Kangweon-Kyungki Math. Jour. 5 (1997), No. 1, pp. 55-60

APPROXIMATION OF RELIABILITY IMPORTANCE FOR CONTINUUM STRUCTURE FUNCTIONS

SEUNGMIN LEE AND RAKJOONG KIM

ABSTRACT. A continuum structure function(CSF) is a non-decreasing mapping from the unit hypercube to the unit interval. The reliability importance of component *i* in a CSF at system level α , $R_i(\alpha)$ say, is zero if and only if component *i* is almost irrelevant to the system at level α . A condition to check whether a component is almost irrelevant to the system is presented. It is shown that $R_i^{(m)}(\alpha) \to R_i(\alpha)$ uniformly as $m \to \infty$ where each $R_i^{(m)}(\alpha)$ is readily calculated.

0. Introduction

Let $\phi : \{0,1\}^n \to \{0,1\}$ be a binary coherent structure function and let $h : [0,1]^n \to [0,1]$ be the corresponding reliability function. Birnbaum[6] defines the reliability importance of component *i* as

$$I(i) = \frac{\partial h(\hat{p})}{\partial p_i} = h(1_i, \hat{p}) - h(0_i, \hat{p}), \quad i = 1, 2, \cdots, n,$$

writing $(\beta_i, \hat{p}) = (p_1, p_2, \cdots, p_{i-1}, \beta, p_{i+1}, \cdots, p_n)$ where $p_i = P(X_i = 1)$ and where X_1, X_2, \cdots, X_n are independent binary random variables denoting the states of the components of ϕ . This concept is extended by Kim and Baxter[9] to the continuum case.

Let Δ denote the unit hypercube $[0,1]^n$. A mapping $\gamma : \Delta \to [0,1]$ which is non-decreasing in each argument and which satisfies $\gamma(\hat{0}) = 0$

Received December 1, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 60E05.

Key words and phrases: reliability importance, continuum structure function, component relevancy, lower extreme vector, stochastic performance function.

and $\gamma(\hat{1}) = 1$, writing $\hat{\alpha} = (\alpha, \alpha, \dots, \alpha)$, is said to be a continuum structure function(CSF). Such functions are of interest in reliability theory e.g. Baxter[1],[2], where x_1, x_2, \dots, x_n denote the states of the component $C = \{1, 2, \dots, n\}$ of system and $\gamma(\hat{x})$ denotes the state of the system. Let $U_{\alpha} = \{\hat{x} \in \Delta | \gamma(\hat{x}) \geq \alpha\}, 0 \leq \alpha \leq 1$ and $\hat{\delta}_{\alpha}$ denote the intersection of ∂u_{α} , the boundary of U_{α} in Δ , and $\{\hat{\alpha} | 0 \leq \alpha \leq 1\}$, the diagonal of Δ . We say that $\hat{\delta}_{\alpha}$ is the key vector of U_{α} and we call δ_{α} the corresponding key element. Kim and Baxter[9] use the key element to define reliability importance when \hat{X} is a random vector: they define the reliability importance of component *i* at level $\alpha \in (0, 1]$ as

$$R_i(\alpha) = P\{\gamma(X) \ge \alpha | X_i \ge \delta_\alpha\} - P\{\gamma(X) \ge \alpha | X_i < \delta_\alpha\},\$$

 $i = 1, 2, \dots, n$. We note that the reliability importance $R_i(\alpha)$ of component *i* depends on the state α of the system. For any component *i* and any subset $A \subset \Delta$, we set $A^i = \{\hat{x} \in \Delta | (\cdot_i, \hat{x}) = (\cdot_i, \hat{z}) \text{ for some } \hat{z} \in A\}$. Notice that $A \subset A^i$ and that $A = A^i$ if and only if whether or not $\hat{x} \in A$ does not depend on the state of component *i*. Baxter and Lee[4] defines that component *i* is almost irrelevant to γ if there exists a subset $E_\alpha \subset \Delta$ such that , for any $\alpha \in [0, 1]$,

$$\mu(E_{\alpha}^{c}) = 0$$
 and $U_{\alpha} \cap E_{\alpha} = (U_{\alpha} \cap E_{\alpha})^{i} \cap E_{\alpha}$

where μ denotes Lebesgue measure on \mathcal{R}^n and also show that, under some conditions, $R_i(\alpha) = 0$ if and only if component *i* is almost irrelevant to γ .

