Kangweon-Kyungki Math. Jour. 5 (1997), No. 2, pp. 113-119

ON THE KNOTTED ELASTIC CURVES

DAE SEOP KWEON

ABSTRACT. According to the Bernoulli-Euler theory of elastic rods the bending energy of the wire is proportional to the total squared curvature of γ , which we will denote by $F(\gamma) = \int_{\gamma} k^2 ds$. If the result of J.Langer and D.Singer [3] extend to knotted elastic curve, then we obtain the following. Let $\{\gamma, M\}$ be a closed knotted elastic curve. If the curvature of γ is nonzero for everywhere, then γ lies on torus.

I. Introduction

Elastic curve (or elastica) and its generalizations have long been of interest in the context of elasticity theory. The elastica as a purely geometrical entity seems to have been largely ignored (for historical references concerning the classical elastica, we refer to the recent survey by Truesdel [2]).

Elastic curve is a mathematical model of Peano curve. And elastic energy (bending energy) is critical for \mathcal{T} defined on regular curves. Euler was able to obtain a good qualitative description of all plane elastic curves. In fact, Peano curve not only has a curve but also knot. Thus elastic curve is not complete mathematical model of Peano curve. Here, in order to establish a mathematical model, consider the energy which is the sum of elastic energy and knotted energy. And define the curve its energy is critical.

II. Main theorem

Received March 7, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55.

Key words and phrases: elastic energy, closed knotted elastic curve, cylindrical coordinates..

Dae Seop Kweon

All curves, functions, vectorfields will be assumed C^{∞} class. For 3-dimensional Euclidean space \mathbf{R}^3 , Euclidean inner product will be denoted by <, > and the Euclidean norm by | |.

Let $\gamma = \gamma(t) : [t_1, t_2] \to \mathbf{R}^3$ be a holomorphic C^{∞} -class curve. v will denote the velocity of γ and T, k will denote unite tangent vector and curvature of γ . (i.e, $v = \left|\frac{d\gamma}{dt}\right|, T = \frac{1}{v}\frac{d\gamma}{dt}, k = \left|\nabla_T T\right|$ where $\nabla_T = \frac{1}{v}\frac{d}{dt}$) Define functional \mathcal{F} by $\mathcal{F}(\gamma) = \int_{t_1}^{t_2} k^2 v dt$ and we called it elastic

energy of γ .

Let M be a unit normal vector field along γ and $\{\gamma, M\}$ be a curve with unit normal vector field.

DEFINITION 1. Let $\{\gamma, M\}$ be a curve with unit normal vectorfield and its domain is $[t_1, t_2]$. Define a function h on $[t_1, t_2]$ by h = < $\nabla_T M, L >$, and we called it a knot function of $\{\gamma, M\}$. Here L = $T \times M$, \times is exterior product in \mathbf{R}^3 . h(t) be a quantity of knot of M at $\gamma(t)$.

REMARK. If M is parallel to normal connection along to γ , then $h \equiv 0.$

DEFINITION 2. $\{\gamma, M\}, v, h$ are the same notation as above.

- (1) $\int_{t_1}^{t_2} h^2 v dt$ is called a knotted energy of $\{\gamma, M\}$.
- (2) Let $\epsilon > 0$ be a constant. Define a functional \mathcal{T}_{ϵ} with respect to curve with unit normal vector field by

$$\mathcal{T}_{\epsilon}(\{\gamma, M\}) = \mathcal{T}(\gamma) + \epsilon \int_{t_1}^{t_2} h^2 v dt.$$

 $\mathcal{T}_{\epsilon}(\{\gamma, M\})$ is called knotted elastic energy of coefficient ϵ of $\{\gamma, M\}$. Here, domain of \mathcal{T}_{ϵ} is the set of all curve with unit normal vector field.

DEFINITION 3. Let $t_0 > 0, \phi \in \mathbf{R}/2\pi \mathbf{Z}$. $\{\gamma, M\}$ is called period t_0 if the following two conditions are satisfied.

