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GENERATORS OF COHOMOLOGY
GROUPS OF CYCLOTOMIC UNITS

Jae Moon Kim and Seung Ik Oh

Abstract. Let d be a positive integer with d 6≡ 2 mod 4, and let
K = Q(ζpd) for an odd prime p such that p ≡ 1 mod d. Let K∞ =⋃

n≥0 Kn be the cyclotomic Zp-extension of K = K0. In this paper,

explicit generators for the Tate cohomology group Ĥ−1(Gm,n are
given when d = qr is a product of two distinct primes, where Gm,n

is the Galois group Gal(Km/Kn) and Cm is the group of cyclotomic

units of Km. This generalizes earlier results when d = q is a prime.

1. Introduction

Let K be a number field and K∞ be a Zp-extension of K, where
p is an odd prime. That is Gal(K∞/K) ' Zp, the additive group of
the ring of p-adic integers. For each closed subgroup pnZp of Zp, there
corresponds a subfield Kn of K∞ such that Gal(Kn/K) ' Zp/p

nZp '
Z/pnZ, a cyclic group of order pn. Thus we have a tower of field
extensions K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞ = ∪n≥0Kn.

For each integer n ≥ 1, we choose a primitive nth root ζn of 1 so
that ζ

m
n

m = ζn whenever n|m. For an integer d with d 6≡ 2 mod 4, let
K = K0 = Q(ζpd), Kn = Q(ζpn+1d) and K∞ = ∪n≥0Kn, where p is
a prime satisfying p ≡ 1 mod d. Then K∞ is a Zp-extension of K.
The following theorem tells us the growth of the order of the Sylow
p-subgroup of the ideal class group of Kn.

Theorem A (Iwasawa, Ferrero, Washington [2], [8]). Let
pen be the order of the Sylow p-subgroup of the ideal class group of

1991 Mathematics Subject Classification: 11R23, 11R18.
Key words and phrases: cyclotomic units, Zp-extension, Tate cohomology

groups.
This paper was supported by research fund of Inha University, 1995.



62 Jae Moon Kim and Seung Ik Oh

Kn. Then there exist integers λ ≥ 0 and ν such that en = λn + ν for
all sufficiently large n.

For an arbitrary number field K and its Zp-extension K∞, en be-
haves like en = µpn + λn + ν for n � 0. These constants µ, λ and ν
are called the Iwasawa invariants. It is proved by Ferrero and Wash-
ington that µ vanishes when the base field K is abelian and K∞ is the
cyclotomic Zp-extension of K as in our case.

By the action of complex conjugation on the ideal class groups, we
have the decompositions en = e+n + e−n , λ = λ+ +λ− and ν = ν+ + ν−.
And pe+

n is the order of the Sylow p-subgroup of the ideal class group
of K+

n , where K+
n = Q(ζpn+1d + ζ−1

pn+1d) is the maximal real subfield of
Kn.

The minus parts (e.g. e−n , λ
−) of the ideal class groups are much

better understood than the plus parts mainly because of the action of
complex conjugation. What we want to do in this paper is to study
the plus parts of the ideal class group of Kn. When dealing with the
plus part, one usually looks at cyclotomic units and that is exactly
what we are going to work with. The greatest advantage of cyclotomic
units, perhaps, is that the generators of the group of cyclotomic units
are given so explicitly that one can play around with them. Another
feature of cyclotomic units is the following index theorem:

Theorem B (W. Sinnott [7]). Let E(C) be the group of units
(cyclotomic units) of the cyclotomic field Q(ζn). Let g be the number
of distinct prime divisors of n. Then [E : C] = 2bh+, where b = 0 if
g = 1 and b = 2g−2 + 1 − g if g > 1, and h+ is the class number of
Q(ζn + ζ−1

n ).

Let En(Cn) be the group of units(cyclotomic units) of Kn and
let An(Bn) be the Sylow p-subgroup of the ideal class group of K+

n

(En/Cn, respectively). Then the index theorem of W. Sinnott says
that #An = #Bn. So it is natural to ask if An is isomorphic to Bn.
This question is still open. In [3], it is proved to be affirmative when
d = 1 under certain assumptions.

