GENERALIZED REIDEMEISTER NUMBER ON A TRANSFORMATION GROUP

Ki Sung Park

Abstract

In this paper we study the generalized Reidemeister number $R(\varphi, \psi)$ for a self-map $(\varphi, \psi):(X, G) \rightarrow(X, G)$ of a transformation group (X, G), as an extension of the Reidemeister number $R(f)$ for a self-map $f: X \rightarrow X$ of a topological space X.

1. Introduction

It is observed that the number of the fixed point classes for a selfmap $f: X \rightarrow X$ of a compact connected ANR could be calculated by defining an equivalence relation on the fundamental group $\pi_{1}\left(X, x_{0}\right)$.

The number of equivalence classes of $\pi_{1}\left(X, x_{0}\right)$, the Reidemeister number $R(f)$, equals the number of the fixed point classes of f.
F.Rhodes [3] represented the fundamental group $\sigma\left(X, x_{0}, G\right)$ of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ of a topological space X.

In the present paper we defined the generalized Reidemeister number $R(\varphi, \psi)$ for a self-map $(\varphi, \psi):(X, G) \rightarrow(X, G)$ of the transformation group (X, G) and investigate its homotopy invariance. We also give the algebraic estimation of the definition of $R(\varphi, \psi)$ in the same way as in [2].

2. Preliminaries

Received November 15, 1996.
1991 Mathematics Subject Classification: Primary 55M20, 57M05.
Key words and phrases: $(\varphi, \psi)_{\sigma}$-equivalent, (algebraic) Reidemeister number, diagonal path..

In this paper, a transformation group is a pair (X, G), where X is a path connected space with base point x_{0} and G is a group of homeomorphisms of X. A map $(\varphi, \psi):(X, G) \rightarrow(X, G)$ consists of a continuous map $\varphi: X \rightarrow X$ and a homomorphism $\psi: G \rightarrow G$ such that $\varphi(g x)=\psi(g) \varphi(x)$ for every pair (x, g).

Given any element g of G, a path α of order g with base point x_{0} is a continuous map $\alpha: I \rightarrow X$ such that $\alpha(0)=x_{0}$ and $\alpha(1)=g x_{0}$. A path α of order g_{1} and a path β of order g_{2} form a new path $\alpha+g_{1} \beta$ of order $g_{1} g_{2}$ defined by the following equations

$$
\left(\alpha+g_{1} \beta\right)(t)= \begin{cases}\alpha(2 t), & 0 \leq s \leq \frac{1}{2} \\ g_{1} \beta(2 t-1), & \frac{1}{2} \leq s \leq 1\end{cases}
$$

Two paths α and β of the same order g are said to be homotopic if there is a continuous map $F: I \times I \rightarrow X$ such that

$$
\begin{array}{ll}
F(t, 0)=\alpha(t), & 0 \leq t \leq 1 \\
F(t, 1)=\beta(t), & 0 \leq t \leq 1 \\
F(0, s)=x_{0}, & 0 \leq s \leq 1 \\
F(1, s)=g x_{0}, & 0 \leq s \leq 1
\end{array}
$$

The equivalence relation $\alpha \sim \beta$ denotes that α and β are homotopic paths of the same order. Denote the equivalence class containing a path α of order g by $[\alpha ; g]$. Two homotopic classes of paths of different orders g_{1} and g_{2} are distinct, even if $g_{1} x_{0}=g_{2} x_{0}$. F.Rhodes [3] showed that the set of homotopy classes of paths of prescribed order with the rule of composition * is a group, where * is defined by $\left[\alpha ; g_{1}\right] *\left[\beta ; g_{2}\right]=$ $\left[\alpha+g_{1} \beta ; g_{1} g_{2}\right]$. This group was called the fundamental group of (X, G) with base points x_{0}, and was denoted by $\sigma\left(X, x_{0}, G\right)$. He also proved that $\sigma\left(X, x_{0}, G\right)$ is an invariant of the base point x_{0}.

