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COMPLEX BORDISM OF CLASSIFYING
SPACES OF THE DIHEDRAL GROUP

Jun Sim Cha and Tai Keun Kwak

Abstract. In this paper, we study the BP∗-module structure of

BP∗(BG) mod (p, v1, · · · )2 for non abelian groups of the order p3.

We know grBP∗(BG) = BP∗ ⊗ H(H∗(BG); Q1) ⊕ BP ∗/(p, v1) ⊗
ImQ1. The similar fact occurs for BP∗-homology grBP∗(BG) =

BP∗s−1H(H∗(BG); Q1) ⊕ BP∗/(p, v)s−1Hodd(BG) by using the

spectral sequence E∗,∗
2 = ExtBP∗ (BP∗(BG), BP ∗) ⇒ BP ∗(BG).

0. Introduction

Let G be a finite group. By G-U -manifold we mean a weakly com-
plex manifold with a free G-action preserving its weakly complex struc-
ture. The group of bordism classes of closed G-U -manifolds is isomor-
phic to the complex bordism group M∗(BG) of the classifying spaces
BG. If S is a Sylow p-subgroup of G, the inclusion map induces a
splitting epimorphism MU∗(BS) ⇒ MU∗(BG). Hence we need know
first for p-group G. Moreover Quillen isomorphism MU∗(−)(p)

∼=
MU∗(p) ⊗BP∗ BP∗(−) shows that we need to know only BP∗(BG).
When G is a cyclic or quaternion group, giving dimensional filtration
the graded group grBP∗(BG) = BP∗⊗H∗(BG) since Heven(BG) = 0
[M]. By Johnson-Wilson [3], grBP∗(BG) is given for an elementary
abelian p-groups using arguments to generalize Kunneth formula. In
this paper we determine BP∗-module structure of grBP∗(BG) mod
(p, v1, · · · )2 for non abelian groups of the order p3. For p = 2, the new
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group is the dihedral group D4. The bordism group grBP∗(BD2q),
q :6= 2, was studied by Kamata-Minami [5]. Recall the Milnor primi-
tive operation Q0 = β, Q = p1β − βp1(= S2

qS1
q − S1

qS2
q for p = 2). For

the above group, we can extend the operation Q1 on H∗(BG) so that
Q1|Heven(BG) = 0. By Tezuka-Tagita [7], we know grBP∗(BG) =
BP ∗⊗H(H∗(BG);Q1)⊕BP ∗/(p, v1)⊗ImQ1 since d2p−1 = v1⊗Q1 is
the only non zero differential in the Atiyah-Hirzebruch spectral se-
quence. The similar fact occurs for BP∗-homology grBP∗(BG) =
BP∗s

−1 ⊗ H(H∗(BG);Q1) ⊕ BP∗/(p, v1)s−1Hodd(BG) where s−1 is
the descending degree one map, by using the spectral sequence E∗,∗

2 =
ExtBP∗(BP∗(BG), BP ∗) ⇒ BP ∗(BG). In particular, generators and
relations are given explicitly for BP∗(BD) in the last section.

1. Bordism and cobordism

Assume always that G is a p-group. Let us write by H∗ (resp.
HZ/p∗, Heven, Hodd) the cohomology H∗(BG) (resp. H∗(BG; Z/p),
Heven(BG), Hodd(BG)). In this section we consider only groups which
satisfy the following assumption.

Assumption 1.1. pHZ/P odd = 0 hence Hodd ⊂ HZ/P odd, more-
over Q1/Hodd is injective.

Since Q1|Hodd is injective, we can define Q1|Heven = 0.

Lemma 1.2. grBP ∗(BG) ∼= BP ∗ ⊗ H(H∗;Q1) + BP ∗/(p, v1) ⊗
ImQ1.

Proof. Consider Atiyah-Hirzebruch spectral sequence

E∗,∗
2 = H∗(BG;BP ∗) = BP ∗ ⊗H =⇒ BP ∗(BG).

The first nonzero differential is d2p−1 = v1 ⊗ Q1, hence we get that
E2p is isomorphic the righthandside of the module in the lemma. Since
KerQ1 = ImQ1 + H(H∗;Q1) is even dimensionally generated, and so
is E∗,∗

2p . Therefore E2p
∼= E∞. � �

Given Z(p)-module A, let us write by FA the Z(p)-free module gen-
erated by Z(p)-module generators of A. Let F (x) be a generator which
corresponds x in A.
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Theorem 1.3. There is a BP ∗-module isomorphism

BP ∗(BG) ∼= BP ∗ ⊗ (FH(H∗;Q1) + FImQ1)/R

where R is generated, modulo (p, v1, · · · )2,
∑

n=0 vnF (QnQ−1
i (x)) = 0

for i = 0, 1, and x ∈ KerQ1.