- (1) $\gamma(t + t_0) = \gamma(t)$.
- (2) $M(t+t_0) = R(\phi)M(t)$ where $R(\phi) : T^2 \mathbf{R}^3 \to T^{\perp} \mathbf{R}^3$ be a rotation of angle ϕ in each fiber of normal bundle $T^{\perp}\mathbf{R}^3$ along γ . (orientation is $R(\frac{\pi}{2})M(t) = L(t)$)

114

Let $C(t_0, \phi)$ be a set of all curves with unit normal vector field its period is t_0 . Then we obtain a following lemma from the a first variation formula.

LEMMA 1. $\{\gamma, M\} \in C(t_0, \phi)$ (its length $\int_0^{t_0} v dt$ is fixed) is critical point of \mathcal{T}_{ϵ} iff there exist real numbers μ, σ such that the following are satisfied.

(1)
$$\nabla_T [2(\nabla_T)^2 T + (3k^2 - \mu + \epsilon h^2)T - 2\epsilon h R(\frac{\pi}{2})(\nabla_T T)] = 0.$$

(2) $h(t) = \sigma.$

DEFINITION 4. Let $\{\gamma, M\}$ be a curve with unit normal vector field with velocity 1 (i.e. $v \equiv 1$). If (1) and (2) of the Lemma 1 are satisfied, then $\{\gamma, M\}$ is called a knotted elastic curve, σ is called a knot parameter of $\{\gamma, M\}$.

Let $l > 0, \phi \in \mathbf{R}/2\pi \mathbf{Z}$ and $\mathcal{U}C(l, \phi)$ be the set of velocity 1 of γ in $C(l, \phi)$ and $\{\gamma, M\}$ be an element of $\mathcal{U}C(l, \phi)$.

Define

$$T_{\{\gamma,M\}}C(l,\phi) = \left\{ \begin{matrix} \Lambda \text{ is vector field of period} \\ (\Lambda,f) \mid l \text{ along } \gamma, \ f \text{ is a function} \\ \text{ of period } l \end{matrix} \right\},$$

$$T_{\{\gamma,M\}}\mathcal{U}C(l,\phi) = \left\{ (\Lambda,f) \mid \begin{matrix} (\Lambda,f) \in T_{\{\gamma,M\}}C(l,\phi) \\ \text{i.e.} < \nabla_T\Lambda, T >= 0 \end{matrix} \right\}.$$

Then the following lemma is satisfied.

LEMMA 2. For the variation $\{\gamma, M\}_{\lambda}$ of $\{\gamma, M\}$ in $\mathcal{U}C(l, \phi)$,

 $\{\gamma, M\}_{\lambda} = \{\gamma_{\lambda}, M_{\lambda}\} \ (-\lambda_0 < \lambda < \lambda_0, \{\gamma, M\}_0 = \{\gamma, M\})$

 $(\frac{\partial \gamma_l}{\partial \lambda}|_{\lambda=0}, < \frac{\partial M_{\lambda}}{\partial \lambda}, L_{\lambda} > |_{\lambda=0}) \in T_{\{\gamma,M\}} \mathcal{U}C(l,\phi).$ Left side is called a variational vector field of variation $\{\gamma, M\}_{\lambda}$

Conversely, for any $(\Lambda, f) \in T_{\{\gamma, M\}} \mathcal{U}C(l, \phi)$, there exist a variation $\{\gamma, M\}_{\lambda}$ of $\{\gamma, M\}$ in $\mathcal{U}C(l, \phi)$ such that $\frac{\partial \gamma_l}{\partial \lambda}|_{\lambda=0} = \Lambda$, $\langle \frac{\partial M_{\lambda}}{\partial \lambda}, L_{\lambda} \rangle |_{\lambda=0} = f$.

