A NOTE ON LIFTING TRANSFORMATION GROUPS

SUNG KI CHO AND CHOON SUNG PARK

Abstract. The purpose of this note is to compare two known results related to the lifting problem of an action of a topological group G on a G-space X to a covering space of X.

1. Introduction

For a G-space X and a covering space \tilde{X}_H of X associated with a subgroup H of $\pi_1(X, x_0)$, there exist some results related to the lifting problem of an action of G on X to an action of G on \tilde{X}_H. In this note, we show that the result due to M. A. Armstrong [1] is equivalent to a minor modification of the result due to F. Rhodes [2] under some restricted conditions. Also, we briefly refer to a role of the evaluation map with respect to the lifting problem.

We shall assume throughout this note that G is a locally path-connected topological group, that X is a path-connected, locally path-connected, and locally simply connected G-space and that $p : \tilde{X}_H \to X$ is a covering projection associated with a subgroup H of $\pi_1(X, x_0)$. Also, we use the following notations:

- e: the identity element of G.
- $\alpha * \beta$: the composition of two paths α and β.
- $f \circ g$: the composition of two functions f and g.
- i_X: the identity function on a set X.
- $f_\#$: the homomorphism from $\pi_1(X, x_0)$ to $\pi_1(Y, f(x_0))$ induced by a map $f : X \to Y$.

Received June 27, 1997.
1991 Mathematics Subject Classification: 54H11, 55P99.
Key words and phrases: G-invariant normal subgroup, continuous split extension, family of H-preferred paths, (f, G)-invariant subgroup.
2. Preliminaries

For $g \in G$, let λ be a path from x_0 to gx_0. Define $g_\ast : \pi_1(X, x_0) \to \pi_1(X, x_0)$ by $g_\ast([\alpha]) = [\lambda \ast g\alpha \ast \lambda^{-1}]$ for $[\alpha] \in \pi_1(X, x_0)$. It is clear that for every normal subgroup H of $\pi_1(X, x_0)$, $g_\ast(H)$ is a normal subgroup which is independent of λ.

Definition 2.1. ([2]) A normal subgroup H of $\pi_1(X, x_0)$ is said to be G-invariant if $g_\ast(H) = H$ for every $g \in G$.

Definition 2.2. ([2]) Given $g \in G$, a path order g, written by $(\alpha; g)$, with base point x_0 is a continuous function $\alpha : I \to X$ such that $\alpha(0) = x_0$ and $\alpha(1) = gx_0$.

Lemma 2.3. ([2]) Let H be a subgroup of $\pi_1(X, x_0)$ and let $[\alpha; g]_H$ be the equivalence class of $(\alpha; g)$ under the equivalence relation

$$(\alpha; g) \sim (\beta; h) \text{ iff } g = h \text{ and } [\alpha \ast \beta^{-1}] \in H.$$If H is G-invariant normal, then the set $\sigma_H(X, x_0, G)$ of equivalence classes forms a group under the rule of composition

$$[\alpha; g]_H \ast [\beta; h]_H = [\alpha \ast g\beta; gh]_H.$$**Lemma 2.4.** ([2]) Let H be a subgroup of $\pi_1(X, x_0)$. If $\sigma_H(X, x_0, G)$ is a group, then we have a short exact sequence

$$0 \to \pi_1(X, x_0)/H \to \sigma_H(X, x_0, G) \to G \to 0,$$where $i([\alpha] \ast H) = [\alpha; e]_H$ and $j([\beta; g]_H) = g$.

From now on, j always denotes the homomorphism defined in Lemma 2.4.

In [2], a basis of open nbds is defined for the set $\sigma_H(X, x_0, G)$ as follows. Given $[\alpha; g]_H$ and open nbds U of gx_0 and V of e, define $W_X([\alpha; g]_H, U, V)$ to be the set of classes $[\alpha \ast \beta; h]_H$ where $hg^{-1} \in V$ and β is a path in U from gx_0 to hx_0. Sets of the form of $W_X([\alpha; g]_H, U, V)$ constitute a basis for a topology on $\sigma_H(X, x_0, G)$.

