ON THE NORMAL BUNDLE OF A SUBMANIFOLD IN A KÄHLER MANIFOLD

Keumseong Bang

Abstract. We show that the normal bundle of a Lagrangian submanifold in a Kähler manifold has a symplectic structure and provide the equivalent conditions for the normal bundle of such to be Kähler.

1. Preliminaries

We consider a submanifold \tilde{M} of a Riemannian manifold (M^{2n}, g). A Riemannian metric G is induced on \tilde{M} and there is also a metric G^\perp induced on each fiber of the normal bundle $N\tilde{M}$ of \tilde{M}. We call by D the Riemannian connection of (\tilde{M}, G). The normal connection D^\perp and its curvature tensor R^\perp are defined as usual (in the sense of [3]). It is well known (Refer to [1]) that on the normal bundle $N\tilde{M}$, there is a naturally induced metric \tilde{g}, called the Sasaki metric. This metric structure was determined, by Recziegel [4], in an invariant manner:

$$\tilde{g}(\tilde{X}, \tilde{Y}) = G(\pi_*\tilde{X}, \pi_*\tilde{Y}) + G^\perp(K\tilde{X}, K\tilde{Y})$$

where π_* is the differential of the projection map $\pi : N\tilde{M} \to \tilde{M}$ of the normal bundle $N\tilde{M}$ and $K : TN\tilde{M} \to N\tilde{M}$ is the connection map. Note that both the mappings π_* and K are onto and fiber-preserving linear transformations.

We call the kernels of the mappings π_* and K the vertical subspace VNM and the horizontal subspace $HN\tilde{M}$, respectively. Then, the
vertical subspace and the horizontal subspace are orthogonal in the Sasaki metric and the vertical space is tangent to the fiber. Moreover, there is a decomposition:

$T_{\tilde{x}}N\tilde{M} = H_{\tilde{x}}N\tilde{M} \oplus V_{\tilde{x}}N\tilde{M}$

for each $\tilde{x} = (x, \xi) \in N\tilde{M}$.

Given a tangent vector field X and a normal vector field η to \tilde{M}, there are defined the horizontal lift $X^H \in HN\tilde{M}$ and the vertical lift $\eta^V \in VN\tilde{M}$ such that

$$\pi^*X^H = X, \quad KX^H = 0, \quad \pi^*\eta^V = 0, \quad K\eta^V = \eta.$$

Thus, we have that at the point $\tilde{x} = (x, \xi)$

$$\tilde{g}(X^H, Y^H)_{\tilde{x}} = G(\pi_*X^H, \pi_*Y^H)_x = G(X, Y)_x$$

(1) $$\tilde{g}(X^H, \eta^V)_x = G(\pi_*X^H, \pi_*\eta^V)_x + G^\perp(KX^H, K\eta^V)_x = 0$$

Now, since we can write $\tilde{X} = (\pi_*X)^H + (K\tilde{X})^V$ for a tangent vector \tilde{X} to $N\tilde{M}$, it is enough to consider various combinations of horizontally and vertically lifted vector fields.

We will need the following lemmas. Proofs are routine and we omit them here.

Lemma 1.1 ([1]). Let X and Y be tangent vector fields, and η and ζ normal vector fields of \tilde{M}. Then, at each point (x, ξ) of the normal bundle $N\tilde{M}$, the Lie brackets are:

$$[\eta^V, \zeta^V] = 0, \quad [X^H, \eta^V] = (D_X^\perp \eta)^V, \quad \pi_*[X^H, Y^H] = [X, Y], \quad K[X^H, Y^H] = -R^X_{XY}\xi.$$

By definition, $R^X_{XY}\eta$ is a normal vector field of \tilde{M}. For any normal vector field ζ, we may compute the inner product $g(R^X_{XY}\eta, \zeta)$. We define the adjoint $\tilde{R}_{\eta\zeta}X$ by the equality $G(\tilde{R}_{\eta\zeta}X, Y) = g(R^X_{XY}\eta, \zeta)$. The covariant derivatives with respect to the Riemannian connection ∇ of the Sasaki metric \tilde{g} on $N\tilde{M}$ are easily computed. And, we have
Lemma 1.2 ([1]). Let X and Y be tangent vector fields, and η and ζ normal vector fields of \tilde{M}. Then, at each point (x, ξ) of the normal bundle $N\tilde{M}$,

\[
\tilde{\nabla}_\eta V \zeta^V = 0, \quad \tilde{\nabla}_{X \eta} \zeta^V = (D_{X\eta} \zeta)^V + \frac{1}{2}(\tilde{R}_{\xi \eta} X)^H, \\
\tilde{\nabla}_\eta Y^H = \frac{1}{2}(\tilde{R}_{\xi \eta} Y)^H, \quad \tilde{\nabla}_{X \eta} Y^H = (D_X Y)^H - \frac{1}{2}(R_{X \eta} X)^V.
\]

