ON THE NORMAL BUNDLE OF A SUBMANIFOLD IN A KÄHLER MANIFOLD

Keumseong Bang

Abstract

We show that the normal bundle of a Lagrangian submanifold in a Kähler manifold has a symplectic structure and provide the equivalent conditions for the normal bundle of such to be Kähler.

1. Preliminaries

We consider a submanifold \tilde{M} of a Riemannian manifold $\left(M^{2 n}, g\right)$. A Riemannian metric G is induced on \tilde{M} and there is also a metric G^{\perp} induced on each fiber of the normal bundle $N \tilde{M}$ of \tilde{M}. We call by D the Riemannian connection of (\tilde{M}, G). The normal connection D^{\perp} and its curvature tensor R^{\perp} are defined as usual (in the sense of [3]). It is well known (Refer to [1]) that on the normal bundle $N \tilde{M}$, there is a naturally induced metric \tilde{g}, called the Sasaki metric. This metric structure was determined, by Recziegel [4], in an invariant manner:

$$
\tilde{g}(\tilde{X}, \tilde{Y})=G\left(\pi_{*} \tilde{X}, \pi_{*} \tilde{Y}\right)+G^{\perp}(K \tilde{X}, K \tilde{Y})
$$

where π_{*} is the differential of the projection map $\pi: N \tilde{M} \rightarrow \tilde{M}$ of the normal bundle $N \tilde{M}$ and $K: T N \tilde{M} \rightarrow N \tilde{M}$ is the connection map. Note that both the mappings π_{*} and K are onto and fiber-preserving linear transformations.

We call the kernels of the mappings π_{*} and K the vertical subspace $V N \tilde{M}$ and the horizontal subspace $H N \tilde{M}$, respectively. Then, the

[^0]vertical subspace and the horizontal subspace are orthogonal in the Sasaki metric and the vertical space is tangent to the fiber. Moreover, there is a decomposition:
$$
T_{\tilde{x}} N \tilde{M}=H_{\tilde{x}} N \tilde{M} \oplus V_{\tilde{x}} N \tilde{M}
$$
for each $\tilde{x}=(x, \xi) \in N \tilde{M}$.
Given a tangent vector field X and a normal vector field η to \tilde{M}, there are defined the horizontal lift $X^{H} \in H N \tilde{M}$ and the vertical lift $\eta^{V} \in V N \tilde{M}$ such that
$$
\pi_{*} X^{H}=X, K X^{H}=0, \pi_{*} \eta^{V}=0, \text { and } K \eta^{V}=\eta .
$$

Thus, we have that at the point $\tilde{x}=(x, \xi)$

$$
\begin{align*}
\tilde{g}\left(X^{H}, Y^{H}\right)_{\tilde{x}} & =G\left(\pi_{*} X^{H}, \pi_{*} Y^{H}\right)_{x}=G(X, Y)_{x} \\
\tilde{g}\left(X^{H}, \eta^{V}\right)_{\tilde{x}} & =G\left(\pi_{*} X^{H}, \pi_{*} \eta^{V}\right)_{x}+G^{\perp}\left(K X^{H}, K \eta^{V}\right)_{\xi}=0 \tag{1}\\
\tilde{g}\left(\eta^{V}, \zeta^{V}\right)_{\tilde{x}} & =G^{\perp}\left(K \eta^{V}, K \zeta^{V}\right)_{\xi}=G^{\perp}\left(\eta^{V}, \zeta^{V}\right)_{\xi}
\end{align*}
$$

Now, since we can write

$$
\tilde{X}=\left(\pi_{*} \tilde{X}\right)^{H}+(K \tilde{X})^{V}
$$

for a tangent vector \tilde{X} to $N \tilde{M}$, it is enough to consider various combinations of horizontally and vertically lifted vector fields.

We will need the following lemmas. Proofs are routine and we omit them here.