Proof. If x1 ∈ ImQ1, then there is a relation v1x1 + v2x2 + · · · = 0
form Lemma 1.2, for ρ(x1) = x1 where ρ : BP → HZ(p) is the Thom
map. From Lemma 2.1 there is y ∈ HZ/p∗ such that Qn(y) = ρ(Xn),
and y = Q−1

1 x1. Since BP ∗(BG) ⊗BP∗ Z(p) = Heven we have the
relation in the lemma. For x0 ∈ ImQ0, we also have the relation by
the same arguments. � �

Now we consider the bordism theory. We also write by H∗ the ho-
mology H∗(BG). Since H∗ is torsion module, there is an isomorphism

H∗−1
∼= s−1H∗, for ∗ = 2.

where s−1 is the operation descending degree one. Note that if px = 0,
s−1x = Q−1

0 x for x ∈ H∗.
Consider the spectral sequence

(1.4) E2
∗,∗ = H∗(BG;BP∗) =⇒ BP∗(BG)

Lemma 1.5. E2p
∗,∗ ∼= BP∗s

−1H(H∗;Q1) + BP∗/(p, v1)s−1Hodd.

Proof. First note HZ/P∗ = Hom(HZ/p∗; Z/p). Hence we can de-
fine the dual operation Q1∗ in HZ/p∗. Since Q1Q0 = −Q0Q1. We see
easily

Q1∗s
−1(ImQ1) = s−1Hodd.

The first non zero differential in (1.4) is d2p−1 = v1 ⊗ Q1∗. Hence we
get the lemma. � �

We use here arguments by Ravenel and Johnson-Wilson [3]. Recall
the universal coefficient spectral sequence

(1.6) E∗,∗
2 = ExtBP∗(BP∗(BG), BP ∗) =⇒ BP ∗(BG).

Given BP∗-filtration in BP∗(BG), we can construct spectral sequence

(1.7) G∗,∗
2 = ExtBP∗(grBP∗(BG), BP ∗) =⇒ E∗,∗

2 .

Then it is easily seen
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Lemma 1.8 [3, Lemma 6.5]. ExtBP∗(BP∗/(pk), BP ∗) ∼= sBP ∗/(pk),
ExtBP∗(BP∗/(p, v1), BP ∗) ∼= s2pBP∗/(p, v1).

Therefore from Lemma 1.2, Lemma 1.5 and Lemma 1.8, we get

(1.9) ExtBP∗((E
2p
∗,∗ in Lemma 1.5), BP ∗) ∼= grBP ∗(BG).

If E2p 6= E∞ = grBP∗(BG) in (1.4), there is an element in grBP ∗(BG)
which does not correspond G∞ and G2, and this makes a contradiction
to (1.6). Hence (1.6), (1.7) and E2p in (1.4) all collapse.

Theorem 1.10. There is a BP∗-module isomorphism

BP∗(BG) ∼= BP∗ ⊗ Fs−1(H(H∗;Q1) + Hodd)/R

where the relation R is generated, modulo (p, v1, · · · )2, by∑
vns−1Q0F (Qn∗Q

−1
i∗ s−1(x)) = 0

for i = 0, 1, x ∈ (H(H∗;Q1) + Hodd).

2. Q2-operation

We give examples 2.1− 2.3 satisfying Assumption 1.1.

2.1. G = Z/p × Z/p. The cohomology Heven = Z/p[y1, y2] and
Hodd = Hevene where |yi| = 2, |e| = 3 and Q1e = yp

1y2 − y1y
p
2 .

2.2. G is a non abelian p-group of the order p3. Then G is iso-
morphic to one of D,Q,E,M (see Lewis [6] or [7]). The cohomology
Heven is generated by elements c1, · · · , c2, y1, y2, and Hodd is generated
as an Heven-module by e (resp. 0, d1 and d2, e) for D (resp. Q,E,M).
Then we can take ring generators such that the Q1-operation is given
by Q1e = c2y2 (resp. 0, Q1di = c2yi, Q1e = cpy

p
2). Hence Assumption

1.1 is satisfied for these cases.

