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SOME PROPERTIES OF FUZZY
QUASI-PROXIMITY SPACES

Yong Chan Kim and Jin Won Park

Abstract. We will define the fuzzy quasi-proximity space and

investigate some properties of fuzzy quasi-proximity spaces. We

will prove the existences of initial fuzzy quasi-proximity structures.
From this fact, we can define subspaces and products of fuzzy quasi-

proximity spaces.

1. Introduction and preliminaries

In [ 8, 9,10,11], S.K. Samanta introduced the concept of gradations
of openness and proximity. M.H. Ghanim et al.[5] introduced fuzzy
proximity spaces with somewhat different definition of S.K. Samanta
[8].

In this paper, we will define the fuzzy quasi-proximity space in view
of the definition of M.H. Ghanim et al.[5]. We will investigate some
properties of fuzzy quasi-proximity spaces. We will study relationships
between fuzzy quasi-proximity spaces and fuzzy topological spaces.

In particular, we will prove the existence of initial fuzzy quasi-
proximity structures. From this fact, we can define subspaces and
products of fuzzy quasi-proximity spaces.

In this paper, all the notations and the definitions are standard in
fuzzy set theory.

Definition 1.1. [11] Let X be a nonempty set. A function
T : IX → I is called a gradation of openness on X if it satisfies the
following conditions:

(c1) T (0̃) = T (1̃) = 1,
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(c2) T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2),
(c3) T (

∨
i∈4 µi) ≥

∧
i∈4 T (µi).

The pair (X, T ) is called a fuzzy topological space.

Let T be a gradation of openness on X and F : IX → I be defined
by F(µ) = T (µc). Then F is called a gradation of closedness on X.

Let (X, T ) be a fuzzy topological space, then for each r ∈ I, Tr =
{µ ∈ IX | T (µ) ≥ r} is a Chang’s fuzzy topology on X.

Let (X, T ) and (Y, T ∗) be fuzzy topological spaces. A function
f : (X, T ) → (Y, T ∗) is called a gradation preserving map ( gp-map) if
T ∗(µ) ≤ T (f−1(µ)) for all µ ∈ IX .

A function δ : IX × IX → I is a fuzzy proximity on X [8] if it satisfies
the following conditions:

(SFP1) δ(0̃, 1̃) = 0.
(SFP2) δ(λ, µ) = δ(µ, λ).
(SFP3) δ(λ1 ∨ λ2, µ) = δ(λ1, µ) ∨ δ(λ2, µ).
(SFP4) If δ(λ, µ) < 1− r, then δ(cl(λ, r), µ) < 1− r, where

cl(λ, r) = 1̃−
∨
{ρ ≤ λc | δ(λ, ρ) < 1− r}.

The pair (X, δ) is called a Samanta type fuzzy proximity space.
We can easily prove the following lemma.

Lemma 1.2. If f : X → Y , then we have the following properties
for direct and inverse image of fuzzy sets under mappings:

(1) µ ≥ f(f−1(µ)) with equality if f is surjective,
(2) ν ≤ f−1(f(ν)) with equality if f is injective,
(3) f−1(µc) = f−1(µ)c

,
(4) f−1(

∨
i∈I µi) =

∨
i∈I f−1(µi),

(5) f−1(
∧

i∈I µi) =
∧

i∈I f−1(µi),
(6) f(

∨
i∈I νi) =

∨
i∈I f(νi),

(7) f(
∧

i∈I µi) ≤
∧

i∈I f(µi) with equality if f is injective.

