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ON THE KNOTTED ELASTIC CURVES

Dae Seop Kweon

Abstract. According to the Bernoulli-Euler theory of elastic rods
the bending energy of the wire is proportional to the total squared

curvature of γ , which we will denote by F (γ)=
∫

γ k2ds. If the result

of J.Langer and D.Singer [3] extend to knotted elastic curve, then
we obtain the following. Let {γ, M} be a closed knotted elastic

curve. If the curvature of γ is nonzero for everywhere, then γ lies

on torus.

I. Introduction

Elastic curve (or elastica) and its generalizations have long been of
interest in the context of elasticity theory. The elastica as a purely
geometrical entity seems to have been largely ignored (for historical
references concerning the classical elastica, we refer to the recent survey
by Truesdel [2]).

Elastic curve is a mathematical model of Peano curve. And elastic
energy (bending energy) is critical for T defined on regular curves.
Euler was able to obtain a good qualitative description of all plane
elastic curves. In fact, Peano curve not only has a curve but also
knot.Thus elastic curve is not complete mathematical model of Peano
curve. Here, in order to establish a mathematical model, consider the
energy which is the sum of elastic energy and knotted energy. And
define the curve its energy is critical.

II. Main theorem
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All curves, functions, vecterfields will be assumed C∞ class. For
3-dimensional Euclidean space R3, Euclidean inner product will be
denoted by < , > and the Euclidean norm by | |.

Let γ = γ(t) : [t1, t2] → R3 be a holomorphic C∞-class curve. v will
denote the velocity of γ and T, k will denote unite tangent vector and
curvature of γ. (i.e, v = |dγdt |, T = 1

v
dγ
dt , k = |∇TT | where ∇T = 1

v
d
dt )

Define functional F by F(γ) =
∫ t2
t1
k2vdt and we called it elastic

energy of γ.
Let M be a unit normal vector field along γ and {γ,M} be a curve

with unit normal vector field.

Definition 1. Let {γ,M} be a curve with unit normal vectorfield
and its domain is [t1, t2]. Define a function h on [t1, t2] by h =<
∇TM,L >, and we called it a knot function of {γ,M}. Here L =
T ×M , × is exterior product in R3. h(t) be a quantity of knot of M
at γ(t).

Remark. If M is parallel to normal connection along to γ, then
h ≡ 0.

Definition 2. {γ,M}, v, h are the same notation as above.

(1)
∫ t2
t1
h2vdt is called a knotted energy of {γ,M}.

(2) Let ε > 0 be a constant. Define a functional Tε with respect to
curve with unit normal vector field by

Tε({γ,M}) = T (γ) + ε

∫ t2

t1

h2vdt.

Tε({γ,M}) is called knotted elastic energy of coefficient ε of
{γ,M}. Here, domain of Tε is the set of all curve with unit
normal vector field.

Definition 3. Let t0 > 0, φ ∈ R/2πZ. {γ,M} is called period t0
if the following two conditions are satisfied.

(1) γ(t+ t0) = γ(t).
(2) M(t + t0) = R(φ)M(t) where R(φ) : T 2R3 → T⊥R3 be a

rotation of angle φ in each fiber of normal bundle T⊥R3 along
γ. (orientation is R(π2 )M(t) = L(t))
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Let C(t0, φ) be a set of all curves with unit normal vector field
its period is t0. Then we obtain a following lemma from the a first
variation formula.

Lemma 1. {γ,M} ∈ C(t0, φ) (its length
∫ t0
0
vdt is fixed) is critical

point of Tε iff there exist real numbers µ, σ such that the following are
satisfied.

(1) ∇T [2(∇T )2T + (3k2 − µ+ εh2)T − 2εhR(π2 )(∇TT )] = 0.
(2) h(t) = σ.

Definition 4. Let {γ,M} be a curve with unit normal vector field
with velocity 1 (i.e. v ≡ 1). If (1) and (2) of the Lemma 1 are satis-
fied, then {γ,M} is called a knotted elastic curve, σ is called a knot
parameter of {γ,M}.

Let l > 0, φ ∈ R/2πZ and UC(l, φ) be the set of velocity 1 of γ in
C(l, φ) and {γ,M} be an element of UC(l, φ).

Define

T{γ,M}C(l, φ) =

{
(Λ, f) |

Λ is vector field of period
l along γ, f is a function
of period l

}
,

T{γ,M}UC(l, φ) =
{

(Λ, f) | (Λ, f) ∈ T{γ,M}C(l, φ)
i.e. < ∇TΛ, T >= 0

}
.

Then the following lemma is satisfied.

Lemma 2. For the variation {γ,M}λ of {γ,M} in UC(l, φ),
{γ,M}λ = {γλ,Mλ} (−λ0 < λ < λ0, {γ,M}0 = {γ,M})
(∂γl

∂λ |λ=0, <
∂Mλ

∂λ , Lλ > |λ=0) ∈ T{γ,M}UC(l, φ). Left side is called a
variational vector field of variation {γ,M}λ

Conversely, for any (Λ, f) ∈ T{γ,M}UC(l, φ), there exist a variation

{γ,M}λ of {γ,M} in UC(l, φ) such that ∂γl

∂λ |λ=0 = Λ, < ∂Mλ

∂λ , Lλ >
|λ=0 = f .