In the above Lemma 2, $T_{\{\gamma,M\}}\mathcal{U}C(l,\phi)$ is tangent space of $\mathcal{U}C(l,\phi)$ at $\{\gamma,M\}$.

LEMMA 3. Let $\{\gamma, M\}$ be a knotted elastic curve and also variational vector field of $\{\gamma, M\}_{\lambda}$. Then

$$\frac{d^2}{d\lambda^2}|_{\lambda=0}\mathcal{T}_{\epsilon}(\{\gamma,M\}_{\lambda}) = \int_0^l < \mathcal{T}_{\{\gamma,M\}}(\Lambda,f), (\Lambda,f) > ds$$

where

$$\begin{aligned} \mathcal{T}_{\{\gamma,M\}}(\Lambda,f) &= (p[\nabla_T \{2(\nabla_T)^3\Lambda + (3k^2 - \mu + \epsilon\sigma^2)\nabla_T\Lambda \\ &- 2\epsilon\sigma R(\frac{\pi}{2})((\nabla_T)^2\Lambda - <(\nabla_T)^2\Lambda, T > T) \\ &- 2\epsilon(<\nabla_T\Lambda, R(\frac{\pi}{2})(\nabla_TT) > +Tf)R(\frac{\pi}{2})(\nabla_TT)\}] \\ &- 2\epsilon(T < \nabla_T\Lambda, R(\frac{\pi}{2})(\nabla_TT) > +T^2f)) \end{aligned}$$

 $(p: T_{\{\gamma,M\}}C(l,\phi) \to T_{\{\gamma,M\}}UC(l,\phi)$ is an orthogonal projection with respect to L^2 -inner product)

We consider eigenvalue problem $\mathcal{T}_{\{\gamma,M\}}(\Lambda, f) = p(\Lambda, f), \phi \in \mathbf{R}$, we can obtain the following theorem.

THEOREM 4. Let γ be a circle with radius 1 and $\{\gamma, M\}$ be a knotted elastic curve. Then the eigenvalue of Jacobi operator $\mathcal{T}_{\{\gamma,M\}}$ has the following properties.

- (1) The eigenvalue of $\mathcal{T}_{\{\gamma,M\}}$ is positive whenever $0 \leq \epsilon^2 \sigma^2 < 3$. (2) There exists a non-trivial eigenvector its eigen value 0 whenever $\epsilon^2 \sigma^2 = m^2 - 1(2 \le m, m \text{ is integer}).$
- (3) There exists a negative eigenvalue whenever $\epsilon^2 \sigma^2 > 3$.

The curvature k and torsion τ of elastic curve are represented by elliptic function. By J. Langer and D. Singer [3], for every elastic curve γ in \mathbf{R}^3 there is naturally associated to γ a cylindrical coordinate system (r, θ, z) on \mathbf{R}^3 , the restrictions to γ of the coordinate fields $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta} \frac{\partial}{\partial z}$ being expressible in terms of k, τ, T, N, B . Thus we can see the following theorem.

THEOREM 5 [J. LANGER AND D. SINGER][3]. Let γ be a closed elastic curve. Then γ lies on embedded tori of revolution.

If the proof of the above theorem extend to a knotted elastic curve, then we obtain the following result.

116

THEOREM 6. Let $\{\gamma, M\}$ be a closed knotted elastic curve. Suppose that, the curvature k of γ is nonzero for everywhere. Then γ lies on torus.

Proof. Let $\{\gamma, M\}$ be a knotted elastic curve. First of all, find the curvature k and torsion τ . Application of the Frenet formula for (1) of [Lemma 1] leads to the ordinary differential equation for k, τ . Solution of the equation is concretely represented by Jacobi function. In this representation, k and τ are periodic functions with the same period and if k is constant then τ is also constant. Secondly, we will construct a cylindrical coordinate system. If k is constant, then γ is a straight line or a circle. Suppose that k is not constant.