2. Fuzzy quasi-proximity and fuzzy topological spaces

From the definition of M.H. Ghanim [5], we can define a fuzzy quasi-
proximity.
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Definition 2.1. A function δ : IX × IX → I is said to be a fuzzy
quasi-proximity on X which satisfies the following conditions:

(FQP1) δ(0̃, 1̃) = 0 and δ(1̃, 0̃) = 0.
(FQP2) δ(λ∨ρ, µ) = δ(λ, µ)∨ δ(ρ, µ) and δ(λ, µ∨ν) = δ(λ, µ)∨ δ(λ, ν).
(FQP3) If δ(λ, µ) < r, then there exists ρ ∈ IX such that δ(λ, ρ) < r

and δ(1̃− ρ, µ) < r.
(FQP4) If δ(λ, µ) 6= 1, then λ ≤ 1̃− µ.
The pair (X, δ) is called a fuzzy quasi-proximity space.

A fuzzy quasi-proximity space (X, δ) is called a fuzzy proximity space
if (FP) δ(λ, µ) = δ(µ, λ) for any λ, µ ∈ IX .

Let (X, δ1), (X, δ2) be given. We say δ2 is finer than δ1 ( δ1 is coarser
than δ2), denoted by δ1 ≺ δ2, iff for any λ, µ ∈ IX , δ2(λ, µ) ≤ δ1(λ, µ).

Remark 1. (1) If (X, δ) is a fuzzy quasi-proximity space and λ ≤ µ,
then, by (FQP2), we have δ(λ, ν) ≤ δ(µ, ν) and δ(ρ, λ) ≤ δ(ρ, µ).

(2) Let (X, δ) be a fuzzy quasi-proximity space. For each λ, µ ∈ IX ,
we define δ−1(λ, µ) = δ(µ, λ). Then the structure δ−1 is a fuzzy quasi-
proximity on X.

(3) Every fuzzy proximity space in our sense is a Samanta type
fuzzy proximity space. If δ(λ, µ) < 1− r, by (FQP3), then there exists
ρ ∈ IX such that δ(λ, ρ) < 1 − r and δ(1̃ − ρ, µ) < 1 − r. Since
δ(λ, ρ) < 1 − r, by (FQP4) and the definition of cl(λ, r), we have
ρ ≤ 1̃ − λ and cl(λ, r) ≤ 1̃ − ρ. So, by (FQP2), δ(cl(λ, r), µ) < 1 − r.
Thus (SFP4) holds.

Theorem 2.2. [5] Let (X, δ) be a fuzzy quasi-proximity space, then
for each r ∈ (0, 1], the family δr = {(λ, µ) ∈ IX × IX | δ(λ, µ) ≥ r} is
a (classical) fuzzy quasi-proximity space on X.

Theorem 2.3. [5] Let δ be a fuzzy quasi-proximity on X. For each
r ∈ (0, 1], λ ∈ IX , we define

iδ(λ, r) =
∨
{ρ ∈ IX | δ(ρ, 1̃− λ) < r}.

The family {iδ(λ, r) | r ∈ (0, 1]} satisfies the followings properties:

(i) iδ(1̃, r) = 1̃.
(ii) iδ(λ, r) ≤ λ and iδ(λ1, r) ≤ iδ(λ2, r), if λ1 ≤ λ2.
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(iii) iδ(iδ(λ, r), r) = iδ(λ, r).
(iv) iδ(λ ∧ µ, r) = iδ(λ, r) ∧ iδ(µ, r).
(v) iδ(λ, r) ≤ iδ(λ, r′), if r ≤ r′, where r, r′ ∈ (0, 1].

Theorem 2.4. Let δ be a fuzzy quasi-proximity on X. For each
r ∈ (0, 1], λ ∈ IX , we define

cδ(λ, r) =
∧
{ρc ∈ IX | δ(ρ, λ) < r}.

The family {cδ(λ, r) | r ∈ (0, 1]} satisfies the following properties:

(i) cδ(0̃, r) = 0̃, cδ(1̃, r) = 1̃.
(ii) cδ(λ, r) ≥ λ.
(iii) cδ(λ1, r) ≤ cδ(λ2, r), if λ1 ≤ λ2.
(iv) cδ(λ ∨ µ, r) = cδ(λ, r) ∨ cδ(µ, r).
(v) cδ(cδ(λ, r), r) = cδ(λ, r).
(vi) cδ(λ, r) ≥ cδ(λ, r′), if r ≤ r′, where r, r′ ∈ (0, 1].