3. Main results

Let $(\varphi, \psi):(X, G) \rightarrow(X, G)$ be a mapping. It is easy to see that if α is a path in X of order g with base point x_{0} then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base point $\varphi\left(x_{0}\right)$. Furthermore, if $\alpha \sim \beta$ then $\varphi \alpha \sim \varphi \beta$. Thus (φ, ψ) induces a homomorphism $(\varphi, \psi)_{*}$: $\sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, \varphi\left(x_{0}\right), G\right)$ defined by $(\varphi, \psi)_{*}[\alpha ; g]=[\varphi \alpha ; \psi(g)]$.

If λ is a path from $\varphi\left(x_{0}\right)$ to x_{0}, then λ induces an isomorphism

$$
\lambda_{*}: \sigma\left(X, \varphi\left(x_{0}\right), G\right) \rightarrow \sigma\left(X, x_{0}, G\right)
$$

defined by $\lambda_{*}[\alpha ; g]=[\lambda \rho+\alpha+g \lambda ; g]$ for each $[\alpha ; g] \in \sigma\left(X, \varphi\left(x_{0}\right), G\right)$, where $\rho(t)=1-t$. This isomorphism λ_{*} depends only on the homotopy class of λ.

Consider the composition

$$
\sigma\left(X, x_{0}, G\right) \xrightarrow{(\varphi, \psi)_{*}} \sigma\left(X, \varphi\left(x_{0}\right), G\right) \xrightarrow{\lambda_{*}} \sigma\left(X, x_{0}, G\right) .
$$

Definition 3.1. Let $\lambda_{*}(\varphi, \psi)_{*}=(\varphi, \psi)_{\sigma}$. Two elements $\left[\alpha ; g_{1}\right]$ and $\left[\beta ; g_{2}\right]$ in $\sigma\left(X, x_{0}, G\right)$ are said to be $(\varphi, \psi)_{\sigma}$-equivalent, denoted by $\left[\alpha ; g_{1}\right] \stackrel{(\varphi, \psi)_{\sigma}}{\sim}\left[\beta ; g_{2}\right]$, if there exists $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$ such that $\left[\alpha ; g_{1}\right]=[\gamma ; g]\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left([\gamma ; g]^{-1}\right)$. This is an equivalence relation on $\sigma\left(X, x_{0}, G\right)$. Let $\sigma\left(X, x_{0}, G\right)^{\prime}(\varphi, \psi)_{\sigma}$ be the set of equivalence classes of $\sigma\left(X, x_{0}, G\right)$ under $(\varphi, \psi)_{\sigma}$-equivalence.

The cardinality of $\sigma\left(X, x_{0}, G\right)^{\prime}(\varphi, \psi)_{\sigma}$ is the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$, and is denoted by $R_{*}(\varphi, \psi)_{\sigma}$. With this view, we may define the Reidemeister number of a map $(\varphi, \psi) ;(X, G) \rightarrow$ $(X, G), R(\varphi, \psi)$, to be the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$. In symbols,

$$
R(\varphi, \psi)=R_{*}(\varphi, \psi)_{\sigma}=\# \sigma\left(X, x_{0}, G\right)^{\prime}(\varphi, \psi)_{\sigma}
$$

Lemma 3.2. The definition of $R(\varphi, \psi)$ is independent of the choice of the path λ from $\varphi\left(x_{0}\right)$ to x_{0}.

Proof. Let τ denote another path from $\varphi\left(x_{0}\right)$ to x_{0}. Then $\lambda^{-1} \tau$ is a loop at x_{0} and therefore induces an inner automorphism

$$
\left(\lambda^{-1} \tau\right)_{*}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, x_{0}, G\right)
$$

generated by the element $\left[\lambda^{-1} \tau ; e\right]$, since

$$
\left(\lambda^{-1} \tau\right)_{*}[\alpha ; g]=\left[\lambda^{-1} \tau \rho ; e\right][\alpha ; g]\left[\lambda^{-1} \tau ; e\right] .
$$