2. Main results

Let us consider a Lagrangian submanifold L of a Kähler manifold (M^{2n}, J, g). On the normal bundle NL of L, we define \tilde{J} by

\[
\tilde{J}X^H = (JX)^V
\]

and

\[
\tilde{J}\xi^V = (J\xi)^H
\]

for any tangent vector field X and normal vector field ξ to L. Then, it is easy to see that \tilde{J} is an almost complex structure on NL.

Thus, we have

Proposition 2.1. $(NL, \tilde{J}, \tilde{g})$ is an almost Hermitian manifold.

Proof. By the argument above, it remains to show that \tilde{J} is compatible with the Sasaki metric \tilde{g} on NL. And, this follows immediately from the compatibility of J with g and (1). □ □

Let us denote by $\tilde{\nabla}$ and ∇ the Riemannian connection of \tilde{g} and g, respectively. Let G be the induced metric on L, D its Riemannian connection, and \widetilde{R} the curvature tensor on L.

We now present our main theorems.

Theorem 2.2. Let L be a Lagrangian submanifold of a Kähler manifold (M^{2n}, J, g). Then, $(NL, \tilde{J}, \tilde{g})$ is a symplectic manifold.
Proof. By Proposition 2.1, it remains to show that the fundamental 2-form Ω defined by $\Omega(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{J}\tilde{Y})$ is non-degenerate and closed. The non-degeneracy of Ω is immediate since \tilde{g} is positive definite and \tilde{J} is non-singular at each point.

In order to show that Ω is closed, we first observe that

$$\Omega(X^H, Y^H) = \tilde{g}(X^H, \tilde{J}Y^H) = g(\pi_*X^H, \pi_*\tilde{J}Y^H) + g(KX^H, K\tilde{J}Y^H) = 0,$$

$$\Omega(X^H, \eta^V) = \tilde{g}(X^H, \tilde{J}\eta^V) = g(\pi_*X^H, \pi_*\tilde{J}\eta^V) + g(KX^H, K\tilde{J}\eta^V) = g(X, J\eta),$$

and likewise,

$$\Omega(\eta^V, \zeta^V) = 0.$$

We recall here the coboundary formula

$$3d\Phi(X, Y, Z) = X\Phi(Y, Z) + Y\Phi(Z, X) + Z\Phi(X, Y) - \Phi([X, Y], Z) - \Phi([Y, Z], X) - \Phi([Z, X], Y).$$

Using Lemma 1.1 and (2) - (4), we compute

$$3d\Omega(X^H, Y^H, Z^H) = -\Omega([X^H, Y^H], Z^H) - \Omega([Y^H, Z^H], X^H) - \Omega([Z^H, X^H], Y^H)$$

$$= \Omega((R_{XY}^\perp \xi)^V, Z^H) + \Omega((R_{YZ}^\perp \xi)^V, X^H) + \Omega((R_{ZX}^\perp \xi)^V, Y^H)$$

But, from the Gauss-Weingarten equations, we have

$$\nabla_X J\xi = D_X J\xi + \sigma(X, J\xi)$$
On the normal bundle of a submanifold in a Kähler manifold

and

\[J\nabla_X \xi = -JA_\xi X + JD_X^\perp \xi. \]

We compare tangential parts of these using Kähler condition and get

(5) \[JD_X^\perp \xi = D_X J\xi. \]

Continuing our computation, using this and the Bianchi identity, we get

\begin{align*}
3d\Omega(X^H, Y^H, Z^H) &= -g(R_{XY} J\xi, Z) - g(R_{YZ} J\xi, X) - g(R_{ZX} J\xi, Y) \\
&= g(R_{XY} Z, J\xi) + g(R_{YZ} X, J\xi) + g(R_{ZX} Y, J\xi)
\end{align*}

(6)