F. Rhodes [2] showed that, if $\sigma_H(X, x_0, G)$ is a group, it is a topological group with the topology just defined.
Definition 2.5. ([2]) Let \(\sigma_H(X, x_0, G) \) be a group. If there exists a continuous homomorphism \(\phi : G \to \sigma_H(X, x_0, G) \) such that \(j \circ \phi = i_G \), then the group \(\sigma_H(X, x_0, G) \) is said to admit a \textit{continuous split extension}.

Definition 2.6. We say that \(X \) admits a \textit{family of \(H \)-preferred paths} at \(x_0 \) if it is possible to associate with every element \(g \) of \(G \) a path \(k_g \) from \(gx_0 \) to \(x_0 \) such that \([k_e] \in H \) and for every pair of elements \(g, h \), the paths \(k_g, k_h \) and \(k_{gh} \) associated with \(g, h \) and \(gh \) satisfy \([g k_h * k_g * k_{gh}^{-1}] \in H \).

Definition 2.7. ([1]) Suppose that \(G \) also acts on a space \(Z \), and that \(f : Z \to X \) is a \(G \)-map which sends \(z_0 \) to \(x_0 \). If for every element \(g \) of \(G \), loop \(\alpha \) representing an element of \(H \) and path \(\gamma \) which joins \(z_0 \) to \(gz_0 \) in \(Z \), \([(f \gamma) * g \alpha * (f \gamma^{-1})] \in H \), then \(H \) is said to be \((f, G)\)-\textit{invariant}.

3. Main Results

Lemma 3.1. Let \(H \) be a normal subgroup of \(\pi_1(X, x_0) \). If for every \(g \in G, \, g_*(H) \subset H \), then \(\sigma_H(X, x_0, G) \) is a group.

Proof. Assume \([\alpha_1; g]_H = [\alpha_2; g]_H \) and \([\beta_1; h]_H = [\beta_2; h]_H \). Then \([\alpha_1 \ast \alpha_2^{-1}], [\beta_1 \ast \beta_2^{-1}] \in H \). Since \(g^{-1} \alpha_2 \) is a path from \(g^{-1}x_0 \) to \(x_0 \), \([g^{-1} \alpha_2] = [g^{-1} \beta_2] \), \([g^{-1} \alpha_2^{-1}] \ast [g^{-1} \beta_2^{-1}] \ast [g^{-1} \alpha_2] \in H \). From this, we obtain

\[
[(\alpha_2 \ast g \beta_2)^{-1}] \ast [(\alpha_1 \ast \alpha_2^{-1}) \ast (\beta_1 \ast \beta_2^{-1})]^{-1} = [\alpha_1 \ast (g(\beta_1 \ast \beta_2^{-1}) \ast [g^{-1} \alpha_2^{-1}] \ast [g^{-1} \beta_2^{-1}] \ast [g^{-1} \alpha_2] \ast [g^{-1} \alpha_2]) \ast [g^{-1} \alpha_2] \ast H.
\]

Thus \([(\alpha_1 \ast g \beta_1 \ast (\alpha_2 \ast g \beta_2)^{-1}] \in H \). This says that the binary operation is well defined. The other conditions for \(\sigma_H(X, x_0, G) \) to be a group is obvious. \(\square \)
Lemma 3.2. Let H be a subgroup of $\pi_1(X, x_0)$. If there exists a path connected space Z, and an action of G on Z, and a based G-map $f : (Z, z_0) \to (X, x_0)$ such that $f_\#(\pi_1(Z, z_0)) \subset H$, then X admits a family of H-preferred paths at x_0. Furthermore, if H is a normal subgroup of $\pi_1(X, x_0)$ such that $g_*(H) \subset H$ for all $g \in G$, then $\sigma_H(X, x_0, G)$ admits a continuous split extension.