1. Component Relevancy to the System

The CSF γ is weakly coherent if and only if $\sup_{\hat{x}\in\Delta}[\gamma(1_i,\hat{x})-\gamma(0_i,\hat{x})] > 0$ for $i = 1, 2, \dots, n$; this is the weakest form of component relevancy[2]. It is reasonable to say component i to be irrelevant(or inessential) if $\gamma(1_i,\hat{x}) - \gamma(0_i,\hat{x}) = 0$ for all $\hat{x}\in\Delta$. If equality holds for all $\hat{x}\in\Delta-A, \mu(A)=0$, then it is reasonable to define component i to be irrelevant a.e. (almost irrelevant) to the system.

A subset $U \subset \Delta$ is said to be an upper set if $\hat{y} \in \Delta$ whenever $\hat{y} \ge \hat{x}$ and $\hat{x} \in U$. If U is an upper set, the vector \hat{y} is said to be a lower extreme vector of U if $\{\hat{x} \in \Delta | \hat{x} \leq \hat{y}\} \cap \overline{U} = \{\hat{y}\}$, where \overline{U} denotes the closure of U_{α} in Δ . For any CSF γ , let Q_{α} denote the set of lower extreme vectors of U_{α} ; notice that $Q_{\alpha} \subset \partial U_{\alpha}$ and that if U_{α} is closed, then $Q_{\alpha} = P_{\alpha}$ [4].

PROPOSITION 1.1. The component *i* in a CSF γ is almost irrelevant to γ if and only if $\sup_{\hat{x} \in \Delta} [\gamma(1_i, \hat{x}) - \gamma(0_i, \hat{x})] = 0$ a.e. $[\mu]$.

Proof. ("if") Suppose that $\sup_{\hat{x}\in\Delta}[\gamma(1_i,\hat{x})-\gamma(0_i,\hat{x})]=0$ a.e. $[\mu]$. Define the function $\gamma':\Delta\to[0,1]$ by $\gamma'(0_i,\hat{0})=0, \ \gamma'(1_i,\hat{1})=1$ and $\gamma'(x_i,\hat{x})=\gamma(0_i,\hat{x})$ for all \hat{x} such that $\hat{x}\neq\hat{1}$ or $\hat{x}\neq\hat{0}$. Define $E=\{\hat{x}\in\Delta|\gamma'(\hat{x})=\gamma(\hat{x})\};$ clearly $\mu(E^c)=0$. Choose $\alpha\in[0,1]$ and define $V_{\alpha}=\{\hat{x}\in\Delta|\gamma'(\hat{x})\geq\alpha\}.$ Then $U_{\alpha}\cap E=V_{\alpha}\cap E$ and, since $\sup_{\hat{x}\in\Delta}[\gamma'(1_i,\hat{x})-\gamma'(0_i,\hat{x})]=0, V_{\alpha}^i=V_{\alpha}.$ Choose $\hat{x}\in(U_{\alpha}\cap E)^i\cap E.$ Since $(U_{\alpha}\cap E)^i=(V_{\alpha}\cap E)\subset V_{\alpha}^i=V_{\alpha}, \ \hat{x}\in V_{\alpha}\cap E, \text{ so } \hat{x}\in U_{\alpha}\cap E.$ Thus $(U_{\alpha}\cap E)^i\cap E\subset U_{\alpha}\cap E.$ Since the reverse inclusion always holds, we have shown that $(U_{\alpha}\cap E)^i\cap E=U_{\alpha}\cap E$ where $\mu(E)=0.$ Since α is arbitrary, component i is almost irrelevant to γ as claimed.

