PETTIS INTEGRABILITY

Hui Lim

ABSTRACT. In this paper, we have some characterizations of Pettis integrability of bounded weakly measurable function $f: \Omega \longrightarrow X^*$ determined by separable subspace of X^* .

1. Introduction

The theory of integration of functions with values in a Banach space has long been a fruitful area of study. Since the invention of the Pettis integral over forty years ago, the problem of recognizing the Pettis integrability of a function has been much studied.

In this paper we are going to study Pettis integrability of bounded weakly measurable function $f:\Omega\longrightarrow X^*$ determined by separable subspace of X^* .

We will show that if $f: \Omega \longrightarrow X^*$ is a bounded weakly measurable function determined by a separable subspace of X^* that has the WRNP, then $\{f(\cdot)x: ||x|| \leq 1\}$ is weakly precompact in $L_{\infty}(\mu)$.

2. Notation and Preliminaries

Let (Ω, Σ, μ) be a finite measure space and X be a Banach space with dual X^* . If $f: \Omega \to X^*$ is bounded weakly measurable, then it can easily be shown that for every $E \in \Sigma$, there exists $x_E^* \in X^*$ such that for every $x \in X$,

$$x_E^*(x) = \int_E \hat{x} \cdot f d\mu$$

Received June 30, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 46G10.

Key words and phrases: Pettis integrability, function determined by separable subspace, weak Radon-Nikodym property(WRNP).

196 Hui Lim

and for every $E \in \Sigma$, there exists $x_E^{***} \in X^{***}$ such that for every $x^{**} \in X^{**}$,

$$x_E^{***}(x^{**}) = \int_E x^{**} \cdot f d\mu.$$

The element x_E^* is called the weak* integral of f over E, denoted by $w^* - \int_E f d\mu$, and x_E^{***} is called the Dunford integral of f over E, denoted by $D - \int_E f d\mu$.

In the case that $D - \int_E f d\mu \in X^*$ for each $E \in \Sigma$, then f is called Pettis integrable and we write $P - \int_E f d\mu$ instead of $D - \int_E f d\mu$ to denote the Pettis integral of f over E.

A subset K of X is called a weak Radon-Nikodym set if for every finite measure space (Ω, Σ, μ) and every bounded linear operator S: $L_1(\mu) \longrightarrow X$ for which $S(\chi_E/\mu(E))$ belongs to K for each $E \in \Sigma$ with $\mu(E) \neq 0$, the operator S is represented by a Pettis integrable function with values in K. A Banach space X is said to have the weak Radon-Nikodym property(WRNP) if its closed unit ball, B_X , is a weak Radon-Nikodym set.

The following theorem proved in Riddle, Saab and Uhl[4].

THEOREM 1. Each of the following statements about an operator $T: X \longrightarrow Y$ implies all the others:

- (a) The set $T(B_X)$ is weakly precompact.
- (b) The operator T factors through a Banach space that contains no copy of l_1 .
- (c) The set $T^*(B_{Y^*})$ is a weak Radon-Nikodym set.
- (d) The adjoint operator T^* factors through a Banach space with the weak Radon-Nikodym property.

If F is a finite set in Banach space X and $\epsilon > 0$, let

$$K(F, \epsilon) = \{x^* \in X^* : ||x^*|| \le 1 \text{ and } |x^*(x)| \le \epsilon \text{ for every } X \text{ in } F\}.$$

- In [3], Huff shows that if $f: \Omega \longrightarrow X$ is a weakly measurable function and the operator $T: X^* \longrightarrow L_1(\mu)$ defined by $T(X^*) = x^*f$, then the following statements are equivalent:
 - (a) f is Pettis integrable.

- (b) T is weakly compact operator and $\{0\} = \bigcap \{T(K(F, \epsilon)) : F \subset X, F \text{ is finite and } \epsilon > 0\}.$
- (c) T is weak* to weak continuous.