Proof. (i),(iii) and (vi) are easily proved from the definition of cδ.
(ii). Suppose that there exists λ ∈ IX such that for some x0 ∈ X,

cδ(λ, r)(x0) < λ(x0). By the definition of cδ(λ, r), there exists ρ ∈ IX

such that (1̃− ρ)(x0) < λ(x0) and δ(ρ, λ) < r.
On the other hand, since (1̃− ρ)(x0) < λ(x0), by (FQP4), we have

δ(ρ, λ) = 1. It is a contradiction.
(iv). By (iii), we have cδ(λ ∨ µ, r) ≥ cδ(λ, r) ∨ cδ(µ, r).
We will show that cδ(λ ∨ µ, r) ≤ cδ(λ, r) ∨ cδ(µ, r).
Suppose that there exist λ, µ ∈ IX such that for some x0 ∈ X,

cδ(λ ∨ µ, r)(x0) > cδ(λ, r)(x0) ∨ cδ(µ, r)(x0).

There exists ρ1, ρ2 ∈ IX such that δ(ρ1, λ) < r, δ(ρ2, µ) < r and

cδ(λ ∨ µ, r)(x0) > (1̃− ρ1)(x0) ∨ (1̃− ρ2)(x0).

On the other hand, by Remark 1 and (FQP2), since

δ(ρ1 ∧ ρ2, λ ∨ µ) ≤ δ(ρ1, λ) ∨ δ(ρ2, µ) < r,
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we have cδ(λ ∨ µ, r) ≤ (1̃− ρ1) ∨ (1̃− ρ2). It is a contradiction.
(v). By (ii), it suffices to show that cδ(cδ(λ, r), r) ≤ cδ(λ, r).
Suppose that there exists λ ∈ IX such that for some x0 ∈ X,

cδ(cδ(λ, r), r)(x0) > cδ(λ, r)(x0). There exists ρ ∈ IX such that

cδ(cδ(λ, r), r)(x0) > (1̃− ρ)(x0), δ(ρ, λ) < r.

Since δ(ρ, λ) < r, there exists µ ∈ IX such that δ(ρ, µ) < r and
δ(1̃ − µ, λ) < r. Hence cδ(λ, r) ≤ µ. It follow that δ(ρ, cδ(λ, r)) < r.
Therefore cδ(cδ(λ, r), r) ≤ 1̃− ρ. It is a contradiction. � �

Theorem 2.5. [5] Let (X, δ) be a fuzzy quasi-proximity space. De-
fine the function Tδ : IX → I on X by

Tδ(λ) =
∨
{r ∈ (0, 1] | iδ(λ, r) = λ}.

Then Tδ is a gradation of openness on X.

Remark 2. Let Tδ be a gradation of openness on X. By definitions
of cδ and iδ, a function Fδ(µ) = Tδ(µc) =

∨
{r ∈ (0, 1] | cδ(µ, r) = µ}

is a gradation of closedness on X.

Let (X, δ1) and (X, δ2) be fuzzy quasi-proximity spaces. Unfortu-
nately, a structure δ1 ∧ δ2 defined by δ1 ∧ δ2(λ, µ) = δ1(λ, µ) ∧ δ2(λ, µ)
is not a fuzzy quasi-proximity on X.

We will construct the coarsest fuzzy quasi-proximity on X finer than
δ1 and δ2.

Theorem 2.6. Let (X, δ1) and (X, δ2) be fuzzy quasi-proximity
spaces. We define, for all λ, µ ∈ IX ,

δ1 u δ2(λ, µ) = inf{
∨
j,k

(δ1(λj , µk) ∧ δ2(λj , µk))}

where for every finite families (λj), (µk) such that λ =
∨

λj and µ =∨
µk. Then the structure δ1 u δ2 is the coarsest fuzzy quasi-proximity

on X finer than δ1 and δ2.
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Proof. First, we will show that δ1 u δ2 is a fuzzy quasi-proximity on
X.