In order to generalize those results in [3] to arbitrary d, one needs
to compute the Tate cohomology groups of cyclotomic units and to
prove the injectivity of the induced map Ĥi(Gn, Cn) −→ Ĥi(Gn, En),
where Gn is the Galois group Gal(Kn/K0). Tate cohomology groups
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for cyclotomic units are computed in [4], and we review the results
briefly. Let ∆ = Gal(Q(ζd)/Q) and D be the decomposition subgroup
for p of ∆. Let l = #(∆/±D). Then for any m > n, we have

Ĥi(Gm,n, Cm) '
{

(Z/pm−nZ)l if i is odd
(Z/pm−nZ)l−1 if i is even,

where Gm,n = Gal(Km/Kn). In particular, H1(Gn, Cn) ' (Z/pnZ)l.

Above results were computed theoretically without providing ex-
plicit generators for H1(Gn, Cn). But if one wants to study the in-
jectivity of H1(Gn, Cn) −→ H1(Gn, En), it is better to have explicit
generators of H1(Gn, Cn). In [5], explicit generators are given when
d = q is a prime. And in the same paper and in a later paper [6],
several applications are studied concerning the plus part of the ideal
class groups and λ+.

The aim of the present paper is to provide explicit generators of
H1(Gm,n, Cm) when d = qr is a product of two distinct primes. Hope-
fully these generators yield similar applications to the ideal class groups
as in [5] and [6]. We also hope to be able to find out explicit generators
for arbitrary d by modifying our proof.

We finish this section by introducing a theorem of V. Ennola([1]) on
relations among cyclotomic units.

Theorem C (V. Ennola [1]). Let χ be a character of conductor
f belonging to Q(ζn). For each cyclotomic unit δ =

∏
0<a<n

(1 − ζa
n)xa ,

define Y (χ, δ) by

Y (χ, δ) =
∑

d
f |d|n

1
ϕ(d)

T (χ, d, δ)
∏
p|d

(1− χ(p)),

where T (χ, d, δ) =
d−1∑
a=1

(a,d)=1

χ(a)xn
d a. Then for every even character

χ 6= 1, Y (χ, δ) = 0 if δ is a root of 1.
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2. Preliminary

In this section, we set up notations and prove several lemmas which
we will use in the next section.

As in the introduction, p is a prime satisfying p ≡ 1 mod d, where
d = qr is a product of two distinct odd primes. Let ∆, ∆q and ∆r

be the Galois groups Gal(Q(ζqr)/Q), Gal(Q(ζq)/Q) and Gal(Q(ζr)/Q)
respectively. Let S+

q (S+
r ) be a set of coset representatives of ∆q/{±1}

(∆r/{±1}, respectively) and let S−q = ∆q − S+
q and S−r = ∆r − S+

r .
For convenience, we assume that identity elements of ∆q and ∆r are
in S+

q and S+
r , respectively. Elements of S+

q (S+
r ) will be denoted by

τq(τr) and those of S−q (S−r ) will be denoted by τ̃q(τ̃r). Thus {τ̃q} =
{−τq}, where − is the complex conjugation on Q(ζq) sending ζq to ζ−1

q .
Under the natural isomorphism ∆ ' ∆q ×∆r, let ∆+ = {τqτr | τq ∈
S+

q − {id}, τr ∈ S+
r − {id}} and ∆− = {τq τ̃r | τq ∈ S+

q , τr ∈ S+
r }.

Note that ∆ 6= ∆+ ∪ ∆−, since #∆+ = ( 1
2ϕ(q) − 1)( 1

2ϕ(r) − 1) and
#∆− = 1

4ϕ(q)ϕ(r), and thus #(∆+∪∆−) = 1
2ϕ(qr)− 1

2ϕ(q)− 1
2ϕ(r)+1.

For later use, we put #∆+ = s, #∆− = t and #(∆+ ∪∆−) = m.
Nontrivial even (odd) characters of ∆q are denoted by ψq(θq, re-

spectively) and we use similar notations ψr, θr for ∆r. Thus even
characters of ∆ of conductor qr are of the form either ψqψr or θqθr.
Note that#{ψqψr} = ( 1

2ϕ(q) − 1)( 1
2ϕ(r) − 1) = #∆+ = s and that

#{θqθr} = 1
4ϕ(qr) = #∆− = t.

Lemma 1. Let m be as before and let A be an m × m matrix
with entries χ(δ), where {χ} is the set of all even characters of ∆ of
conductor qr and {δ} = ∆+ ∪∆−. Then detA 6≡ 0 mod p.