3. Main results

We define a bounded weakly measurable function $f: \Omega \longrightarrow X$ to be determined by a subspace G of Banach space X if for each $x^* \in X^*$, x^* restricted to G equals zero the x^*f equals zero almost everywhere.

PROPOSITION 2. Let $f: \Omega \longrightarrow X$ be a bounded weakly measurable function determined by a separable subspace of X. Then f is Pettis integrable.

Proof. Define $T: X^* \longrightarrow L_1(\mu)$ by $T(X^*) = x^*f$. Then T is weakly compact, by the boundedness of f. By corollary 4. of [3], if $h \in \cap_{(F,\epsilon)} T(K(F,\epsilon))$, then h = 0 almost everywhere. \square

Let (Ω, Σ, μ) be a measure space, let E be a measurable set and let $f: \Omega \longrightarrow X^*$ be a bounded function we define the w^* -core of f over E, denoted by $Cor_f^*(E)$, to be that subset of X^* given by

$$\operatorname{Cor_f}^*(E) = \cap w^* - \overline{\operatorname{Co}}\{f(E \backslash A) : \mu(A) = 0, A \in \Sigma\}.$$

In [1] Andrews show that for each $E \in \Sigma$,

$$Cor_f^*(E) = w^* - \overline{Co}\{\frac{w^* - \int_B f d\mu}{\mu(B)} : B \subset E, B \in \Sigma, \mu(B) > 0\}.$$

THEOREM 3. Let $f: \Omega \to X^*$ be a bounded weakly measurable function determined by a separable subspace of X^* . If $Cor_f^*(\Omega)$ is a weak Radon-Nikodym set, then f is weak* equivalent to a Pettis integrable function that takes its value in $Cor_f^*(\Omega)$.

Proof. By Proposition 2, f is Pettis integrable. Define a measure $\nu: \Sigma \to X^{**}$ by $\nu(E) = w^* - \int_E f d\mu$ for all E in Σ . Then

$$\{\frac{\nu(E)}{\mu(E)}|E\in\Sigma,\mu(E)>0\}\subset {\operatorname{Cor}_f}^*(\Omega).$$

198 Hui Lim

Since $Cor_f^*(\Omega)$ is a weak Radon-Nikodym set, the measure ν has a Pettis integrable derivative g whose range lies in $Cor_f^*(\Omega)$.

Hence,
$$P - \int_E g d\mu = \nu(E) = P - \int_E f d\mu$$
.

THEOREM 4. Let $f: \Omega \longrightarrow X^*$ be a bounded weakly measurable function determined by a separable subspace of X^* . If X^* has the WRNP, then the set $\{f(\cdot)x: ||x|| \leq 1\}$ is weakly precompact in $L_{\infty}(\mu)$.

Proof. By Proposition 2, f is Pettis integrable. Define an operator $T: X \longrightarrow L_{\infty}(\mu)$ by $T(x) = f(\cdot)x$. Then the adjoint operator T^* is weak* - to - weak* continuous and maps the unit ball of $L_{\infty}(\mu)^*$ onto a weak* compact convex subset of $k(B_{X^*})$, which certainly is a weak Radon-Nikodym set by Theorem 1 of [5].

Hence, by Theorem 1, the set $\{f(\cdot)x : ||x|| \leq 1\}$ is weakly precompact in $L_{\infty}(\mu)$.

References

- 1. K. T. Andrews, Universal Pettis integrability, Can. J. Math. 37, 141–159.
- 2. J. Diestel and J. J. Uhl, Jr., *Vector Measures*, Math. Survey No 15, Amer. Math. Soc, Providence, 1977.
- 3. R. Huff, Remarks on Pettis integrability, Proc. Amer. Math. Soc. **96** (1986), no. 3, 402–404.
- 4. L. H. Riddle, E. Saab and J. J. Uhl, Jr., Sets with the weak Radon Nikodym property in dual Banach spaces, Indiana Univ. Math. 32 (1983), 527–540.
- 5. E. Saab, Some characterizations of weak Nadon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307–311.

Department of Mathematics Anyang Technical College Anyang 3dong, Korea