(FQP1). Since, for each λ ∈ IX , δi(λ, 0̃) = 0, it is easily proved.
(FQP2). For any λ, µ, ν ∈ IX , we will show that

δ1 u δ2(λ, µ ∨ ν) ≤ δ1 u δ2(λ, µ) ∨ δ1 u δ2(λ, ν).

Suppose that there exist λ, µ, ν ∈ IX

c = δ1 u δ2(λ, µ ∨ ν) > δ1 u δ2(λ, µ) ∨ δ1 u δ2(λ, ν).

There are finite families (λj), (λ′m), (µk) and (νl) such that λ =
∨

λj =∨
λ′m, µ =

∨
µk and ν =

∨
νl with

c >
∨
j,k

(δ1(λj , µk) ∧ δ2(λj , µk)), c >
∨
m,l

(δ1(λ′m, νl) ∧ δ2(λ′m, νl)).

It follows that λ =
∨

j,m(λj ∧ λ′m) and µ ∨ ν = (
∨

µk) ∨ (
∨

νl). Since

δ1(λj , µk) ∧ δ2(λj , µk) ≥ δ1(λj ∧ λ′m, µk) ∧ δ2(λj ∧ λ′m, µk),

δ1(λ′m, νl) ∧ δ2(λ′m, νl) ≥ δ1(λj ∧ λ′m, νl) ∧ δ2(λj ∧ λ′m, νl),

we have

c > (
∨
j,k

(δ1(λj , µk) ∧ δ2(λj , µk))) ∨ (
∨
m,l

(δ1(λ′m, νl) ∧ δ2(λ′m, νl)))

≥ (
∨
j,k

(δ1(λj ∧ λ′m, µk)) ∧ δ2(λj ∧ λ′m, µk)))

∨ (
∨
m,l

(δ1(λj ∧ λ′m, νl) ∧ δ2(λj ∧ λ′m, νl)))

≥ δ1 u δ2(λ, µ ∨ ν) = c.

It is a contradiction.
Similarly, we have δ1 u δ2(λ ∨ ρ, µ) ≤ δ1 u δ2(λ, µ) ∨ δ1 u δ2(ρ, µ).
(FQP3). If for any λ, µ ∈ IX , δ1 u δ2(λ, µ) < r, we will show that

there exists ρ ∈ IX such that δ1uδ2(λ, ρ) < r and δ1uδ2(1̃−ρ, µ) < r.
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If for any λ, µ ∈ IX , δ1 u δ2(λ, µ) < r, then there are finite families
(λj), (µk) such that λ =

∨p
j=1 λj , µ =

∨q
k=1 µk with for all j, k,

δ1(λj , µk)∧ δ2(λj , µk) < r. For any j, k, there exists i = i(j, k) ∈ {1, 2}
such that δi(λj , µk) < r. Since δi is a fuzzy quasi-proximity on X, there
exists ρjk ∈ IX such that δi(λj , ρjk) < r and δi(1̃− ρjk, µk) < r.

Put

ρj =
q∨

k=1

ρjk, ρ =
p∧

j=1

ρj .

Then, by the definition of δ1 u δ2, we have δ1 u δ2(λj , ρj) < r. Using
(FQP2) and Remark 1, we have δ1 u δ2(λ, ρ) < r.

