=1, \ldots, q$,

$$
\delta\left(f_{i_{j k}}^{-1}\left(\tilde{1}-\rho_{j k}\right), \mu_{k}\right) \leq \delta_{i_{j k}}\left(\tilde{1}-\rho_{j k}, \mu_{k}\right)<r,
$$

because $f_{i_{j k}}\left(f_{i_{j k}}^{-1}\left(\tilde{1}-\rho_{j k}\right)\right) \leq \tilde{1}-\rho_{j k}$. By Remark 1 , we have $\delta(\tilde{1}-$ $\left.\rho_{j}, \mu_{k}\right)<r$. By (FQP2), we have $\delta\left(\tilde{1}-\rho, \mu_{k}\right)<r$ and $\delta(\tilde{1}-\rho, \mu)<r$.
(FQP4). We will show that if $\lambda \not \leq \tilde{1}-\mu$, then $\delta(\lambda, \mu)=1$.
If $\lambda \not \leq \tilde{1}-\mu$, then, for every finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=$ $\bigvee \lambda_{j}$ and $\mu=\bigvee \mu_{k}$, there exist j_{0}, k_{0}, x_{0} such that $\lambda_{j_{0}}\left(x_{0}\right)+\mu_{k_{0}}\left(x_{0}\right)>$ 1. It follows that, for all $i \in \triangle$,

$$
f_{i}\left(\lambda_{j_{0}}\right)\left(f_{i}\left(x_{0}\right)\right)+f_{i}\left(\mu_{k_{0}}\right)\left(f_{i}\left(x_{0}\right)\right) \geq \lambda_{j_{0}}\left(x_{0}\right)+\mu_{k_{0}}\left(x_{0}\right)>1 .
$$

Since for each $i \in \triangle$, δ_{i} is a fuzzy quasi-proximity on X_{i}, we have $\delta_{i}\left(\lambda_{j_{0}}, \mu_{k_{0}}\right)=1$. Hence $\delta(\lambda, \mu)=1$.

Second, from the definition of δ, since

$$
\begin{aligned}
\delta(\lambda, \mu) & =\inf \left\{\bigvee_{j, k} \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right\} \\
& \leq \inf \left\{\bigvee_{j, k} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right\} \\
& =\delta_{i}\left(f_{i}(\lambda), f_{i}(\mu)\right)(\text { by FQP } 2),
\end{aligned}
$$

for each $i \in \triangle, f_{i}:(X, \delta) \rightarrow\left(X_{i}, \delta_{i}\right)$ is a fuzzy quasi-proximity map.
If $f_{i}:\left(X, \delta^{\prime}\right) \rightarrow\left(X_{i}, \delta_{i}\right)$ is a fuzzy quasi-proximity map, then, for every $i \in \triangle$, since

$$
\begin{aligned}
\delta(\lambda, \mu) & =\inf \left\{\bigvee_{j, k} \inf _{i \in \triangle} \delta_{i}\left(f_{i}\left(\lambda_{j}\right), f_{i}\left(\mu_{k}\right)\right)\right\} \\
& \geq \inf \left\{\bigvee_{j, k} \delta^{\prime}\left(\lambda_{j}, \mu_{k}\right)\right\} \\
& =\delta^{\prime}(\lambda, \mu)(\text { by FQP } 2),
\end{aligned}
$$

we have $\delta^{\prime}(\lambda, \mu) \leq \delta(\lambda, \mu), \quad \forall \lambda, \mu \in I^{X}$.
(2). Necessity of the composition condition is clear since the composition of fuzzy quasi-proximity maps is a fuzzy quasi-proximity map.

Conversely, suppose f is not a fuzzy quasi-proximity map. Then there exists $\lambda, \mu \in I^{Y}$ such that

$$
\delta^{\prime}(\lambda, \mu)>\delta(f(\lambda), f(\mu))
$$

Therefore there are finite families $\left(\lambda_{j}^{\prime}\right),\left(\mu_{k}^{\prime}\right)$ such that

$$
\begin{aligned}
f(\lambda)=\bigvee_{j=1}^{p} \lambda_{j}^{\prime}, f(\mu) & =\bigvee_{k=1}^{q} \mu_{k}^{\prime}, \text { and } \\
\delta^{\prime}(\lambda, \mu) & >\bigvee_{j, k} \inf _{i \in \Delta} \delta_{i}\left(f_{i}\left(\lambda_{j}^{\prime}\right), f_{i}\left(\mu_{k}^{\prime}\right)\right) .
\end{aligned}
$$

It follows that for any j, k, there exists an $i_{j k} \in \triangle$ such that

$$
\delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}^{\prime}\right), f_{i_{j k}}\left(\mu_{k}^{\prime}\right)\right)<\delta^{\prime}(\lambda, \mu) .
$$

On the other hand, $f_{i} \circ f$ is a fuzzy quasi-proximity map. For any j, k, by Lemma 1.2 , since $f_{i}\left(f\left(f^{-1}\left(\lambda_{j}^{\prime}\right)\right)\right) \leq f_{i}\left(\lambda_{j}^{\prime}\right)$,

$$
\delta^{\prime}\left(f^{-1}\left(\lambda_{j}^{\prime}\right), f^{-1}\left(\mu_{k}^{\prime}\right)\right) \leq \delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}^{\prime}\right), f_{i_{j k}}\left(\mu_{k}^{\prime}\right)\right)
$$