Likewise, we compute, using Lemma 1.2 and (2) - (4),

\begin{align*}
3d\Omega(X^H, Y^H, \eta^V) &= X^H \Omega(Y^H, \eta^V) + Y^H \Omega(\eta^V, X^H) \\
&\quad - \Omega([X^H, Y^H], \eta^V) - \Omega([Y^H, \eta^V], X^H) \\
&\quad - \Omega([\eta^V, X^H], Y^H) \\
&= \tilde{g}(\tilde{\nabla}_{X^H} Y^H, (J\eta^V)^H) + \tilde{g}(Y^H, \tilde{\nabla}_{X^H} (J\eta)^H) \\
&\quad + \tilde{g}(\tilde{\nabla}_{Y^H} \eta^V, (JX)^V) + \tilde{g}(\eta^V, \tilde{\nabla}_{Y^H} (JX)^V) \\
&\quad - \Omega([X, Y]^H - (R^\perp_X \xi)^V, \eta^V) \\
&\quad - \Omega((D^\perp_X \eta)^V, X^H) + \Omega((D^\perp_X \eta)^V, Y^H) \\
&= \tilde{g}((D_X Y)^H, (J\eta)^H) + \tilde{g}(\eta^V, (D_X J\eta)^H) \\
&\quad + \tilde{g}((D^\perp_X \eta)^V, (JX)^V) + \tilde{g}(\eta^V, (D^\perp_X JX)^V) \\
&\quad - \Omega([X, Y]^H, \eta^V) - \Omega((D^\perp_X \eta)^V, X^H) \\
&\quad + \Omega((D^\perp_X \eta)^V, Y^H) \\
&= \tilde{g}((D_X Y)^H, (J\eta)^H) + \tilde{g}(\eta^V, (D^\perp_X JX)^V) \\
&\quad - \tilde{g}([X, Y]^H, (J\eta)^H) \\
&= \tilde{g}((D_X Y)^H, \tilde{J}\eta^V) + \tilde{g}(\tilde{J}\eta^V, -(D_X Y)^H) \\
&\quad - \tilde{g}([X, Y]^H, \tilde{J}\eta^V)
\end{align*}

(7) \[= 0 \]
and
\[3d\Omega(X^H, \eta^V, \zeta^V) = \eta^V \Omega(\zeta^V, X^H) + \zeta^V \Omega(X^H, \eta^V) \]
\[-\Omega([X^H, \eta^V], \zeta^V) - \Omega([\eta^V, \zeta^V], X^H) \]
\[-\Omega([\zeta^V, X^H], \eta^V) \]
\[= \tilde{g}(\tilde{\nabla}_{\eta^V} \zeta^V, \tilde{J}X^H) + \tilde{g}(\zeta^V, \tilde{\nabla}_{\eta^V} (JX)^V) \]
\[+ \tilde{g}(\tilde{\nabla}_{\zeta^V} X^H, (J\eta)^H) + \tilde{g}(X^H, \tilde{\nabla}_{\zeta^V} (J\eta)^H) \]
\[-\Omega((D^H_X \eta)^V, \zeta^V) + \Omega((D^H_X \zeta)^V, \eta^V) \]
\[= \frac{1}{2} \tilde{g}((\tilde{R}_{\xi \zeta} X)^H, (J\eta)^H) + \frac{1}{2} \tilde{g}((\tilde{R}_{\xi \zeta} J\eta)^H, X^H) \]
\[= 0 \quad (8)\]

Finally,
\[3d\Omega(\eta^V, \zeta^V, \delta^V) = 0 \quad (9)\]
is trivial. This completes our proof.

Theorem 2.3. Let \(L\) be a Lagrangian submanifold of a Kähler manifold \((M^{2n}, J, g)\). Then, the followings are equivalent:

1. \(NL\) is Kähler.
2. \(L\) has flat normal connection.
3. \(L\) is flat.

Proof. We compute the Nijenhuis torsion.