Applying this automorphism to the left-hand side of $\lambda_{*}(\varphi, \psi)_{*}$ we have

$$
R_{*}\left(\lambda_{*}(\varphi, \psi)_{*}\right)=R_{*}\left(\tau_{*} \lambda_{*}^{-1} \lambda_{*}(\varphi, \psi)_{*}\right)=R_{*}\left(\tau_{*}(\varphi, \psi)_{*}\right) .
$$

Hence we have independence of the path λ.
For a given homotopy $F: \varphi_{1} \cong \varphi_{2}: X \rightarrow X$ and a given path $c: I \rightarrow X$, define the (diagonal) path $\langle F, c\rangle: I \rightarrow X$ by $<F, c\rangle$ $(t)=F(c(t), t), 0 \leq t \leq 1$. Then the path $<F, c>$ preserves inverse in the following sense.

Lemma 3.3. [1] $\quad<F, c>^{-1}=<F^{-1}, c^{-1}>$.
Our first result is the following.
Theorem 3.4. (Homotopy Invariance) Let $\left(\varphi_{1}, \psi_{1}\right),\left(\varphi_{2}, \psi_{2}\right)$ be self-maps of (X, G). If $F: \varphi_{1} \cong \varphi_{2}: X \rightarrow X$ is homotopy from φ_{1} to φ_{2}, then $R\left(\varphi_{1}, \psi_{1}\right)=R\left(\varphi_{2}, \psi_{2}\right)$.

Proof. Let $x_{0} \in X$. Then $<F, x_{0}>$ is a path from $\varphi_{1}\left(x_{0}\right)$ to $\varphi_{2}\left(x_{0}\right)$. Thus the path $<F, x_{0}>$ induces a homomorphism

$$
<F, x_{0}>_{*}: \sigma\left(X, \varphi_{1}\left(x_{0}\right), G\right) \rightarrow \sigma\left(X, \varphi_{2}\left(x_{0}\right), G\right)
$$

So we obtain the following induced commutative diagram

$$
\begin{gathered}
\sigma\left(X, x_{0}, G\right) \xrightarrow{\left(\varphi_{1}, \psi_{1}\right)_{*}} \sigma\left(X, \varphi_{1}\left(x_{0}\right), G\right) \\
\left(\varphi_{2}, \psi_{2}\right)_{*} \searrow \quad \nearrow<F^{-1}, x_{0}>_{*} \\
\sigma\left(X, \varphi_{2}\left(x_{0}\right), G\right)
\end{gathered}
$$

From Lemma 3.2 and Lemma 3.3, we have

$$
\begin{aligned}
R\left(\varphi_{1}, \psi_{1}\right) & =R_{*}\left(\lambda_{*}\left(\varphi_{1}, \psi_{1}\right)_{*}\right) \\
& =R_{*}\left(\lambda_{*}<F, x_{0}>_{*}^{-1}\left(\varphi, \psi_{2}\right)_{*}\right) \\
& =R_{*}\left(\left(<F^{-1}, x_{0}>\lambda\right)_{*}\left(\varphi_{2}, \psi_{2}\right)_{*}\right) \\
& =R\left(\varphi_{2}, \psi_{2}\right) .
\end{aligned}
$$

Hence we complete the proof of theorem.
Let $\sigma\left(X, x_{0}, G\right)^{\prime}$ be a commutator subgroup of $\sigma\left(X, x_{0}, G\right)$ generated by the set

$$
\left.\left\{\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\right]^{-1}\left[\beta ; g_{2}\right]^{-1} \mid\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right] \in \sigma\left(X, x_{0}, G\right)\right\} .
$$

For a convenient notation, we shall write $\bar{\sigma}\left(X, x_{0}, G\right)$ for the quotient group $\sigma\left(X, x_{0}, G\right) / \sigma\left(X, x_{0}, G\right)^{\prime}$.

Theorem 3.5. If $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is a self-map, then

$$
R(\varphi, \psi) \geq \# \operatorname{Coker}(1-(\varphi, \psi))_{\bar{\sigma}} \geq 1
$$

where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}\left(X, x_{0}, G\right)$ induced by (φ, ψ).