Proof. For each $g \in G$, choose a path γ_g in Z which joins $g z_0$ to z_0 and let $k_g = f \gamma_g$. By hypothesis, $[k_e] = [f \gamma_e] = f_\#([\gamma_e]) \in H$. If $g, h \in G$, then $g \gamma_h \ast \gamma_g \ast \gamma_g^{-1} \ast \gamma_h^{-1}$ is a loop at z_0. Since $f_\#(\pi_1(X, x_0)) \subset H$, $[g k_h \ast k_g \ast k_g^{-1} \ast k_h^{-1}] \in H$. Thus $\{k_g|g \in G\}$ is a collection of H-preferred paths at x_0. Now, assume that $g_*(H) \subset H$ for all $g \in G$. By Lemma 3.1, $\sigma_H(X, x_0, G)$ is a group. Define $\phi : G \to \sigma_H(X, x_0, G)$ by $\phi(g) = [k_g^{-1} \ast g]_H$. Since $\{k_g|g \in G\}$ is a family of H-preferred paths,

$$\phi(g_1 g_2) = [k_{g_1, g_2}^{-1} \ast g_1 g_2]_H = [k_{g_1}^{-1} \ast g_1 k_{g_2}^{-1} \ast g_1 g_2]_H = [k_{g_1}^{-1} \ast g_1]_H \ast [k_{g_2}^{-1} \ast g_2]_H = \phi(g_1) \ast \phi(g_2).$$

This shows that ϕ is a splitting homomorphism. Let $W_X([k_g^{-1} \ast g]_H, U, V)$ be a basis element containing $[k_g^{-1} \ast g]_H$. Choose an open nbd V_1 of e such that $V_1 \subset V$ and for any $h_1 \in V_1, h_1 g x_0 \in U$. Also, choose an open nbd V_2 of e such that for all $h_2 \in V_2, h_2 g z_0 \in f^{-1}(U)$. Let V' be the path component of $V_1 \cap V_2$ which contains e, let $g' \in V' g$ and let $c : I \to V g$ be a path which joins g and g'. Then the map $g : I \to Z$, defined by $\gamma(s) = c(s) z_0$ is a path in $f^{-1}(U)$ which joins $g z_0$ to $g' z_0$, and hence $f \gamma$ is a path in U joining $g z_0$ to $g' x_0$. Since $[k_g^{-1} \ast (f \gamma) \ast k_g] = f_\#([\gamma_g^{-1} \ast \gamma \ast \gamma_g')] \in H$, we have $[k_{g'}^{-1} \ast g']_H = [k_g^{-1} \ast (f \gamma); g']_H \in W_X([k_g^{-1} \ast g]_H, U, V)$ and hence $\phi(V' g) \subset W_X([k_g^{-1} \ast g]_H, U, V)$. Consequently, ϕ is continuous. □

Theorem 3.3. Let H be a normal subgroup of $\pi_1(X, x_0)$ and let Z and f be the same as in Lemma 3.2. If

(i) H is (f, G)-invariant and
(ii) $f_\#(\pi_1(Z, z_0)) \subset H$,

then $\sigma_H(X, x_0, G)$ is a group which admits a continuous split extension. Furthermore, $g_*(H) = H$ for every $g \in G$.

Proof. By Lemma 3.2, there exists a family \(\{k_g\} | g \in G \) of \(H \) preferred paths at \(x_0 \). Let \(g \in G \) and \([\alpha] \in H \). Since for every \(g \in G \),
\[
g_*([\alpha]) = [k^{-1}_g * g\alpha * k_g] = [(f\gamma^{-1}_g) * g\alpha * (f\gamma_g)] \in H \]
by (i), we have \(g_*(H) \subset H \). By Lemma 3.1 and Lemma 3.2, \(\sigma_H(X, x_0, G) \) is a group which admits a continuous split extension.

To show that \(H \subset g_*(H) \), let \([\alpha] \in H \). Since \(g\gamma^{-1}_g * \gamma_g \) is a loop in \(Z \) based at \(z_0 \), \([g\gamma^{-1}_g * k_g] = f_#([g\gamma^{-1}_g * \gamma_g]) \in H \) by (ii). Let \(\beta = g\gamma^{-1}_g * k_g \). Then

\[
[\alpha] = [\beta^{-1} * (\beta * \alpha * \beta^{-1}) * \beta] \\
= [k^{-1}_g * g(k^{-1}_g * g^{-1}(\beta * \alpha * \beta^{-1}) * k^{-1}_g) * k_g] \\
= g_*([k^{-1}_g * g^{-1}(\beta * \alpha * \beta^{-1}) * k^{-1}_g]) \\
= (g_* \circ g_*^{-1})([\beta * \alpha * \beta^{-1}])
\]

\(\in g_*(H) \).

\[\square\]

Lemma 3.4. Let \(\sigma_H(X, x_0, G) \) be a group. Then \(X \) admits a family of \(H \)-preferred paths at \(x_0 \) if and only if the short exact sequence in Lemma 2.4 splits.