Lemma 1.1 ([1]). Let X and Y be tangent vector fields, and η and ζ normal vector fields of \tilde{M}. Then, at each point (x, ξ) of the normal bundle $N \tilde{M}$, the Lie brackets are:

$$
\begin{aligned}
{\left[\eta^{V}, \zeta^{V}\right] } & =0, & {\left[X^{H}, \eta^{V}\right] } & =\left(D_{X}^{\perp} \eta\right)^{V}, \\
\pi_{*}\left[X^{H}, Y^{H}\right] & =[X, Y], & K\left[X^{H}, Y^{H}\right] & =-R_{X Y}^{\perp} \xi .
\end{aligned}
$$

By definition, $R_{X Y}^{\perp} \eta$ is a normal vector field of \tilde{M}. For any normal vector field ζ, we may compute the inner product $g\left(R_{X}^{\perp} \eta, \zeta\right)$. We define the adjoint $\hat{R}_{\eta \zeta} X$ by the equality $G\left(\hat{R}_{\eta \zeta} X, Y\right)=g\left(R_{X Y}^{\perp} \eta, \zeta\right)$. The covariant derivatives with respect to the Riemannian connection $\tilde{\nabla}$ of the Sasaki metric \tilde{g} on $N \tilde{M}$ are easily computed. And, we have

Lemma 1.2 ([1]). Let X and Y be tangent vector fields, and η and ζ normal vector fields of \tilde{M}. Then, at each point (x, ξ) of the normal bundle $N \tilde{M}$,

$$
\begin{aligned}
\tilde{\nabla}_{\eta^{V}} \zeta^{V} & =0, & \tilde{\nabla}_{X^{H}} \zeta^{V} & =\left(D_{X}^{\perp} \zeta\right)^{V}+\frac{1}{2}\left(\hat{R}_{\xi \zeta} X\right)^{H}, \\
\tilde{\nabla}_{\eta^{V}} Y^{H} & =\frac{1}{2}\left(\hat{R}_{\xi \eta} Y\right)^{H}, & \tilde{\nabla}_{X^{H}} Y^{H} & =\left(D_{X} Y\right)^{H}-\frac{1}{2}\left(R_{X Y}^{\perp} \xi\right)^{V} .
\end{aligned}
$$

2. Main results

Let us consider a Lagrangian submanifold L of a Kähler manifold $\left(M^{2 n}, J, g\right)$. On the normal bundle $N L$ of L, we define \tilde{J} by

$$
\tilde{J} X^{H}=(J X)^{V}
$$

and

$$
\tilde{J} \xi^{V}=(J \xi)^{H}
$$

for any tangent vector field X and normal vector field ξ to L. Then, it is easy to see that \tilde{J} is an almost complex structure on $N L$.

Thus, we have
Proposition 2.1. ($N L, \tilde{J}, \tilde{g}$) is an almost Hermitian manifold.
Proof. By the argument above, it remains to show that \tilde{J} is compatible with the Sasaki metric \tilde{g} on $N L$. And, this follows immediately from the compatibility of J with g and (1).

Let us denote by $\tilde{\nabla}$ and ∇ the Riemannian connection of \tilde{g} and g, respectively. Let G be the induced metric on L, D its Riemannian connection, and \underline{R} the curvature tensor on L.

We now present our main theorems.
Theorem 2.2. Let L be a Lagrangian submanifold of a Kähler manifold $\left(M^{2 n}, J, g\right)$. Then, $(N L, \tilde{J}, \tilde{g})$ is a symplectic manifold.

Proof. By Proposition 2.1, it remains to show that the fundamental 2-form Ω defined by $\Omega(\tilde{X}, \tilde{Y})=\tilde{g}(\tilde{X}, \tilde{J} \tilde{Y})$ is non-degenerate and closed. The non-degeneracy of Ω is immediate since \tilde{g} is positive definite and \tilde{J} is non-singular at each point.