("only if") Suppose that component i is almost irrelevant to the system γ . Then, by Proposition 2.1 of Baxter and Lee[4], $y_i = 0$ for all $\hat{y} \in Q_{\alpha} \cap [0,1]^n$. Define $V_{\alpha} = \bigcup_{\hat{y} \in Q_{\alpha} \cap [0,1]^n} U(\hat{y})$ for each $\alpha \in [0,1]$ where $U(\hat{y}) = \{\hat{x} \in \Delta | \hat{x} \ge \hat{y}\}$, and define the function $\gamma' : \Delta \to [0, 1]$ by $\gamma'(\cdot_i, \hat{0}) = 0, \gamma'(\cdot_i, \hat{1}) = 1$ and $\gamma'(\hat{x}) \ge \alpha$ if and only if $\hat{x} \in V_\alpha - \{\hat{x} \in V_\alpha \}$ $\Delta | x_j = 0, j \neq 1 \} (0 \leq \alpha \leq 1)$. Define $W_\alpha = \{ \hat{x} \in \Delta | \gamma'(\hat{x}) \geq \alpha \}$ and observe that $W_0 = V_0 = \Delta$ and that $\gamma'(\hat{0}) = 0$ and $\gamma'(\hat{1}) = 1$. It suffices to show that $\gamma' = \gamma$ a.e. $[\mu]$ and $\sup_{\hat{x} \in \Delta} [\gamma'(1_i, \hat{x}) - \gamma'(0_i, \hat{x})] =$ 0. Firstly, we show that $\gamma' = \gamma$ a.e. $[\mu]$. Define $E = (0, 1)^n - D_{\gamma}$ where D_{γ} is the set of all discontinuity points of γ . We claim that $U_{\alpha} \cap E = V_{\alpha} \cap E$ for all $\alpha \in [0,1]$. If $\alpha = 0$, the result is trivial, so choose $\alpha \in (0,1]$ and $\hat{x} \in U_{\alpha} \cap E$. Since $\hat{x} \in U_{\alpha}$, there exists a vector $\hat{y} \in Q_{\alpha}$ such that $\hat{y} \leq \hat{x}$; since $\hat{x} \in E, x_j < 1$ for $j = 1, 2, \cdots, n$. Thus $y_j \leq x_j < 1$, $j = 1, 2, \dots, n$, so $\hat{y} \in Q_\alpha \cap [0, 1]^n$, and hence $\hat{x} \in V_{\alpha}$. Since $\hat{x} \in E$, we have shown that $U_{\alpha} \cap E \subset V_{\alpha} \cap E$. Now choose $\hat{z} \in V_{\alpha} \cap E$. Then $\hat{z} \geq \hat{y}$ for some $\hat{y} \in Q_{\alpha} \cap [0, 1]^n$ by definition of V_{α} , and hence $\hat{z} \in \overline{U_{\alpha}}$. If $\hat{z} \in U_{\alpha}$, i.e., $\hat{z} \in \overline{U_{\alpha}} - U_{\alpha}$, then $\hat{x} \in \overline{U_{\alpha}}$, $\gamma(\hat{x}+) \geq \alpha$ whereas $\hat{x} \notin U_{\alpha}$ so that $\gamma(\hat{x}) < \alpha$, and hence $\hat{x} \in D_{\gamma}$, contradicting the assumption that $\hat{x} \in E \cap D_{\gamma}^{c}$. Thus $V_{\alpha} \cap E \subset U_{\alpha} \cap E$, and hence $U_{\alpha} \cap E = V_{\alpha} \cap E$ for all $\alpha \in [0, 1]$ as claimed. Further, since

 $V_{\alpha} \cap E = W_{\alpha} \cap E, \ \gamma'(\hat{x}) = \gamma(\hat{x})$ for all $\hat{x} \in E$. But $E^c \subset D_{\gamma}$ and $\mu(D_{\gamma}) = 0$ by Lemma 2.2 of Baxter and Lee[5], so $\mu(E^c) = 0$. Thus $\gamma' = \gamma$ a.e. $[\mu]$. Secondly, we show that $\sup_{\hat{x} \in \Delta} [\gamma'(1_i, \hat{x}) - \gamma'(0_i, \hat{x})] = 0$. It suffices to show that $V_{\alpha}^i = V_{\alpha}$ for all $\alpha \in [0, 1]$. Since $V_0^i = V_0 = \Delta$, choose $\alpha > 0$ and $\hat{x} \in V_{\alpha}^i$, i.e., $(\cdot_i, \hat{x}) = (\cdot_i, \hat{z})$ for some $\hat{z} \in V_{\alpha}$. Since $\hat{z} \in V_{\alpha}, \ \hat{z} \geq \hat{y}$ for some $\hat{y} \in Q_{\alpha} \cap [0, 1]^n$ and since, by assumption, component i is almost irrelevant to $\gamma, \ y_i = 0$ by Proposition 2.1 of Baxter and Lee[4]. Then $x_i \geq 0 = y_i$ and, since $\hat{z} \geq \hat{y}, x_j = z_j \geq y_j$ for $j \neq 1$ so $\hat{x} \geq \hat{y}$ and hence $\hat{x} \in V_{\alpha}$. Thus $V_{\alpha}^i \subset V_{\alpha}$ and, since the reverse inclusion always holds, $V_{\alpha}^i = V_{\alpha}$ as claimed. This completes the proof. \Box