Proof. By arranging rows and columns of A suitably, we may assume
that A is of the form

A =

s︷ ︸︸ ︷ t︷ ︸︸ ︷
s

{
t

{

ψq(τq)ψr(τr) ψq(τq)ψr(τ̃r)

θq(τq)θr(τr) θq(τq)θr(τ̃r)


.
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Since ψr(τ̃r) = ψr(τr) and θr(τ̃r) = −θr(τr), by adding suitable
columns of A to other columns, we have

A′ =


2ψq(τq)ψr(τr) ψq(τq)ψr(τr)

0 −θq(τq)θr(τr)

 .

Hence detA = detA′ = 2s(−1)t detM detN , where M is the s × s
matrix with entries ψq(τq)ψr(τr) and N is the t× t matrix with entries
θq(τq)θr(τr). Note that M and N can be written as tensor products of
matrices of smaller sizes as follows:

M = (ψq(γq))⊗ (ψr(γr)), N = (θq(γq))⊗ (θr(γr)).

Finally one can easily check that these four matrices have nonzero
determinants modulo p by applying lemma 1.2 of [5]. � �

The following Lemma on cyclotomic units follows immediately from
V. Ennola’s theorem which was introduced in Section 1.

Lemma 2. Let χ 6= 1 be an even character of Q(ζn) and δ1, δ2, δ be
cyclotomic units in Q(ζn). Then

(i) Y (χ, δ1δ2) = Y (χ, δ1) + Y (χ, δ2)
(ii) If (root of 1)×δ1 =(root of 1)×δ2, then Y (χ, δ1) = Y (χ, δ2)
(iii) For any σ ∈ Gal(Q(ζn)/Q), Y (χ, δσ) = χ(σ)Y (χ, δ)
(iv) Y (χ, δσ−1) = (χ(σ)− 1)Y (χ, δ).

3. Generators of H1(Gm,n, Cm)

Let K = K0 = Q(ζpd), Kn = Q(ζpn+1d) and K∞ = ∪n≥0Kn where
d = qr and p ≡ 1 mod d. We denote the Galois group Gal(Km/Kn) by
Gm,n and Gal(Kn/K0) by simply Gn instead of Gn,0. And we denote
the norm map from Km to Kn by Nm,n and that from Kn to K0 by
Nn. In this section we will find explicit generators of the cohomology
groups H1(Gm,n, Cm) and H1(Gn, Cn) for m > n > 0, where Cn is
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the group of cyclotomic units of Kn. Theoretically, it is known ([4])
that H1(Gm,n, Cm) ' (Z/pm−nZ)l, where l = 1

2ϕ(d) is the number of
prime ideals of Q(ζd + ζ−1

d ) above p.

Let σ be the topological generator of the Galois group Gal(K∞/K0)
which sends ζpn to ζ1+p

pn for all n ≥ 1. Let R = {w ∈ Zp | wp−1 = 1} be
the set of roots of 1 in Zp. Then R can be thought of as the Galois group
Gal(Q(ζp)/Q) or as any Galois group isomorphic to it. For example
R ' Gal(Q(ζpn+1)/Qn), where Qn is the subfield of Q(ζpn+1) of degree
pn over Q.

We need some more notations which we use throughout this section:

T+
n =

{∏
w∈R

(ζw
pn+1 − ζτq

q ζτr
r ) | τqτr ∈ ∆+

}

T−n =

{∏
w∈R

(ζw
pn+1 − ζτq

q ζ τ̃r
r ) | τq τ̃r ∈ ∆−

}

Tn,q =

{∏
w∈R

(ζw
pn+1 − ζτq

q ) | τq ∈ S+
q − {id}

}

Tn,r =

{∏
w∈R

(ζw
pn+1 − ζτr

r ) | τr ∈ S+
r − {id}

}
T+ = T+

1 , T
− = T−1 , Tq = T1,q, Tr = T1,r.

Elements of T+
n , T

−
n , Tn,q and Tn,r are denoted by δ+n , δ

−
n , δn,q and

δn,r respectively. Thus, for example, T+
n = {δ+n }. We also abbreviate

elements of T+, T−, Tq and Tr by δ+, δ−, δq and δr.