In order to show that Ω is closed, we first observe that

$$
\begin{align*}
\Omega\left(X^{H}, Y^{H}\right) & =\tilde{g}\left(X^{H}, \tilde{J} Y^{H}\right) \\
& =g\left(\pi_{*} X^{H}, \pi_{*} \tilde{J} Y^{H}\right)+g\left(K X^{H}, K \tilde{J} Y^{H}\right) \tag{2}\\
& =0,
\end{align*}
$$

$$
\Omega\left(X^{H}, \eta^{V}\right)=\tilde{g}\left(X^{H}, \tilde{J}^{V}\right)
$$

$$
=g\left(\pi_{*} X^{H}, \pi_{*} \tilde{J}^{V}\right)+g\left(K X^{H}, K \tilde{J} \eta^{V}\right)
$$

$$
=g(X, J \eta)
$$

and likewise,

$$
\begin{equation*}
\Omega\left(\eta^{V}, \zeta^{V}\right)=0 \tag{4}
\end{equation*}
$$

We recall here the coboundary formula

$$
\begin{aligned}
3 d \Phi(X, Y, Z)= & X \Phi(Y, Z)+Y \Phi(Z, X)+Z \Phi(X, Y) \\
& \quad-\Phi([X, Y], Z)-\Phi([Y, Z], X)-\Phi([Z, X], Y) .
\end{aligned}
$$

Using Lemma 1.1 and (2) - (4), we compute

$$
\left.\left.\begin{array}{rl}
3 d \Omega\left(X^{H}, Y^{H}, Z^{H}\right)= & -\Omega\left(\left[X^{H}, Y^{H}\right], Z^{H}\right)-\Omega\left(\left[Y^{H}, Z^{H}\right], X^{H}\right) \\
& -\Omega\left(\left[Z^{H}, X^{H}\right], Y^{H}\right) \\
= & \Omega\left(\left(R_{X}^{\perp} \xi\right)^{V}, Z^{H}\right)+\Omega\left(\left(R_{Y} \perp\right.\right. \\
\perp
\end{array}\right)^{V}, X^{H}\right)
$$

But, from the Gauss-Weingarten equations, we have

$$
\nabla_{X} J \xi=D_{X} J \xi+\sigma(X, J \xi)
$$

and

$$
J \nabla_{X} \xi=-J A_{\xi} X+J D_{X}^{\perp} \xi
$$

We compare tangential parts of these using Kähler condition and get

$$
\begin{equation*}
J D_{X}^{\perp} \xi=D_{X} J \xi \tag{5}
\end{equation*}
$$

Continuing our computation, using this and the Bianchi identity, we get

$$
\begin{align*}
3 d \Omega\left(X^{H}, Y^{H}, Z^{H}\right) & =-g\left(\underline{R}_{X Y} J \xi, Z\right)-g\left(\underline{R}_{Y Z} J \xi, X\right)-g\left(\underline{R}_{Z X} J \xi, Y\right) \\
& =g\left(\underline{R}_{X Y} Z, J \xi\right)+g\left(\underline{R}_{Y Z} X, J \xi\right)+g\left(\underline{R}_{Z X} Y, J \xi\right) \\
& =0 \tag{6}
\end{align*}
$$