In a similar way, we have δ1 u δ2(1̃− ρjk, µk) ≤ δi(1̃− ρjk, µk) < r.
Thus δ1uδ2(1̃−ρj , µk) < r. By (FQP2), we have δ1uδ2(1̃−ρ, µk) < r

and δ1 u δ2(1̃− ρ, µ) < r.
(FQP4). We will show that if λ 6≤ 1̃− µ, then δ1 u δ2(λ, µ) = 1.
If λ 6≤ 1̃ − µ, then, for every finite families (λj), (µk) such that

λ =
∨

λj and µ =
∨

µk, there exist j0, k0, x0 such that λj0(x0) +
µk0(x0) > 1. Since δ1, δ2 are fuzzy quasi-proximities on X, we have
δ1(λj0 , µk0) = 1 and δ2(λj0 , µk0) = 1. Hence we have δ1 u δ2(λ, µ) = 1.

Second, it is proved that δ1 u δ2 � δ1 from the following:

δ1 u δ2(λ, µ) = inf{
∨
j,k

(δ1(λj , µk) ∧ δ2(λj , µk))}

≤ inf{
∨
j,k

(δ1(λj , µk)}

= δ1(λ, µ) (by FQP 2).

Similarly, we have δ1 u δ2 � δ2.
Finally, if δ1 ≺ δ and δ2 ≺ δ, then we have

δ1 u δ2(λ, µ) = inf{
∨
j,k

(δ1(λj , µk) ∧ δ2(λj , µk))}

≥ inf{
∨
j,k

δ(λj , µk)} ( since δi ≺ δ)

= δ(λ, µ) (by FQP 2).

It follows that δ1 u δ2 ≺ δ. � �
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Let (X, δ) be a fuzzy quasi-proximity space. For each λ, µ ∈ IX , we
define δ∗(λ, µ) = δ u δ−1(λ, µ). By the above theorem, we can easily
prove that (X, δ∗) is a fuzzy proximity space.

Theorem 2.7. Let λ, µ ∈ IX be given in a fuzzy quasi-proximity
space on (X, δ). Then for each r ∈ (0, 1], the followings are equivalent:

(1) δ(λ, µ) ≥ r,
(2) δ(cδ∗(λ, r), cδ∗(µ, r)) ≥ r,
(3) δ(cδ−1(λ, r), cδ(µ, r)) ≥ r.

Proof. Since λ ≤ cδ∗(λ, r) ≤ cδ−1(λ, r) and µ ≤ cδ∗(µ, r) ≤ cδ(µ, r),
we have (1) ⇒ (2) ⇒ (3) from the following:

δ(λ, µ) ≤ δ(cδ∗(λ, r), cδ∗(µ, r)) ≤ δ(cδ−1(λ, r), cδ(µ, r)).

We will show that (3) ⇒ (1). Suppose that there exists λ, µ ∈ IX

such that
δ(λ, µ) < r ≤ δ(cδ−1(λ, r), cδ(µ, r)).

Since δ(λ, µ) < r, by (FQP3), there exists ρ ∈ IX such that

δ(λ, ρ) < r, δ(1̃− ρ, µ) < r.

Since δ(1̃ − ρ, µ) < r, we have cδ(µ, r) ≤ ρ. Since δ(λ, ρ) < r and
cδ(µ, r) ≤ ρ, we have δ(λ, cδ(µ, r)) < r. Again, since δ(λ, cδ(µ, r)) < r,
there exists ν ∈ IX such that

δ(λ, ν) < r, δ(1̃− ν, cδ(µ, r)) < r.

Now, since δ−1(ν, λ) = δ(λ, ν) < r, we have cδ−1(λ, r) ≤ 1̃ − ν. Hence
δ(cδ−1(λ, r), cδ(µ, r)) < r. It is a contradiction. � �

Definition 2.8. Let (X, δ1) and (Y, δ2) be fuzzy quasi-proximity
spaces. A function f : (X, δ1) → (Y, δ2) is a fuzzy quasi-proximity map
if it satisfies δ1(µ, ν) ≤ δ2(f(µ), f(ν)), for every µ, ν ∈ IX .