If $\gamma = \gamma(s)$ be a curve with velocity 1 and its curvature is positive at every point, Then Λ is a vector field along γ . Λ extends to a killing vector field on \mathbf{R}^3 iff Λ satisfies the following.

$$\langle \nabla_T \Lambda, T \rangle = 0$$
 (a)

$$\langle (\nabla_T)^2 \Lambda, N \rangle = 0$$
 (b)

$$< (\nabla_T)^3 \Lambda - \frac{k_s}{k} (\nabla_T)^2 \Lambda + k^2 \nabla_T \Lambda, B >= 0 \qquad (c)$$

where T, N, B form the Frenet frame for γ . Put

$$J_0 = 2(\nabla_T)^2 T + (3k^2 - \mu + \epsilon\sigma^2)T - 2\epsilon\sigma R(\frac{\pi}{2})(\nabla_T T)$$

$$H = \epsilon \sigma T + kB$$

$$J_1 = H - \frac{\langle J_0, H \rangle}{|J_0|^2} J_0 \quad (\mu, \sigma \text{ are constant in Lema 1}).$$

Then J_0, H, J_1 is also killing along γ . Let $\overline{J}_0, \overline{J}_1$ be the extension of J_0, J_1 on \mathbb{R}^3 . In (1) of Lemma 1, we can see \overline{J}_0 is constant vector field. Thus \overline{J}_1 is a rotation field perpendicular to \overline{J}_0 . By the above statement we obtain a cylindrical coordinate (r, θ, z) . It satisfies $\frac{\partial}{\partial z} = \frac{1}{|\overline{J}_0|} \overline{J}_0$, $\frac{\partial}{\partial \theta} = c\overline{J}_1$ where c is a positive constant. Setting $\gamma(s) = (r(s), \theta(s), z(s))$ one then obtains

$$r(s) = c|J_1(s)|$$

$$\begin{aligned} \theta_s(s) &= \frac{\langle T, \frac{\partial}{\partial \theta} \rangle}{|\frac{\partial}{\partial \theta}|^2} = \frac{\langle T, J_1(s) \rangle}{c|J_1(s)|^2} \\ z_s(s) &= \langle T, \frac{1}{|J_0(s)|} J_0(s) \rangle \end{aligned}$$

where J_0, J_1 are vector fields along γ and components of T, N, B are represented by curvature and torsion of γ .

If $\{\gamma, M\}$ is periodic, then r,z are also periodic and curve of γ in rzplane is a simple closed curve. Thus every closed knotted elastic curve lies on torus of revolution. Since curvature and torsion of knotted elastic curve are periodic function with some period, γ is periodic iff $\Delta z = 0$ (i.e. $\frac{\Delta \theta}{2\pi} \in \mathbf{Q}$) \Box

THEOREM 7 [J.LANGER AND D.SINGER][3]. For any closed elastic curve $-\pi \leq \Delta \theta \leq 0, \frac{\Delta \theta}{2\pi} \in \mathbf{Q}$ and conversely for any ψ , such that $-\pi \leq \psi \leq 0, \frac{\psi}{2\pi} \in \mathbf{Q}$ there exists a unique closed elastic curve such that $\Delta \theta = \psi$.

References

- 1. P. Griffiths, *Exterior differential systems and the calculus of variations*, Press in Mathe. Series, Birkhauser, Boston (1982).
- C. Truesdell, The influence of elasticity on analysis; the classical heritage, Bull. Amer. Math. Soc. 9, 293-310 (1983).
- J. Langer and D. Singer, Knotted elastic curves in R³, J. London Math. Soc 2, 512-520 (1984).
- J. Langer and D. Singer, The total squared curvature of closed curves, J. Differential Geo 20, 1-22 (1984).
- J. Langer and D. Singer, Curve straightening and a minimax argument for closed elastic curve, Topology 24, 75-88 (1985).

Department of Mathematics Education

In Chon National University of Education Inchon 407-753, Korea