Proof. \((\Rightarrow)\) Define \(\phi : G \to \sigma_H(X, x_0, G) \) by \(\phi(g) = [\alpha^{-1}_g; g]_H \), where \(\alpha_g \) is an \(H \)-preferred path associated with \(g \). Clearly, \(j \circ \phi = i_G \). Let \(g, h \in G \). Since \([g\alpha_h * \alpha_g * \alpha^{-1}_h] \in H \), we have \(\phi(gh) = [\alpha^{-1}_{gh}; gh]_H = [\alpha^{-1}_g * \alpha^{-1}_h; gh]_H = [\alpha^{-1}_g; g] * [\alpha^{-1}_h; h]_H = \phi(g) * \phi(h) \). Thus \(\phi \) is a splitting homomorphism.

\((\Leftarrow)\) Let \(\phi : G \to \sigma_H(X, x_0, G) \) be a splitting homomorphism. Then \(\phi(e) = [c_{x_0}; e]_H \), where \(c_{x_0} \) is the constant path at \(x_0 \). For each \(g \in G \), let \(\phi(g) = [\alpha_g; g]_H \). Since \([\alpha_{gh}; gh]_H = \phi(gh) = \phi(g) * \phi(h) = [\alpha_g * g\alpha_h; gh]_H \), we have \([\alpha_g * g\alpha_h * \alpha^{-1}_{gh}] \in H \). Therefore, \(\{\alpha^{-1}_g | g \in G\} \) is a collection of \(H \)-preferred paths at \(x_0 \).

\[\square\]

Theorem 3.5. Let \(H \) be a normal subgroup of \(\pi_1(X, x_0) \). If \(g_*(H) \subset H \) for every \(g \in G \) and \(\sigma_H(X, x_0, G) \) admits a continuous split extension, then the action of \(G \) lifts to an action of \(G \) on \(\tilde{X}_H \).
Proof. Define \(\tilde{\mu} : \sigma_H(X, x_0, G) \times \tilde{X}_H \to \tilde{X}_H \) by \(\tilde{\mu}([\alpha; g]_H, \omega) = [\alpha \ast g \omega] \) for \([\alpha; g]_H \in \sigma_H(X, x_0, G) \) and \(\omega \in \tilde{X}_H \). Then \(\tilde{\mu} \) is a well-defined action of \(\sigma_H(X, x_0, G) \) on \(\tilde{X}_H \). (see Proposition 2 of [2]) By hypothesis, there exists a continuous homomorphism \(\phi : G \to \sigma_H(X, x_0, G) \) such that \(j \circ \phi = i_G \). Let \(\mu \) be the composition of

\[
G \times \tilde{X}_H \xrightarrow{\phi \times \tilde{\mu}} \sigma_H(X, x_0, G) \times \tilde{X}_H \xrightarrow{\tilde{\mu}} \tilde{X}_H.
\]

Clearly, \(\mu \) covers the action of \(G \) on \(X \). Let \(\phi(g) = [\alpha_g; g]_H \) for \(g \in G \). By Lemma 3.4, \(\{\alpha_g^{-1} : g \in G\} \) is a family of \(H \)-preferred paths. Thus for \(g_1, g_2 \in G \) and \(\omega \in \tilde{X}_H \),

\[
\mu(g_1 g_2, \omega) = [\alpha_{g_1} g_2 \ast (g_1 g_2) \omega = [\alpha_{g_1} \ast g_1 \alpha_{g_2} \ast (g_1 g_2) \omega = [\alpha_{g_1} \ast g_1 (\alpha_{g_2} \ast g_2 \omega) = \mu(g_1, [\alpha_{g_2} \ast g_2 \omega]) = \mu(g_1, \mu(g_2, \omega)).
\]

Since \(\mu(e, \omega) = \omega \) for all \(\omega \in \tilde{X}_H \), we conclude that \(\mu \) is an action of \(G \) on \(\tilde{X}_H \). \(\square \)

Now, let \(E : G \to X \) be the evaluation map define by \(E(g) = gx_0 \) for \(g \in G \).