Using the above definition, we can easily prove the following lemma.
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Lemma 2.9. If f : (X, δ1) → (Y, δ2) is a fuzzy quasi-proximity map,
then:

(a) f : (X, δ−1
1 ) → (Y, δ−1

2 ) is a fuzzy quasi-proximity map,
(b) f : (X, δ∗1) → (Y, δ∗2) is a fuzzy quasi-proximity map.

We will investigate relationships between fuzzy topological spaces
and fuzzy quasi-proximity spaces.

Theorem 2.10. If a function f : (X, δ1) → (Y, δ2) is a fuzzy quasi-
proximity map, then:

(a) f : (X, Tδ1) → (Y, Tδ2) is a gp-map,
(b) f : (X, Tδ−1

1
) → (Y, Tδ−1

2
) is a gp-map,

(c) f : (X, Tδ∗1
) → (Y, Tδ∗2

) is a gp-map.

Proof. (a). Suppose that f is not a gp-map. Then there exists
λ ∈ IY such that Tδ2(λ) > Tδ1(f

−1(λ)). Hence there exists r ∈ I such
that Tδ2(λ) > r > Tδ1(f

−1(λ)). Since Tδ2(λ) > r, for some c > r, then

λ = iδ2(λ, c) =
∨
{ρ | δ2(ρ, 1̃− λ) < c}.

Since f is a fuzzy quasi-proximity map, by Lemma 1.2, we have

f−1(λ) =
∨
{f−1(ρ) | δ2(ρ, 1̃− λ) < c}

≤
∨
{f−1(ρ) | δ1(f−1(ρ), 1̃− f−1(λ)) < c}

≤ iδ1(f
−1(λ), c).

So, by Theorem 2.3 (ii), we have iδ1(f
−1(λ), c) = f−1(λ). It follows

that Tδ1(f
−1(λ)) ≥ c > r. It is a contradiction.

(b) and (c) are easy from Lemma 2.9 and (a). � �

3. Initial fuzzy quasi-proximity structures

Now we will prove the existence of initial fuzzy quasi-proximity
structures.
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Definition 3.1. Let (Xi, δi)i∈4 be a family of fuzzy quasi-proximity
spaces. Let X be a set and, for each i ∈ 4, fi : X → Xi a function.
The initial structure δ is the coarsest fuzzy quasi-proximity on X with
respect to which for each i ∈ 4, fi is a fuzzy quasi-proximity map.

Theorem 3.2. (Existence of initial structures) Let (Xi, δi)i∈4 be
a family of fuzzy quasi-proximity spaces. Let X be a set and, for each
i ∈ 4, fi : X → Xi a mapping. Define the function δ : IX × IX → I
on X by

δ(λ, µ) = inf{
∨
j,k

infi∈4δi(fi(λj), fi(µk))},

where for every finite families (λj), (µk) such that λ =
∨n

j=1 λj and

µ =
∨m

k=1 µk. Then:

(1) δ is the coarsest fuzzy quasi-proximity on X with respect to
which for each i ∈ 4, fi is a fuzzy quasi-proximity map.

(2) A map f : (Y, δ′) → (X, δ) is a fuzzy quasi-proximity map iff
each fi ◦ f : (Y, δ′) → (Xi, δi) is a fuzzy quasi-proximity map.

Proof. (1). First, we will show that δ is a fuzzy quasi-proximity on
X.

(FQP1). Since δi(fi(λ), 0̃) = 0 for all λ ∈ IX , it is clear.
(FQP2). For any λ, µ, ν ∈ IX , we will show that

δ(λ, µ ∨ ν) ≤ δ(λ, µ) ∨ δ(λ, ν).

Suppose that there exist λ, µ, ν ∈ IX such that

c = δ(λ, µ ∨ ν) > δ(λ, µ) ∨ δ(λ, ν).

There are finite families (λj), (λ′m), (µk) and (νl) such that λ =∨
λj =

∨
λ′m, µ =

∨
µk and ν =

∨
νl with

c >
∨
j,k

(infi∈4δi(fi(λj), fi(µk))), c >
∨
m,l

(infi∈4δi(fi(λ′m), fi(νl))).