2. Approximation of the reliability importance

Suppose that X_1, X_2, \dots, X_n , the states of the components, are independent random variables defined on the same probability space (Ω, \mathcal{F}, P) and that γ is right-continuous so that $\gamma(\hat{X})$ is \mathcal{F} -measurable. A computationally tractable expression for the stochastic performance function $\Phi(\alpha) = P\{\gamma(\hat{X}) \geq \alpha\}$ occurs only in certain special case and, although bounds can be constructed, these may not be appreciably easier to calculate than Φ itself. However, $\Phi(\alpha)$ can be easily evaluated if P_{α} is finite. We observe that if U_{α} is closed and P_{α} is finite, then

$$P\{\gamma(\hat{X}) \ge \alpha\} = \sum_{j=1}^{N} \prod_{i=1}^{n} \bar{F}_{i}(y_{i}^{(j)}) - \sum_{j_{1} < j_{2}} \sum_{i=1}^{n} \bar{F}_{i}(y_{i}^{(j_{1})} \lor y_{i}^{(j_{2})}) + \dots + (-1)^{N-1} \prod_{i=1}^{n} \bar{F}_{i}(\max_{1 \le j \le N} y_{i}^{(j)}),$$

writing $P_{\alpha} = \{\hat{y}^{(1)}, \dots, \hat{y}^{(N)}\}$, the set of N minimal vectors, and $\bar{F}_i(x) = P\{X_i \geq x\}, i = 1, 2, \dots, n, \text{ i.e., that } P\{\gamma(\hat{X}) \geq \alpha\}$ is easily evaluated. Suppose that γ is right-continuous at $\hat{1}$ and define the mapping $\gamma' : \Delta \to [0,1]$ by $\gamma'(\hat{X}) \geq \alpha$ if and only if $\hat{X} \in U_{\alpha} \cap D_{\alpha i}$ where $D_{\alpha i} = \{\hat{X} \in \Delta | X_i > \delta_{\alpha}\}$. Clearly γ' is a right-continuous CSF. Let $\Phi'(\alpha) = P\{\gamma'(\hat{X}) \geq \alpha\}$. Then $R_i(\alpha) = \Phi'(\alpha)/\bar{F}_i(\delta_{\alpha}) - [\Phi(\alpha) - \Phi'(\alpha)]/[1 - \bar{F}_i(\delta_{\alpha})]$. We note that if P_{α} is finite, then $\Phi(\alpha)$ and $\Phi'(\alpha)$

are easily evaluated, and hence so is $R_i(\alpha)$. A CSF γ is called strongly increasing if $\gamma(\hat{x}) > \gamma(\hat{y})$ whenever $x_i > y_i$ for $i = 1, 2, \dots, n$.

PROPOSITION 2.1. Let γ be a strongly increasing CSF which is continuous at $\hat{0}$ and $\hat{1}$ and suppose that X_1, \dots, X_n are independent, absolutely continuous random variables, the support of each of which is the unit interval. Then there exists a sequence $\{\gamma_m\}$ of right-continuous CSF's for which each P_{α} is finite such that $R_i^{(m)} \to R_i$ uniformly as $m \to \infty$ on $[a, b], \ 0 < a < b < 1$, where $R_i^{(m)}$ is the reliability importance of γ_m .