Proof. Obviously, there exists a canonical homomorphism

$$
\theta_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \bar{\sigma}\left(X, x_{0}, G\right)
$$

such that $\operatorname{Ker} \theta_{\sigma}=\sigma\left(X, x_{0}, G\right)^{\prime}$. Hence the following diagram is commutative:

$$
\begin{array}{cc}
\sigma\left(X, x_{0}, G\right) \xrightarrow{(\varphi, \psi)_{\sigma}} & \sigma\left(X, x_{0}, G\right) \\
\downarrow_{\sigma} & \\
\bar{\sigma}\left(X, x_{0}, G\right) & \xrightarrow{\theta_{\sigma}} \\
& \\
(\varphi, \psi)_{\overline{\bar{c}}} & \bar{\sigma}\left(X, x_{0}, G\right)
\end{array}
$$

For $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$, any element of the $(\varphi, \psi)_{\sigma}$-equivalent class containing $\left[\beta ; g_{2}\right]$ may be expressed in the form

$$
\left[\alpha ; g_{1}\right]=[\gamma ; g]\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left([\gamma ; g]^{-1}\right)
$$

From the above diagram, we can easily obtain

$$
\begin{aligned}
\theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) & =\theta_{\sigma}\left([\gamma ; g]\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left([\gamma ; g]^{-1}\right)\right) \\
& =\theta_{\sigma}([\gamma ; g])+\theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)-\theta_{\sigma}(\varphi, \psi)_{\sigma}([\gamma ; g]) \\
& =\theta_{\sigma}([\gamma ; g])+\theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)-(\varphi, \psi)_{\bar{\sigma}} \theta_{\sigma}([\gamma ; g]) \\
& =\theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)+\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\left(\theta_{\sigma}([\gamma ; g])\right) .
\end{aligned}
$$

Thus there exists an element $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$ such that

$$
\begin{aligned}
& \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)-\theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)= \\
& \quad\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\left(\theta_{\sigma}([\gamma ; g])\right) \in\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\left(\bar{\sigma}\left(X, x_{0}, G\right)\right) .
\end{aligned}
$$

Let $\eta_{\bar{\sigma}}: \bar{\sigma}\left(X, x_{0}, G\right) \rightarrow \operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$ be the natural projection. Now consider

$$
\sigma\left(X, x_{0}, G\right) \xrightarrow{\theta_{\sigma}} \bar{\sigma}\left(X, x_{0}, G\right) \xrightarrow{\eta_{\sigma}} \operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right) .
$$

Since both θ_{σ} and $\eta_{\bar{\sigma}}$ are epimorphisms, $\eta_{\bar{\sigma}} \theta_{\sigma}$ is also an epimorphism. Moreover, the $\eta_{\bar{\sigma}} \theta_{\sigma}$ images of all element of a $(\varphi, \psi)_{\sigma}$-equivalent class are the same element of $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$. This completes the proof of theorem.

Corollary 3.6. Let $(\varphi, \psi):(X, G) \rightarrow(X, G)$ be a self-map. If $\sigma\left(X, x_{0}, G\right)$ is abelian and G is abelian, then

$$
R(\varphi, \psi)=\# \operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)
$$

Proof. If $\sigma\left(X, x_{0}, G\right)$ is abelian, then the natural homomorphism $\theta_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \bar{\sigma}\left(X, x_{0}, G\right)$ is an isomorphism. From Definition 3.1, $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$ if and only if there exists $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$ such that

$$
\theta_{\sigma}\left(\left[\alpha ; g_{1}\right]-\theta_{\sigma}\left(\left[\beta, g_{2}\right]\right)=\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\left(\theta_{\sigma}([\gamma ; g])\right),\right.
$$

In other words,

$$
\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)-\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)=0 .
$$

This completes the proof of theorem.

References

[1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Illinois (1971).
[2] B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math. 14, Amer. Math. Soc. Providence, R. I. (1983), 1-99.
[3] F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635-650.

Department of Mathematics
Kangnam University
Kukal-Ri, Kiheung-Eub, Yongin-Si
Kyungki-Do 449-702, Korea