In the above Lemma 2, T{γ,M}UC(l, φ) is tangent space of UC(l, φ)
at {γ,M}.



116 Dae Seop Kweon

Lemma 3. Let {γ,M} be a knotted elastic curve and also varia-
tional vector field of {γ,M}λ. Then

d2

dλ2
|λ=0Tε({γ,M}λ) =

∫ l

0

< T{γ,M}(Λ, f), (Λ, f) > ds

where

T{γ,M}(Λ, f) = (p[∇T {2(∇T )3Λ + (3k2 − µ+ εσ2)∇TΛ

− 2εσR(
π

2
)((∇T )2Λ− < (∇T )2Λ, T > T )

− 2ε(< ∇TΛ, R(
π

2
)(∇TT ) > +Tf)R(

π

2
)(∇TT )}]

− 2ε(T < ∇TΛ, R(
π

2
)(∇TT ) > +T 2f))

(p : T{γ,M}C(l, φ) → T{γ,M}UC(l, φ) is an orthogonal projection

with respect to L2-inner product)

We consider eigenvalue problem T{γ,M}(Λ, f) = p(Λ, f), φ ∈ R, we
can obtain the following theorem.

Theorem 4. Let γ be a circle with radius 1 and {γ,M} be a knot-
ted elastic curve. Then the eigenvalue of Jacobi operator T{γ,M} has
the following properties.

(1) The eigenvalue of T{γ,M} is positive whenever 0 ≤ ε2σ2 < 3.
(2) There exists a non-trivial eigenvector its eigen value 0 whenever

ε2σ2 = m2 − 1(2 ≤ m, m is integer).
(3) There exists a negative eigenvalue whenever ε2σ2 > 3.

The curvature k and torsion τ of elastic curve are represented by
elliptic function. By J. Langer and D. Singer [3], for every elastic curve
γ in R3 there is naturally associated to γ a cylindrical coordinate
system (r, θ, z) on R3, the restrictions to γ of the coordinate fields
∂
∂r ,

∂
∂θ

∂
∂z being expressible in terms of k, τ, T,N,B. Thus we can see

the following theorem.

Theorem 5 [J. Langer and D. Singer][3]. Let γ be a closed
elastic curve. Then γ lies on embedded tori of revolution.

If the proof of the above theorem extend to a knotted elastic curve,
then we obtain the following result.
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Theorem 6. Let {γ,M} be a closed knotted elastic curve. Suppose
that, the curvature k of γ is nonzero for everywhere. Then γ lies on
torus.

Proof. Let {γ,M} be a knotted elastic curve. First of all, find the
curvature k and torsion τ . Application of the Frenet formula for (1) of
[Lemma 1] leads to the ordinary differential equation for k, τ . Solution
of the equation is concretely represented by Jacobi function. In this
representation, k and τ are periodic functions with the same period
and if k is constant then τ is also constant. Secondly, we will construct
a cylindrical coordinate system. If k is constant, then γ is a straight
line or a circle. Suppose that k is not constant.

If γ = γ(s) be a curve with velocity 1 and its curvature is positive
at every point, Then Λ is a vector field along γ. Λ extends to a killing
vector field on R3 iff Λ satisfies the following.

< ∇TΛ, T >= 0 (a)

< (∇T )2Λ, N >= 0 (b)

< (∇T )3Λ− ks
k

(∇T )2Λ + k2∇TΛ, B >= 0 (c)

where T,N,B form the Frenet frame for γ. Put

J0 = 2(∇T )2T + (3k2 − µ+ εσ2)T − 2εσR(
π

2
)(∇TT )

H = εσT + kB

J1 = H − < J0,H >

|J0|2
J0 ( µ, σ are constant in Lema 1).

Then J0,H, J1 is also killing along γ. Let J0, J1 be the extension
of J0, J1 on R3. In (1) of Lemma 1, we can see J0 is constant vec-
tor field. Thus J1 is a rotation field perpendicular to J0. By the
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above statement we obtain a cylindrical coordinate (r, θ, z). It satis-
fies ∂

∂z = 1
|J0|

J0, ∂
∂θ = cJ1 where c is a positive constant. Setting

γ(s) = (r(s), θ(s), z(s)) one then obtains

r(s) = c|J1(s)|

θs(s) =
< T, ∂∂θ >

| ∂∂θ |2
=
< T, J1(s) >
c|J1(s)|2

zs(s) =< T,
1

|J0(s)|
J0(s) >

where J0, J1 are vector fields along γ and components of T,N,B are
represented by curvature and torsion of γ.

If {γ,M} is periodic, then r,z are also periodic and curve of γ in rz-
plane is a simple closed curve. Thus every closed knotted elastic curve
lies on torus of revolution. Since curvature and torsion of knotted
elastic curve are periodic function with some period, γ is periodic iff
∆z = 0 (i.e. ∆θ

2π ∈ Q) � �

Theorem 7 [J.Langer and D.Singer][3]. For any closed elastic
curve −π ≤ ∆θ ≤ 0, ∆θ

2π ∈ Q and conversely for any ψ, such that

−π ≤ ψ ≤ 0, ψ2π ∈ Q there exists a unique closed elastic curve such
that ∆θ = ψ.
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