Since $\lambda \leq f^{-1}(f(\lambda))=\bigvee_{j=1}^{p} f^{-1}\left(\lambda_{j}^{\prime}\right)$, we have

$$
\begin{aligned}
\delta^{\prime}(\lambda, \mu) & \leq \bigvee_{j, k} \delta^{\prime}\left(f^{-1}\left(\lambda_{j}^{\prime}\right), f^{-1}\left(\mu_{k}^{\prime}\right)\right)(\text { by FQP } 2 \text { and Lemma 1.2) } \\
& \leq \bigvee_{j, k} \delta_{i_{j k}}\left(f_{i_{j k}}\left(\lambda_{j}^{\prime}\right), f_{i_{j k}}\left(\mu_{k}^{\prime}\right)\right) \\
& <\delta^{\prime}(\lambda, \mu) .
\end{aligned}
$$

It is a contradiction.
By the above theorem, we can define subspaces and products in the obvious way.

Definition 3.3. Let (X, δ) be a fuzzy quasi-proximity and A be a subset of X. The pair $\left(A, \delta_{A}\right)$ is said to be a subspace of (X, δ) if it is endowed with the initial fuzzy quasi-proximity structure with respect to the inclusion map.

Definition 3.4. Let X be the product $\prod_{i \in \triangle} X_{i}$ of the family $\left\{\left(X_{i}, \delta_{i}\right) \mid i \in \triangle\right\}$ of fuzzy quasi-proximity spaces. An initial fuzzy quasi-proximity structure $\delta=\otimes \delta_{i}$ on X with respect to all the projections $\pi_{i}: X \rightarrow X_{i}$ is called the product fuzzy quasi-proximity structure of $\left\{\delta_{i} \mid i \in \triangle\right\}$, and $\left(X, \otimes \delta_{i}\right)$ is called the product fuzzy quasi-proximity space.

Using Theorem 3.2, we have the following corollary.
Corollary 3.5. Let $\left(X_{i}, \delta_{i}\right)_{i \in \Delta}$ be a family of fuzzy quasi-proximity spaces. Let $X=\prod_{i \in \triangle} X_{i}$ be a set and, for each $i \in \triangle, \pi_{i}: X \rightarrow X_{i}$ a mapping. The structure $\delta=\otimes \delta_{i}$ on X is defined by

$$
\delta(\lambda, \mu)=\inf \left\{\bigvee_{j, k} \inf f_{i \in \triangle} \delta_{i}\left(\pi_{i}\left(\lambda_{j}\right), \pi_{i}\left(\mu_{k}\right)\right)\right\},
$$

where for every finite families $\left(\lambda_{j}\right),\left(\mu_{k}\right)$ such that $\lambda=\bigvee_{j=1}^{n} \lambda_{j}$ and $\mu=\bigvee_{k=1}^{m} \mu_{k}$. Then:
(1) δ is the coarsest fuzzy quasi-proximity on X with respect to which for each $i \in \triangle, \pi_{i}$ is a fuzzy quasi-proximity map.
(2) A map $f:\left(Y, \delta^{\prime}\right) \rightarrow(X, \delta)$ is a fuzzy quasi-proximity map iff each $\pi_{i} \circ f:\left(Y, \delta^{\prime}\right) \rightarrow\left(X_{i}, \delta_{i}\right)$ is a fuzzy quasi-proximity map.

References

1. G.Artico and R.Moresco, Fuzzy proximities compatible with Lowen fuzzy uniformities, Fuzzy sets and Systems 21 (1987), 85-98.
2. A.K. Katsaras and C.G. Petalas, On fuzzy syntopogenous structures, J. Math. Anal. Appl 99(1) (1984), 219-236.
3. A.K. Katsaras, Operations on fuzzy syntopogenous structures, Fuzzy sets and Systems 43 (1991), 199-217.
4. A.K. Katsaras, Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy sets and Systems 27 (1988), 335-343.
5. M.H. Ghanim, O.A. Tantawy and Fawzia M. Selim, Gradations of uniformity and gradations of proximity, Fuzzy sets and Systems 79 (1996), 373-382.
6. A.S. Mashhour, R. Badard and A.A. Ramadan, Smooth preuniform and preproximity spaces, Fuzzy sets and Systems 59 (1993), 95-107.
7. A.A. Ramadan, Smooth topological spaces, Fuzzy sets and Systems 48 (1992), 371-375.
8. S.K. Samanta, Fuzzy proximities and fuzzy uniformities, Fuzzy sets and Systems 70 (1995), 97-105.
9. S.K. Samanta and K.C. Chattopadhyay, Fuzzy topology, Fuzzy sets and Systems 54 (1993), 207-212.
10. R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, Fuzzy topology redefined, Fuzzy sets and Systems 45 (1992), 79-82.
11. R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, Gradation of openness: Fuzzy topology, Fuzzy sets and Systems 49(2) (1992), 237-242.

Yong Chan Kim
Department of Mathematics
Kangnung National University
Kangnung 210-702, Korea
Jin Won Park
Department of Mathematics Education
Cheju National University
Cheju 690-756, Korea

[^0]: Received November 5, 1996.
 1991 Mathematics Subject Classification: 54A40.
 Key words and phrases: fuzzy quasi-proximity spaces, fuzzy quasi-proximity maps.