2.3. The semi-dihedral groups SD2. HZ/2∗ is detected by (D,Q)
(see [2]). Hence we get the assumption.
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3. Description of BP∗(BD)

In this section we write down BP∗(BD) more explicitly. Recall
D =< a, b|a4 = b2 = 1, [a, b] = a2 >. The cohomology is given (1, 6,
8).

Heven = (Z̃/2[y1, y2]/(y2
1 + y1y2))⊗ Z̃/4[C2](3.1)

Hodd = (Z/2[y1, y2, c2]/(y2
1 + y1y2)e

HZ/2∗ = Z/2[x1, x2, u]/(x2
1 + x1x2)

Where Z̃/s[x] means Z[x]/(sx) and where x2
i = yi, C = u2 and e = x2u

in HZ/2∗. Since Q0u = ux2, Q1e = y2c2. Hence we get

(3.2) H(H∗;Q1) = (Z̃/2[y2]⊕ Z̃/4[c2])⊗ ∧(y1).

From Lemma 1.5 and Theorem 1.10, we have

(3.3) grBP∗(BD) = BP∗{1} ⊕BP∗/2s−1{yi
1, y

i
2, y1c

j
2}

+ BP/4s−1{cj
2} ⊕BP∗/(2, v1)s−1{yi

1s
j
2e, y

i
2c

j
2e}.

We will construct D-U -manifolds which represent elements in (3.3).
Before doing this, we see how these generators in HZ∗ are defined.
Consider the extension

(3.4) 0 −→< a >= Z/4 −→ D −→< b >= Z/2 −→ 0

and induced spectral sequence (see Lewis p.510 [6]). The action b∗

on H∗(BZ/4) ∼= Z̃/4[u] is given by b∗u = 3u = −u. Let us write
T = (1− b∗) and N = (1 + b∗). Then

E2
0,∗ = H∗/ImT =

{
Z/4{s−1ui} if i|2
Z/2{s−1ui} otherwise

E2
2j+1,∗ = KerT/ImN =

{
Z/2{s−1ui} if i|2

Z/2{s−12ui} otherwise

(3.5)

E2
2j+2,∗ = KerN/ImT =

{
Z/2{s−12ui} if i|2
Z/2{s−1ui} otherwise
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By the universal coefficient theorem and (3.1) this spectral sequence
collapses (confer Lewis p.510).

The elements s−1u, s−1u2 ∈ E2
0,∗ corresponds s1y1, s−1c2, the el-

ement s−12u ∈ E2
1,1 corresponds s−1e, and s−1u ∈ E2

2j,2 corresponds
s−1(y1y

j
2). Moreover 1 ∈ E2

2j−1,0 corresponds s−1yj
2.

We define a D-U -manifold

(3.7) X(j, i) = (S2j−1 ×D/ < a >)×<b> S2i−1

where D acts on S2j−1 ×D/ < a > by{
a(z, 0) = (iz, 0)

a(z, 1) = (−iz, 1)

{
b(z, 0) = (z, 1)

b(z, 1) = (z, 0)

identifying (z, n) ∈ S2j−1×Z/2 ⊂ Cj×Z/2, and where b acts on S2i−1

by b(z) = (−z) in Ci. Then we get the map

(3.8) ξ : X(j, i)/D −→ BD.

The fibering

S2j−1/ < a >−→ X(j, i)/D −→ S2i−1/ < b >

induces the spectral sequence

(3.9) H∗(S2i−1/ < b >;H∗(S2j−1/ < a >)) =⇒ H∗(X(j, i)/D).

The map ξ in (4.8) induces the map of spectral sequences (3.9) to (3.5).
Then the fundamental class of X(j, i) is represented in E∞ in (3.9) by
the nonzero element of right up side. Hence we know that X(2j, 0) =
s−1cj , X(2j − 1, 0) = s−1y1c

j−1
2 , X(0, i) = s−1yi

2, and for ij > 0,
X(2j, i) = s−1ecj−1

2 y1y
i−1
2 = s−1ecj−1

2 yi
1, X(2j− 1, i) = s−1ecj−1

2 yi−1
2 .

The only element which is not expressed by X(j, i) is s−1yj
1 for

j = 2. Note that there is a homomorphism λ in D such that λ : b ↔ ab,
λ : a ↔ a3. Then s−1y2 = s−1y2 + s−1y1. Take X ′(0, i) = M/ < ab >
×S2i−1 and this manifold represents s−1yi

1 + s−1yi
2.
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Next consider relations
∑

vnQn∗Q
−1
k∗ (x) = 0. First consider the

case x = X(0, i). Since s−1y2 = Q0∗y2, we see Q−1
0∗ s−1yi

2 = yi
2. The

Qn∗-operation acts

Qn∗y
i
2 =

∑
< yi

2, Qnx2y
k
2 > x2y

k
2 , where recall x2 = y2

=
∑

< yi
2, y

pn+k
2 > x2y

k
2 = x2y

1−pn

2 .