Lemma 3.6. If \(N \) is a \(G \)-invariant subgroup of \(\pi_1(G, e) \) such that \(E^#(N) \subset H \), then the map

\[
E^R_# : \sigma_N(G, e, G) \to \sigma_H(X, x_0, G),
\]

defined by \(E^R_#([\gamma; g]_N) = [E\gamma; g]_H \) for \([\gamma; g]_N \in \sigma_N(G, e, G) \), is a continuous homomorphism.

Proof. Clearly, \(E^R_# \) is a well-defined homomorphism. Now, let \([\gamma; g]_N \in \sigma_N(G, e, G) \) and let \(W_X([w\gamma; g]_H, U, V) \) be an open neighborhood of \([E\gamma; g]_H \). Since \(E \) is continuous, there exists an open neighborhood \(U' \) of \(g \) such that \(E(U') \subset U \). Let \(V' \) be an open neighborhood
of \(e \) such that \(V'g \subset U' \cap Vg \). Then for any \(h \in V'g \) and any path \(\gamma' \) in \(U' \) from \(g \) to \(h \), \(h \in Vg \) and \(E\gamma' \) is a path in \(U \) from \(gx_0 \) to \(hx_0 \). This means that

\[
E^R_\#(W_G([\gamma;g]_N,U',V')) \subset W_X([E\gamma;g]_H,U,V).
\]

Thus, \(E^R_\# \) is continuous. \(\Box \)

Lemma 3.7. Let \(N \) be a \(G \)-invariant subgroup of \(\pi_1(G,e) \) such that \(E^R_\#(N) \subset H \). If \(\sigma_N(G,e,G) \) admits a continuous split extension, then \(\sigma_H(X,x_0,G) \) admits a continuous split extension.

Proof. Consider the following commutative diagram

\[
\begin{array}{ccc}
\sigma_N(G,e,G) & \xrightarrow{j'} & G \\
E^R_\# & \downarrow{i_G} & \\
\sigma_H(X,x_0,G) & \xrightarrow{j} & G
\end{array}
\]

where \(j'([\gamma;g]_N) = g \) for \([\gamma;g]_N \in \sigma_G(G,e,G) \).

By hypothesis, there exists a continuous homomorphism \(\phi' : G \to \sigma_N(G,e,G) \) such that \(j' \circ \phi' = i_G \). Let \(\phi = E^R_\# \circ \phi' \). By Lemma 3.6, \(\phi \) is a continuous homomorphism. Since \(j \circ \phi = j \circ (E^R_\# \circ \phi') = j' \circ \phi' = i_G \), \(\sigma_H(X,x_0,G) \) admits a continuous split extension. \(\Box \)

Lemma 3.8. If \(\pi_1(G,e) = N \), then \(\sigma_N(G,e,G) \) admits a continuous split extension.

Proof. By hypothesis, \(j' : \sigma_N(G,e,G) \to G \) is an isomorphism. Let \(\phi' = (j')^{-1} \). For \(g \in G \), let \(\phi'(g) = [\alpha_g;g]_H \) and let \(W([\alpha_g;g]_H,U,V) \) be an open nbhd of \([\alpha_g;g]_H \). Without loss of generality, we may assume that \(U \) is path connected. For \(h \in Vg \), choose a path \(\gamma \) in \(U \) from \(gx_0 \) to \(hx_0 \). Since \(\phi' \) is an isomorphism, \([\alpha_h;h]_H = [\alpha_g \ast \gamma;h]_H \in W([\alpha_g;g]_H,U,V) \), and hence \(\phi'(Vg) \subset W([\alpha_g;g]_H,U,V) \). This implies that \(\phi' \) is continuous. \(\Box \)

Corollary 3.9. Let \(H \) be a \(G \)-invariant normal subgroup of \(\pi_1(X,x_0) \). If \(E^R_\#(\pi_1(G,e)) \subset H \), then the action of \(G \) on \(X \) lifts to an action of \(G \) on \(\tilde{X}_H \).
References

Department of Mathematics Education
KonKuk University
Seoul 143-701, Korea

Department of Liberal Art
Kyungwon College
Sungnam, Kyunggi 461-702, Korea