It follows that λ =
∨

j,m(λj ∧ λ′m) and µ ∨ ν = (
∨

µk) ∨ (
∨

νl).



Some properties of fuzzy quasi-proximity spaces 45

Since infi∈4δi(fi(λj), fi(µk)) ≥ infi∈4δi(fi(λj ∧ λ′m), fi(µk))
and infi∈4δi(fi(λ′m), fi(νl)) ≥ infi∈4δi(fi(λj ∧ λ′m), fi(νl)),

c > (
∨
j,k

infi∈4δi(fi(λj), fi(µk))) ∨ (
∨
m,l

infi∈4δi(fi(λ′m), fi(νl)))

≥ (
∨
j,k

infi∈4δi(fi(λj ∧ λ′m), fi(µk)))

∨ (
∨
m,l

infi∈4δi(fi(λj ∧ λ′m), fi(νl)))

≥ δ(λ, µ ∨ ν) = c.

It is a contradiction.
Similarly, we have δ(λ ∨ ρ, µ) ≤ δ(λ, µ) ∨ δ(ρ, µ).
(FQP3). If for any λ, µ ∈ IX , δ(λ, µ) < r, we will show that there

exists ρ ∈ IX such that δ(λ, ρ) < r and δ(1̃− ρ, µ) < r.
If for any λ, µ ∈ IX , δ(λ, µ) < r, then there are finite families

(λj), (µk) such that λ =
∨p

j=1 λj , µ =
∨q

k=1 µk with

δ(λ, µ) ≤
∨
j,k

infi∈4(δi(fi(λj), fi(µk)) < r

i.e., for all j, k, infi∈4(δi(fi(λj), fi(µk)) < r. It follows that for any j, k,
there exists an ijk ∈ 4 such that δijk

(fijk
(λj), fijk

(µk)) < r. Since δijk

is a fuzzy quasi-proximity on Xijk
, by (FQP3), there exists ρjk ∈ IXijk

such that δijk
(fijk

(λj), ρjk)) < r and δijk
(1̃− ρjk, fijk

(µk)) < r.
Put

ρj =
q∨

k=1

f−1
ijk

(ρjk), ρ =
p∧

j=1

ρj .

Since fijk
(f−1

ijk
(ρjk)) ≤ ρjk, then

δ(λj , ρj) ≤
q∨

k=1

δijk
(fijk

(λj), fijk
(f−1

ijk
(ρjk)))

≤
q∨

k=1

δijk
(fijk

(λj), ρjk) < r.
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Using (FQP2) and Remark 1, we have δ(λ, ρ) < r.
In a similar way, by the definition of δ, for all k = 1, ..., q,

δ(f−1
ijk

(1̃− ρjk), µk) ≤ δijk
(1̃− ρjk, µk) < r,

because fijk
(f−1

ijk
(1̃ − ρjk)) ≤ 1̃ − ρjk. By Remark 1, we have δ(1̃ −

ρj , µk) < r. By (FQP2), we have δ(1̃− ρ, µk) < r and δ(1̃− ρ, µ) < r.
(FQP4). We will show that if λ 6≤ 1̃− µ , then δ(λ, µ) = 1.
If λ 6≤ 1̃− µ, then, for every finite families (λj), (µk) such that λ =∨
λj and µ =

∨
µk, there exist j0, k0, x0 such that λj0(x0)+µk0(x0) >

1. It follows that, for all i ∈ 4,

fi(λj0)(fi(x0)) + fi(µk0)(fi(x0)) ≥ λj0(x0) + µk0(x0) > 1.

Since for each i ∈ 4, δi is a fuzzy quasi-proximity on Xi, we have
δi(λj0 , µk0) = 1. Hence δ(λ, µ) = 1.