Therefore we have

(3.10)
∑

vnX(0, i−pn +1) = 0,
∑

vnX ′(0, i−pn +1) = 0

This relation is well known and also given by the relation in BP∗(BZ/2)
and [2] the product of the formal group law in BP∗-theory (for example,
see [4], [5]).

When x = X(2j, 0), the fact Q−1
0∗ s−1(cj

2) = 0 induces only trivial
relation. As for x = X(2j − 1, 0), the formula

Qn∗c
j
2y1 =

∑
< cj

2y1, Qnck
2x1 > ck

2x1 = 0 for n = 1

follows the relation

(3.11) 2X(2j − 1, 0) = 0.

At last we consider the case ij > 0. Since s−1yi
2c

j
2e = cj

2y
i
2u (see (3.1)),

we get

Qn∗c
j
2y

i
2e =

∑
< cj

2y
i
2e,Qnck

2yl
2u > ck

2yl
2u

=
∑

< cj
2y

i
2e, c

k
2yl

2Qnu > ck
2yl

2u

=
∑

< cj−k
2 yi−l

2 e,Qnu > ck
2yl

2u.

(3.12)

Lemma 3.13. There are polynomials Fn(u, y2) such that Qnu =
fn(u, y2)ux2 and fn+1 = uf2

n + y2f
2
n + (∂fn/∂u)2y2u

2.
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Proof. At first recall Q0u = ux2. Q1-action is

Q1u = Sq2Q0u + Q0Sq2u = Sq2(ux2) = u2x2 + ux3
2 = ux(u + x2

2).

By the induction on n = 1, we see

Qn+1u = (Sq2n+1
Qn + QnSq2n+1

)u

= Sq2n+1
Qnu = Sq2n+1

(xuf), where |xuf | = 2n+1 + 1,

= xu2f2 + x3uf2 + x2u2Sq|f |−1f.

If fn =
∑

λiu
iyj

2, then

Sq|f |−1fn =
∑

λii(ux2)u2(i−1)y2j
2 = ux2(∂fn/∂u).

Therefore Qn+1u = ux2(uf2
n + x2

2f
2
n + x2

2u
2(∂f/∂u)2). � �

Let us write fn =
∑

fn,iu
iyj . Then we get

Qn∗c
j
2y

i
2e =

∑
< ck

2y`
2e,

∑
fn,tu

ty2n−1−t
2 e > cj−k

2 yi−1
2 u

=
∑

fn,2tc
j−t
2 y

i−(2n−1−2t)
2 u.

Hence we have the relation

(3.14)
∑

n

vn(
∑

t

fn,2tX(j − t, i + 2t + 1− 2n)) = 0.

Next consider the relation such that v1X(j, i) + · · · = 0. If Q1∗w =
cj
2y

i
2u, then

cj
2y

i
2u =

∑
< w, Q1c

k
2y`

2u > ck
2y`

2u

=
∑

< w, ck
2y`

2e(u + y2) > ck
2y`

2u

shows w = cj
2y

i+1
2 e or w = cj

2y
i
2eu. Since Q0∗c

j
2y

i+1
2 e = cj

2y
i+1
2 u, the

case w = cj
2y

i+1
2 e gives a relation such that 2x(j, i+1)+ · · · = 0, which

is contained in (3.14). Hence we need only the case w = cj
2y

i
2eu,

Qn∗w =
∑

< cj
2y

i
2eu,Qnck

2y`
2u > ck

2y`
2u

=
∑

< cj
2y

i
2eu, fn,tu

ty2n−1−t
2 e > cj−k

2 yi−1
2 u

= fn,2t+1c
j−t
2 y

i−(2n−1−2t−1)
2 u.
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Therefore we get

(3.15)
∑

n

vn(
∑

t

fn,2t+1X(j − t, i− 2n + 2t + 2)) = 0.

Theorem 3.10. There is a BP∗-module isomorphism

BP∗(BD) = BP∗{ X(j, i), X ′(0, i′) | j, i = 0, i = 2 }/R

where R = ((3.10), (3.11), (3.14), (3.15)) mod (2, v1, · · · )2.
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