It is easy to check that #(T+
n ∪ T−n ∪ Tn,q ∪ Tn,r) = #(∆+ ∪∆−) +

( 1
2ϕ(q)− 1) + ( 1

2ϕ(r)− 1) = 1
2ϕ(qr)− 1= l− 1. By applying the norm
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map Nn from Kn to K0 to each δ’s, we get 1. For example,

Nn(δ+n ) = Nn

(∏
w∈R

(ζw
pn+1 − ζτq

q ζτr
r )

)
=
∏
w∈R

Nn(ζw
pn+1 − ζτq

q ζτr
r )

=
∏
w∈R

(ζw
p − ζτq

q ζτr
r )

=
1− ζ

pτq
q ζpτr

r

1− ζ
τq
q ζτr

r

= 1.

The last equality holds since p ≡ 1 mod qr. Thus we have l − 1
cyclotomic units in Cn whose norms to K0 are 1. These elements
together with πσ−1

n will yield a set of generators of H1(Gn, Cn), where
πn = ζpn+1 − 1. We will denote π1 by π.

Theorem 1. H1(G1, C1) is generated by T+∪T−∪Tq∪Tr∪{πσ−1}.

Proof. Suppose

η =

( ∏
δ+∈T+

(δ+)aδ+

)( ∏
δ−∈T−

(δ−)aδ−

)
× ∏

δq∈Tq

δ
aδq
q

( ∏
δr∈Tr

δ
aδr
r

)
(πσ−1)b = ξσ−1(*)

for some ξ ∈ C1 and for some integers aδ+ , aδ− , aδq
, aδr

and b. Since
we know that H1(G1, C1) ' (Z/pZ)l, it is enough to show that aδ+ ≡
aδ− ≡ aδq

≡ aδr
≡ b ≡ 0 mod p. Since we apply σ − 1 to ξ after all,

we may assume that ξ is of the form

ξ =
∏
i,j,k

(ζσiwj

p2 − ζk
qr)

ci,j,k × (root of 1)

for some integers ci,j,k with 0 ≤ i < p, 0 ≤ j < p − 1 and 0 < k < qr.
By applying Lemma 2 to (*), we have

Y (χ, η) = Y (χ, ξσ−1)
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for every even character χ 6= 1.
The strategy of proving this theorem is as follows. First, we compute

both sides when χ is of the form χ = ψχqr, where ψ is a fixed nontrivial
character of Gal(Q1/Q) and χqr is an even character of ∆ of conductor
qr. So χqr = χqχr is of the form either ψqψr or θqθr under the notation
in section 2. By letting χqr vary over all such characters, we somehow
end up with aδ+ ≡ aδ− ≡ 0 mod p for all δ+ ∈ T+ and δ− ∈ T−.
Then (*) reads as ∏

δq∈Tq

δ
aδq
q

( ∏
δr∈Tr

δ
aδr
r

)
(πσ−1)b = ξσ−1

1

for some ξ1 ∈ C1. Then use the same method with characters of the
form χ = ψχq to prove that aδq

≡ 0 mod p, where χq is a nontrivial
even character of Q(ζq). Similarly, aδr ≡ 0 mod p. Therefore we have

(πσ−1)b = ξσ−1
2

for some ξ2 ∈ C1. Then, finally, we see that b ≡ 0 mod p.
Thus, the proof of this theorem is going to be a long computation.

However we will perform only the first step of the proof. Namely we
will only show that aδ+ ≡ aδ− ≡ 0 mod p. The rest of the proof is
similar to the first step. And actually the essence of the generalization
to the case d = qr of theorem 1 of [5] which treats the case d = q lies
in the first step.

So we are going to compute both sides of Y (χ, η) = Y (χ, ξσ−1) when
χ is of the form χ = ψχqr. By applying Theorem C in Section 1, we
easily see that Y (χ, δq) = Y (χ, δr) = Y (χ, πσ−1) = 0. Thus by Lemma
2, we get

Y (χ, η) =
∑

δ+∈T+

aδ+Y (χ, δ+) +
∑

δ−∈T−

aδ−Y (χ, δ−).

And

Y (χ, δ+) = Y (ψχqr,
∏
w∈R

(ζw
p2 − ζτq

q ζτr
r ))

=
∑
w

Y (ψχqr, ζ
w
p2 − ζτq

q ζτr
r ).
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Since ζw
p2 − ζ

τq
q ζτr

r = ζw
p2(1− ζ

−wqr+p2rτq+p2qτr

p2qr ), we have

Y (ψχqr, ζ
w
p2 − ζτq

q ζτr
r ) =

1
ϕ(p2qr)

ψχqr(−wqr + p2rτq + p2qτr)

=
1

ϕ(p2qr)
ψ(qr)χq(p2rτq)χr(p2qτr).