Second, from the definition of δ, since

δ(λ, µ) = inf{
∨
j,k

infi∈4δi(fi(λj), fi(µk))}

≤ inf{
∨
j,k

δi(fi(λj), fi(µk))}

= δi(fi(λ), fi(µ)) (by FQP 2),

for each i ∈ 4, fi : (X, δ) → (Xi, δi) is a fuzzy quasi-proximity map.
If fi : (X, δ′) → (Xi, δi) is a fuzzy quasi-proximity map, then, for

every i ∈ 4, since

δ(λ, µ) = inf{
∨
j,k

infi∈4δi(fi(λj), fi(µk))}

≥ inf{
∨
j,k

δ′(λj , µk)}

= δ′(λ, µ) (by FQP 2),

we have δ′(λ, µ) ≤ δ(λ, µ), ∀λ, µ ∈ IX .
(2). Necessity of the composition condition is clear since the com-

position of fuzzy quasi-proximity maps is a fuzzy quasi-proximity map.
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Conversely, suppose f is not a fuzzy quasi-proximity map. Then
there exists λ, µ ∈ IY such that

δ′(λ, µ) > δ(f(λ), f(µ)).

Therefore there are finite families (λ′j), (µ
′
k) such that

f(λ) =
∨p

j=1 λ′j , f(µ) =
∨q

k=1 µ′k, and

δ′(λ, µ) >
∨
j,k

infi∈4δi(fi(λ′j), fi(µ′k)).

It follows that for any j, k, there exists an ijk ∈ 4 such that

δijk
(fijk

(λ′j), fijk
(µ′k)) < δ′(λ, µ).

On the other hand, fi ◦ f is a fuzzy quasi-proximity map. For any j, k,
by Lemma 1.2, since fi(f(f−1(λ′j))) ≤ fi(λ′j),

δ′(f−1(λ′j), f
−1(µ′k)) ≤ δijk

(fijk
(λ′j), fijk

(µ′k)).

Since λ ≤ f−1(f(λ)) =
∨p

j=1 f−1(λ′j), we have

δ′(λ, µ) ≤
∨
j,k

δ′(f−1(λ′j), f
−1(µ′k)) (by FQP 2 and Lemma 1.2)

≤
∨
j,k

δijk
(fijk

(λ′j), fijk
(µ′k))

< δ′(λ, µ).

It is a contradiction. � �

By the above theorem, we can define subspaces and products in the
obvious way.

Definition 3.3. Let (X, δ) be a fuzzy quasi-proximity and A be a
subset of X. The pair (A, δA) is said to be a subspace of (X, δ) if it is
endowed with the initial fuzzy quasi-proximity structure with respect
to the inclusion map.
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Definition 3.4. Let X be the product
∏

i∈4 Xi of the family
{(Xi, δi) | i ∈ 4} of fuzzy quasi-proximity spaces. An initial fuzzy
quasi-proximity structure δ = ⊗δi on X with respect to all the projec-
tions πi : X → Xi is called the product fuzzy quasi-proximity structure
of {δi | i ∈ 4}, and (X,⊗δi) is called the product fuzzy quasi-proximity
space.

Using Theorem 3.2, we have the following corollary.

Corollary 3.5. Let (Xi, δi)i∈4 be a family of fuzzy quasi-proximity
spaces. Let X =

∏
i∈4 Xi be a set and, for each i ∈ 4, πi : X → Xi a

mapping. The structure δ = ⊗δi on X is defined by

δ(λ, µ) = inf{
∨
j,k

infi∈4δi(πi(λj), πi(µk))},

where for every finite families (λj), (µk) such that λ =
∨n

j=1 λj and

µ =
∨m

k=1 µk. Then:

(1) δ is the coarsest fuzzy quasi-proximity on X with respect to
which for each i ∈ 4, πi is a fuzzy quasi-proximity map.

(2) A map f : (Y, δ′) → (X, δ) is a fuzzy quasi-proximity map iff
each πi ◦ f : (Y, δ′) → (Xi, δi) is a fuzzy quasi-proximity map.
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