\([\tilde{J}, \tilde{J}](X^H, Y^H) = - [X^H, Y^H] + [\tilde{J}X^H, \tilde{J}Y^H] \]
\[- \tilde{J}[(JX)^V, Y^H] - \tilde{J}[X^H, (JY)^V] \]
\[= - [X^H, Y^H] + (JD^H_Y X - JD^H_X Y)^H \]
\[= - [X, Y]^H + (R_{XY}^Y \xi)^V + (JD^H_Y JX - JD^H_X JY)^H \]

So, using (5), we have

\([\tilde{J}, \tilde{J}](X^H, Y^H) = - [X^H, Y^H] + (R_{XY}^Y \xi)^V - (D_Y X - D_X Y)^H \]
\[= - [X, Y]^H + (R_{XY}^Y \xi)^V - [Y, X]^H \]
\[= (R_{XY}^Y \xi)^V \quad (10)\]
\[[\tilde{J}, \tilde{J}](X^H, \zeta^V) = - [X^H, \zeta^V] + [(JX)^V, (J\zeta)^H] \]
\[- \tilde{J}[(JX)^V, \zeta^V] - \tilde{J}[X^H, (J\zeta)^H] \]
\[= - (D_{\tilde{X}}\zeta)^V - (D_{\tilde{J}\zeta}JX)^V - \tilde{J}([X, J\zeta]^H - (R_{X, J\zeta}^\perp \xi)^V) \]
\[= - (D_{\tilde{X}}\zeta)^V - (D_{\tilde{J}\zeta}JX)^V - (J[X, J\zeta])^V + (JR_{X, J\zeta}^\perp \xi)^H \]
\[= - (\nabla_X\zeta)^V - (A\zeta X)^H - (\nabla_{J\zeta}JX)^V - (A_{JX} J\zeta)^V \]
\[- (J\nabla_X J\zeta)^V + (J\nabla_{J\zeta}X)^V + (JR_{X, J\zeta}^\perp \xi)^H \]
\[= - (\nabla_X\zeta)^V - (A\zeta X)^H - (\nabla_{J\zeta}JX)^V - (A_{JX} J\zeta)^V \]
\[+ (\nabla_X\zeta)^V + (\nabla_{J\zeta}JX)^V + (JR_{X, J\zeta}^\perp \xi)^H \]
\[= - (A\zeta X)^V - (A_{JX} J\zeta)^V + (JR_{X, J\zeta}^\perp \xi)^H \]

(11)

Again, using (5) and the Kähler condition, we see that
\[J[X, J\zeta] = - \nabla_X\zeta - \nabla_{J\zeta} JX \]
\[= - D_{\tilde{X}}\zeta - D_{\tilde{J}\zeta} JX + A\zeta X + A_{JX} J\zeta. \]

But, since \(J[X, J\zeta] \) is normal to \(L \), we have
\[A\zeta X + A_{JX} J\zeta = 0. \]

Thus, we see, from (11), that
\[[\tilde{J}, \tilde{J}](X^H, \zeta^V) = (JR_{X, J\zeta}^\perp \xi)^H = (R_{X, J\zeta} J\zeta)^H \]

(12)

and
\[[\tilde{J}, \tilde{J}](\eta^V, \zeta^V) = - [\eta^V, \zeta^V] + [(J\eta)^H, (J\zeta)^H] \]
\[- \tilde{J}[(J\eta)^H, \zeta^V] - \tilde{J}[\eta^V, (J\zeta)^H] \]
\[= [(J\eta)^H, (J\zeta)^H] - \tilde{J}(D_{\tilde{J}\eta} \zeta)^V + \tilde{J}(D_{\tilde{J}\eta} J\zeta)^V \]
\[= [J\eta, J\zeta]^H - (R_{J\eta, J\zeta} \xi)^V - (JD_{\tilde{J}\eta} \zeta)^H + (JD_{\tilde{J}\eta} J\zeta)^H \]
\[= [J\eta, J\zeta]^H - (R_{J\eta, J\zeta} \xi)^V - (DJ_{\eta} J\zeta)^H + (D_{J\zeta} J\eta)^V \]

(13)
\[= - (R_{J\eta, J\zeta} \xi)^V \]
In view of (10), (12), and (13), we conclude that $[\tilde{J}, \tilde{J}]$ vanishes if and only if L has flat normal connection.

This together with the equations (6) - (9) shows that NL is Kähler if and only if L has flat normal connection.

Moreover, using (11), we have

$$R_{XY}J\xi = JR_{XY}^\perp\xi,$$

from which we easily see that L is flat if and only if NL has flat normal connection.

□ □

In the proof of the previous theorem, we have also shown

Corollary 2.4. \tilde{J} on NL is integrable if and only if L has flat connection.

References

Department of Mathematics
The Catholic University of Korea
Yokkok-Dong Wonmi-Gu
Bucheon, Kyunggi-Do
KOREA 420-743