Since p ≡ 1 mod qr, χq(p) = χr(p) = 1. Therefore

Y (χ, δ+) =
∑
w

1
ϕ(p2qr)

ψ(qr)χq(r)χr(q)χqr(τqτr)

= (p− 1)
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
χqr(τqτr).

Similarly,

Y (χ, δ−) = (p− 1)
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
χqr(τq τ̃r).

Hence

Y (χ, η) =(p− 1)
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
×( ∑

δ+∈T+

aδ+χqr(τqτr) +
∑

δ−∈T−

aδ−χqr(τq τ̃r)

)
.

On the other hand,

Y (χ, ξσ−1) = (χ(σ)− 1)Y (χ, ξ)

= (χ(σ)− 1)
∑
i,j,k

ci,j,kY (χ, ζσiwj

p2 − ζk
qr).

If (k, qr) 6= 1, then Y (χ, ζσiwj

p2 − ζk
qr) = 0 when χ = ψχqr. Therefore,

in the above sum, we may assume (k, qr) = 1 and so we may write
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k = mq + nr with 1 ≤ m ≤ p− 1, 1 ≤ n ≤ q − 1. Thus

Y (χ, ζσiwj

p2 − ζk
qr) = Y (ψχqr, ζ

σiwj

p2 − ζn
q ζ

m
r )

= Y (ψχqr, 1− ζ−σiwjqr+p2nr+p2mq
p2qr )

=
1

ϕ(p2qr)
ψχqr(−σiwjqr + p2nr + p2mq)

=
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
ψ(σi)χq(n)χr(m).

Therefore

Y (χ, ξσ−1) = (χ(σ)− 1)
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
×∑

i,j,m,n

ci,j,m,nψ(σi)χq(n)χr(m).

Put
∑

i,j,m,n ci,j,m,nψ(σi)χq(n)χr(m) = β(χqr), an algebraic integer
depending on χqr. Then

Y (χ, ξσ−1) = (χ(σ)− 1)
ψ(qr)χq(r)χr(q)

ϕ(p2qr)
β(χqr).

By equating the two results for Y (χ, η) and Y (χ, ξσ−1), we obtain

(p− 1)

( ∑
δ+∈T+

aδ+χqr(τqτr) +
∑

δ−∈T−

aδ−χqr(τq τ̃r)

)
= (χ(σ)− 1)β(χqr) = (ψ(σ)− 1)β(χqr).

By letting χqr vary over all nontrivial even characters of conductor qr,
we have a system of linear equations

(p− 1)A



...
aδ+

...
aδ−

...

 = (ψ(σ)− 1)


...

β(χqr)
...

 ,
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where A is the matrix in Lemma 1. Since the principal ideal (ψ(σ)−1)
lies above p and since detA 6≡ 0 mod p by Lemma 1, we must have



...
aδ+

...
aδ−

...

 ≡


...
0
...

 mod p.

Therefore aδ+ ≡ aδ− ≡ 0 mod p as desired. � �

Now we generalize Theorem 1 to the case H1(Gn, Cn) for n ≥ 1.

Theorem 2. H1(Gn, Cn) is generated by T+
n ∪ T−n ∪ Tn,q ∪ Tn,r ∪

{πσ−1
n }.

Proof. We prove this by induction on n. Theorem 1 takes case of
the case n = 1. So we will prove the theorem for n with assuming the
result for n− 1. Thus H1(Gn−1, Cn−1) is generated by T+

n−1 ∪ T
−
n−1 ∪

Tn−1,q ∪ Tn−1,r ∪ {πσ−1
n−1}.

As in the proof of Theorem 1, suppose that

η =

 ∏
δ+

n∈T+
n

(δ+n )
a

δ
+
n

 ∏
δ−n ∈T−n

(δ−n )
a

δ
−
n

×
 ∏

δn,q∈Tn,q

(δn,q)aδq

 ∏
δn,r∈Tn,r

(δn,r)aδr

 (πσ−1
n )b = ξσ−1

(**)

for some ξ ∈ Cn. We have to show that aδ+
n
≡ aδ−n

≡ aδq
≡ aδr

≡ b ≡ 0
mod pn.