Proof. Define the mappings $\gamma'(\gamma'') : \Delta \to [0,1]$ by $\gamma'(\hat{x})(\gamma''(\hat{x})) \ge \alpha$ if and only if $\hat{x} \in \overline{U}_{\alpha}(\hat{x} \in \overline{U}_{\alpha} \cap \overline{D}_{\alpha i})$. Clearly γ' and γ'' are rightcontinuous CSF's. Let

$$\Phi'(\alpha) = P\{\gamma'(\hat{X}) \ge \alpha\} \text{ and } \Phi''(\alpha) = P\{\gamma''(\hat{X}) \ge \alpha\}.$$

Then

$$R'_{i}(\alpha) = \Phi'(\alpha)/\bar{F}(\delta_{\alpha}) - [\Phi'(\alpha) - \Phi''(\alpha)]/[1 - \bar{F}_{i}(\delta_{\alpha})]$$

where $R'_i(\alpha)$ is the reliability importance of γ' . Since X_i 's are absolutely continuous and $\mu(\partial U_\alpha) = 0$ and $\mu(\partial D_{\alpha_i}) = 0$ by Lemma 2.1 of Baxter and Lee[5], $R'_i(\alpha) = R_i(\alpha)$, $0 < \alpha < 1$. Since γ', γ'' are right-continuous, there exist sequences $\{\gamma'_m\}, \{\gamma''_m\}$ of right-continuous CSF's, the P_α 's of which are all finite, such that $\Phi'_m \to \Phi'$ and $\Phi''_m \to \Phi''$ pointwise as $m \to \infty$ where $\Phi'_m(\alpha)$ and $\Phi''_m(\alpha)$ are $P\{\gamma'_m(\hat{X}) \ge \alpha\}$ and $P\{\gamma''_m(\hat{X}) \ge \alpha\}$ respectively. Then $R_i^{\prime(m)}(\alpha) \to R_i(\alpha)$ pointwise as $m \to \infty$. Since each X_i has support [0, 1] and γ is continuous at $\hat{0}$ and $\hat{1}$, we have $0 < P\{X_i \ge \delta_\alpha\} < 1$ for $0 < \alpha < 1$ and $i = 1, 2, \cdots, n$. Further, since γ is strongly increasing, each of the terms $\Phi'(\alpha), \Phi''(\alpha), P_{\hat{X}}(D_{\alpha i})$ is a continuous function of α by the argument similar to the proof Theorem 3.1 of Baxter and Lee[4], and hence $R_i^{\prime(m)} \to R_i$ uniformly on [a, b], 0 < a < b < 1.

REMARK. The approximation procedure above is only practicable for small or moderate values of n since the computational complexity of the calculation grows rapidly with n.

SeungMin Lee and RakJoong Kim

References

- Baxter, L.A., Continuum Structures I, Journal of Applied Probability 21 (1984), 802-815.
- Baxter, L.A., Continuum Structures II, Mathematical Proceedings of Cambridge Philosophical Society 99 (1986), 331-338.
- Baxter, L.A. and Lee, S.M., Structure Functions with Finite Minimal Vector Sets, Journal of Applied Probability 26 (1989), 196-201.
- Baxter, L.A. and Lee, S.M., Further Properties of Reliability Importance for Continuum Structure Functions, Probability in the Engineering and Informational Sciences 3 (1989), 237-246.
- Baxter, L.A. and Lee, S.M., A weak Convergence Theorem for Continuum Structure Functions, Journal of Mathematical Analysis and Applications 148(2) (1990), 463-468.
- Birnbaum, Z.W., "On the Importance of Difference Components in a Multicomponent System" in Multivariate Analysis-II, ed. P. R. Krishnaiah, New York (1969), Academic Press, 581-592.
- Block, H.W and Savits, T.H, A Decomposition for Multistate Monotone Systems, Journal of Applied Probability 19 (1982), 391-402.
- Block, H.W and Savits, T.H, Continuous Multistate Structure Functions, Operations Research 32 (1984), 703-714.
- 9. Kim, C. and Baxter, L.A., *Reliability Importance for Continuum Structure Functions*, Journal of Applied Probability **24** (1987), 779-785.

SeungMin Lee Department of Statistics Hallym University Chunchon 200-702, Korea

RakJoong Kim Department of Mathematics Hallym University Chunchon 200-702, Korea