Likewise, we compute, using Lemma 1.2 and (2) - (4),

$$
\begin{aligned}
3 d \Omega\left(X^{H}, Y^{H}, \eta^{V}\right)= & X^{H} \Omega\left(Y^{H}, \eta^{V}\right)+Y^{H} \Omega\left(\eta^{V}, X^{H}\right) \\
& -\Omega\left(\left[X^{H}, Y^{H}\right], \eta^{V}\right)-\Omega\left(\left[Y^{H}, \eta^{V}\right], X^{H}\right) \\
& -\Omega\left(\left[\eta^{V}, X^{H}\right], Y^{H}\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{X^{H}} Y^{H},\left(J \eta^{V}\right)^{H}\right)+\tilde{g}\left(Y^{H}, \tilde{\nabla}_{X^{H}}(J \eta)^{H}\right) \\
& +\tilde{g}\left(\tilde{\nabla}_{Y^{H}} \eta^{V},(J X)^{V}\right)+\tilde{g}\left(\eta^{V}, \tilde{\nabla}_{Y^{H}}(J X)^{V}\right) \\
& -\Omega\left([X, Y]^{H}-\left(R_{X}^{\perp} \xi\right)^{V}, \eta^{V}\right) \\
& -\Omega\left(\left(D_{Y}^{\perp} \eta\right)^{V}, X^{H}\right)+\Omega\left(\left(D_{X}^{\perp} \eta\right)^{V}, Y^{H}\right) \\
= & \tilde{g}\left(\left(D_{X} Y\right)^{H},(J \eta)^{H}\right)+\tilde{g}\left(Y^{H},\left(D_{X} J \eta\right)^{H}\right) \\
& +\tilde{g}\left(\left(D_{Y}^{\perp} \eta\right)^{V},(J X)^{V}\right)+\tilde{g}\left(\eta^{V},\left(D_{Y}^{\perp} J X\right)^{V}\right) \\
& -\Omega\left([X, Y]^{H}, \eta^{V}\right)-\Omega\left(\left(D_{Y}^{\perp} \eta\right)^{V}, X^{H}\right) \\
& +\Omega\left(\left(D_{X}^{\perp} \eta\right)^{V}, Y^{H}\right) \\
= & \tilde{g}\left(\left(D_{X} Y\right)^{H},(J \eta)^{H}\right)+\tilde{g}\left(\eta^{V},\left(D_{Y}^{\perp} J X\right)^{V}\right) \\
& -\tilde{g}\left([X, Y]^{H},(J \eta)^{H}\right) \\
= & \tilde{g}\left(\left(D_{X} Y\right)^{H}, \tilde{J} \eta^{V}\right)+\tilde{g}\left(\tilde{J} \eta{ }^{V},-\left(D_{X} Y\right)^{H}\right) \\
& -\tilde{g}\left([X, Y]^{H}, \tilde{J} \eta^{V}\right) \\
= & 0
\end{aligned}
$$

and

$$
\begin{align*}
3 d \Omega\left(X^{H}, \eta^{V}, \zeta^{V}\right)= & \eta^{V} \Omega\left(\zeta^{V}, X^{H}\right)+\zeta^{V} \Omega\left(X^{H}, \eta^{V}\right) \\
& -\Omega\left(\left[X^{H}, \eta^{V}\right], \zeta^{V}\right)-\Omega\left(\left[\eta^{V}, \zeta^{V}\right], X^{H}\right) \\
& -\Omega\left(\left[\zeta^{V}, X^{H}\right], \eta^{V}\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{\eta^{V}} \zeta^{V}, \tilde{J} X^{H}\right)+\tilde{g}\left(\zeta^{V}, \tilde{\nabla}_{\eta^{V}}(J X)^{V}\right) \\
& +\tilde{g}\left(\tilde{\nabla}_{\zeta^{V}} X^{H},(J \eta)^{H}\right)+\tilde{g}\left(X^{H}, \tilde{\nabla}_{\zeta^{V}}(J \eta)^{H}\right) \\
& -\Omega\left(\left(D_{X}^{\perp} \eta\right)^{V}, \zeta^{V}\right)+\Omega\left(\left(D_{X}^{\perp} \zeta\right)^{V}, \eta^{V}\right) \\
= & \frac{1}{2} \tilde{g}\left(\left(\hat{R}_{\xi \zeta} X\right)^{H},(J \eta)^{H}\right)+\frac{1}{2} \tilde{g}\left(\left(\hat{R}_{\xi \zeta} J \eta\right)^{H}, X^{H}\right) \\
= & 0 \tag{8}
\end{align*}
$$

$$
\begin{equation*}
3 d \Omega\left(\eta^{V}, \zeta^{V}, \delta^{V}\right)=0 \tag{9}
\end{equation*}
$$

is trivial. This completes our proof.