Since Nn,n−1(δ±n ) = δ±n−1, Nn,n−1(δn,q) = δn−1,q, Nn,n−1(δn,r) =
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δn−1,r and Nn,n−1(πn) = πn−1, we have

Nn,n−1(η) =

 ∏
δ+

n−1∈T+
n−1

(δ+n−1)
a

δ
+
n


 ∏

δ−n−1∈T−n−1

(δ−n−1)
a

δ
−
n

×
 ∏

δn−1,q∈Tn−1,q

(δn−1,q)aδq

 ∏
δn−1,r∈Tn−1,r

(δn−1,r)aδr

 (πσ−1
n−1)

b

= (Nn,n−1ξ)σ−1.

Hence aδ+
n
≡ aδ−n

≡ aδq
≡ aδr

≡ b ≡ 0 mod pn−1 by the induction
hypothesis. So we can write aδ+

n
= pn−1a+, aδ−n

= pn−1a−, aδq
=

pn−1aq, aδr
= pn−1ar and b = pn−1c for some integers a+, a−, aq, ar

and c. Note that

(δ+n )pn−1
=
∏
w

(ζw
pn+1 − ζτq

q ζτr
r )pn−1

=
∏
w

(
Nn,1(ζw

pn+1 − ζτq
q ζτr

r )
(ζw

pn+1 − ζ
τq
q ζτr

r )pn−1

Nn,1(ζw
pn+1 − ζ

τq
q ζτr

r )

)

=
∏
w

(ζw
p2 − ζτq

q ζτr
r )
∏
w

∏
t

0≤t<pn−1

(
ζw
pn+1 − ζ

τq
q ζτr

r

(ζwσtp

pn+1 − ζ
τq
q ζτr

r )

)

= δ+1
∏
w

∏
t

(ζw
pn+1 − ζτq

q ζτr
r )1−σtp

= δ+1 u
σ−1

δ+
n
,

where uδ+
n

=
∏

w

∏
t(ζ

w
pn+1 − ζ

τq
q ζτr

r )
1−σtp

σ−1 ∈ Cn. Similarly, (δ−n )pn−1
=

δ−1 u
σ−1

δ−n
, (δn,q)pn−1

= δ1,qu
σ−1
δn,q

, (δn,r)pn−1
= δ1,ru

σ−1
δn,r

and πpn−1

n =
π1uπ for some uδ−n

, uδn,q
, uδn,r

and uπ ∈ Cn. Hence (**) reads ∏
δ+
1 ∈T+

1

(δ+1 )a+

 ∏
δ−1 ∈T−1

(δ−1 )a−

 ∏
δ1,q∈T1,q

(δ1,q)aq

×
 ∏

δ1,r∈T1,r

(δ1,r)ar

 (πσ−1
1 )c = ξ′

σ−1
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for some ξ′ ∈ Cn. Therefore, we have an element in C1 whose norm
to K0 equals 1, which also lies in Cσ−1

n . But since the inflation map
H1(G1, C1) → H1(Gn, Cn) is injective, the left hand side of the above
equation must be in Cσ−1

1 . In this case, we already know that a+ ≡
a− ≡ aq ≡ ar ≡ c ≡ 0 mod p by theorem 1. Therefore aδ+

n
≡ aδ−n

≡
aδq ≡ aδr ≡ b ≡ 0 mod pn. � �

Finally, we generalize Theorem 2 to arbitrary case.

Theorem 3. Let σn = σpn
−1

σ−1 = 1+σ+σ2+· · ·+σpn−1. For m > n,

define (T+
m)σn by (T+

m)σn = {(δ+m)σn | δ+m ∈ T+
m}. And we define

(T−m)σn , Tσn
m,q and T σn

m,r similarly. Then H1(Gm,n, Cm) is generated by

(T+
m)σn ∪ (T−m)σn ∪ T σn

m,q ∪ T σn
m,r ∪ {πσpn

−1
m }.

Proof. Since H1(Gm,n, Cm) ' Im(H1(Gm, Cm) res→ H1(Gm,n, Cm)),
H1(Gm,n, Cm) is generated by res{T+

m ∪ T−m ∪ Tm,q ∪ Tm,r ∪ {πσ−1
m }}.

Applying restriction maps to various δ’s is same as applying σn to δ’s,
i.e., res(δ+m) = (δ+m)σn . Therefore H1(Gm,n, Cm) is generated by the
set given in the theorem. � �
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