Theorem 2.3. Let L be a Lagrangian submanifold of a Kähler manifold ($M^{2 n}, J, g$). Then, the followings are equivalent:
(1) NL is Kähler.
(2) L has flat normal connection.
(3) L is flat.

Proof. We compute the Nijenhuis torsion.

$$
\begin{aligned}
{[\tilde{J}, \tilde{J}]\left(X^{H}, Y^{H}\right)=} & -\left[X^{H}, Y^{H}\right]+\left[\tilde{J} X^{H}, \tilde{J} Y^{H}\right] \\
& -\tilde{J}\left[(J X)^{V}, Y^{H}\right]-\tilde{J}\left[X^{H},(J Y)^{V}\right] \\
= & -\left[X^{H}, Y^{H}\right]+\left(J D_{Y}^{\perp} J X\right)^{H}-\left(J D_{X}^{\perp} J Y\right)^{H} \\
= & -[X, Y]^{H}+\left(R_{X}^{\perp} \xi\right)^{V}+\left(J D_{Y}^{\perp} J X-J D_{X}^{\perp} J Y\right)^{H}
\end{aligned}
$$

So, using (5), we have

$$
\begin{align*}
{[\tilde{J}, \tilde{J}]\left(X^{H}, Y^{H}\right) } & =-\left[X^{H}, Y^{H}\right]+\left(R_{X}^{\perp} \xi\right)^{V}-\left(D_{Y} X-D_{X} Y\right)^{H} \\
& =-[X, Y]^{H}+\left(R_{X Y}^{\perp} \xi\right)^{V}-[Y, X]^{H} \\
& =\left(R_{X Y}^{\perp} \xi\right)^{V} \tag{10}
\end{align*}
$$

$$
\begin{align*}
{[\tilde{J}, \tilde{J}]\left(X^{H}, \zeta^{V}\right)=} & -\left[X^{H}, \zeta^{V}\right]+\left[(J X)^{V},(J \zeta)^{H}\right] \\
& -\tilde{J}\left[(J X)^{V}, \zeta^{V}\right]-\tilde{J}\left[X^{H},(J \zeta)^{H}\right] \\
= & -\left(D_{X}^{\perp} \zeta\right)^{V}-\left(D_{J \zeta}^{\perp} J X\right)^{V}-\tilde{J}\left([X, J \zeta]^{H}-\left(R_{X J \zeta}^{\perp} \xi\right)^{V}\right) \\
= & -\left(D_{X}^{\perp} \zeta\right)^{V}-\left(D_{J \zeta}^{\perp} J X\right)^{V}-(J[X, J \zeta])^{V}+\left(J R_{X J \zeta}^{\perp} \xi\right)^{H} \\
= & -\left(\nabla_{X} \zeta\right)^{V}-\left(A_{\zeta} X\right)^{H}-\left(\nabla_{J \zeta} J X\right)^{V}-\left(A_{J X} J \zeta\right)^{V} \\
& -\left(J \nabla_{X} J \zeta\right)^{V}+\left(J \nabla_{J \zeta} X\right)^{V}+\left(J R_{X J \zeta}^{\perp} \xi\right)^{H} \\
= & -\left(\nabla_{X} \zeta\right)^{V}-\left(A_{\zeta} X\right)^{H}-\left(\nabla_{J \zeta} J X\right)^{V}-\left(A_{J X} J \zeta\right)^{V} \\
& +\left(\nabla_{X} \zeta\right)^{V}+\left(\nabla_{J \zeta} J X\right)^{V}+\left(J R_{X J \zeta}^{\perp} \xi\right)^{H} \\
= & -\left(A_{\zeta} X\right)^{V}-\left(A_{J X} J \zeta\right)^{V}+\left(J R_{X J \zeta}^{\perp} \xi\right)^{H} \tag{11}
\end{align*}
$$

Again, using (5) and the Kähler condition, we see that

$$
\begin{aligned}
J[X, J \zeta] & =-\nabla_{X} \zeta-\nabla_{J \zeta} J X \\
& =-D_{X}^{\perp} \zeta-D_{J \zeta}^{\perp} J X+A_{\zeta} X+A_{J X} J \zeta .
\end{aligned}
$$

But, since $J[X, J \zeta]$ is normal to L, we have

$$
A_{\zeta} X+A_{J X} J \zeta=0
$$

Thus, we see, from (11), that

$$
\begin{align*}
{[\tilde{J}, \tilde{J}]\left(X^{H}, \zeta^{V}\right) } & =\left(J R_{X J \zeta}^{\perp} \xi\right)^{H} \\
& =\left(\underline{R}_{X J \zeta} J \xi\right)^{H} \tag{12}
\end{align*}
$$

and

$$
\begin{aligned}
{[\tilde{J}, \tilde{J}]\left(\eta^{V}, \zeta^{V}\right)=} & -\left[\eta^{V}, \zeta^{V}\right]+\left[(J \eta)^{H},(J \zeta)^{H}\right] \\
& -\tilde{J}\left[(J \eta)^{H}, \zeta^{V}\right]-\tilde{J}\left[\eta^{V},(J \zeta)^{H}\right] \\
= & {\left[(J \eta)^{H},(J \zeta)^{H}\right]-\tilde{J}\left(D_{J \eta}^{\perp} \zeta\right)^{V}+\tilde{J}\left(D_{J \zeta}^{\perp} \eta\right)^{V} } \\
= & {[J \eta, J \zeta]^{H}-\left(R_{J \eta J \zeta}^{\perp} \xi\right)^{V}-\left(J D_{J \eta}^{\perp} \zeta\right)^{H}+\left(J D_{J \zeta}^{\perp} \eta\right)^{H} } \\
= & {[J \eta, J \zeta]^{H}-\left(R_{J \eta J \zeta}^{\perp} \xi\right)^{V}-\left(D_{J \eta} J \zeta\right)^{H}+\left(D_{J \zeta} J \eta\right)^{V} } \\
= & -\left(R_{J \eta J \zeta}^{\perp} \xi\right)^{V}
\end{aligned}
$$

In view of (10), (12), and (13), we conclude that $[\tilde{J}, \tilde{J}]$ vanishes if and only if L has flat normal connection.

This together with the equations (6) - (9) shows that $N L$ is Kähler if and only if L has flat normal connection.

Moreover, using (11), we have

$$
R_{X Y} J \xi=J R_{X Y}^{\perp} \xi
$$

from which we easily see that L is flat if and only if $N L$ has flat normal connection.

In the proof of the previous theorem, we have also shown
Corollary 2.4. \tilde{J} on $N L$ is integrable if and only if L has flat connection.

References

[1] A. Borisenko and A. Yampol'skii, On the Sasaki metric of the normal bundle of a submanifold in a Riemannian space, Mat. Sb. 134(176) (1987), 157-175; English transl. in Math. USSR Sb. 61 (1988).
[2] Cartan, Geometry of Riemannian spaces, Math. Sci. Press, Brookline, Mass., 1983.
[3] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1995.
[4] H. Reckziegel, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature, Math. Ann. 243 (1979), 71-82.

Department of Mathematics
The Catholic University of Korea
Yokkok-Dong Wonmi-Gu
Bucheon, Kyunggi-Do
KOREA 420-743

[^0]: Received January 21, 1997.
 1991 Mathematics Subject Classification: 53B35, 53C15.
 Key words and phrases: Sasaki metric, symplectic manifold.
 This work was partially supported by a research fund of the Catholic University of Korea, 1996

