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BANACH-STEINHAUS PROPERTIES
OF LOCALLY CONVEX SPACES

Cuil CHENGRI AND SONGHO HAN

ABSTRACT. Banach-Steinhaus type results are established for se-
quentially continuous operators and bounded operators between lo-
cally convex spaces without barrelledness.

In the past, all of Banach-Steinhaus type results have been estab-
lished only for some special classes of locally convex spaces, e.g., bar-
relled spaces ([1,2,3]), s-barrelled spaces ([4]), strictly s-barrelled spaces
([5]), etc. Recently, Li Ronglu and Min-Hyung Cho ([6]) have obtained
a Banach-Steinhaus type result which is valid for every locally convex
space as follows.

THEOREM 1 ([6], TH. B). Let (X, \) and (Y, 1) be locally convex
spaces and T,, : X — Y a A\ — u continuous linear operators, n €
N. If lim, T,,x = Tz exists in Y, u) for each x € X, then the limit

operator T is 3(X, X')-u continuous and, in particular, continuous if
X is barrelled.

In this paper we would like to present Banach-Steinhaus type re-
sults for sequentially continuous operators and bounded operators and
bounded operators between locally convex spaces without barrelled-
ness requirement. By the agency of these results, we show that an
important topology of uniform convergence on conditionally weak* se-
quentially compact sets can be incompatible for some linear dual pairs.

Let X and Y be locally convex spaces. An operator T : X — Y is
said to be sequentially continuous if {z,} is a sequence in X such that
x, — x, then Tx,, — Tx; T is said to be bounded if T" sends bounded
sets into bounded sets. Clearly, continuous operators are sequentially
continuous, and sequentially continuous operators are bounded but,
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in general, converse implications fail. Let X', X* and X° denote the
families of continuous linear functions, sequentially continuous linear
functionals and bounded linear functionals on X, respectively. In gen-
eral, X' G X* C X

For a linear dual pair (E, F') let (E, F') denote the strongest (F, F)-

polar topology on E which is just the topology of uniform convergence

on o(F, E)-bounded subsets of F. Thus, z, PED, &+ if and only if for

every o(F, E)-bounded subset A of F, lim, f(z,) = f(z) uniformly in
feA

THEOREM 2. Let X and (Y, u) be locally convex spaces and T,
X — Y sequentially continuous linear operators, n € N. If lim,, T,,x =
Tz exists in (Y,u) for each x € X, then the limit operator T is
B(X, X?®) — u continuous.

Proof. Every locally convex topology has a local base of neighbor-
hoods of 0 which are barrels so u is a (Y, Y”')-polar topology and, hence,
there is a family F of o(Y’,Y)-bounded subsets of Y’ such that u is
just the topology of uniform convergence on sets in F.

Let A € F and z € X. Since T,x — Tz, lim,, f(T,z) = f(Tx)
uniformly in f € A and, hence, there is an ng € N such that | f(T,,z) <
|f(Tz)| +1 for all f € A and n > ng. Observe that A is o(Y',Y)-
bounded, there is an M > 0 such that sup;c, |f(Tx)] < M and
SUDfe A 1<n<no |f(Tn2)| < M. Therefore, sup e g pen [f(Thz)| < M +
1,ie, {foT,: fe AnecN}isao(X® X)-bounded subset of X*.

Now let {xx} be a sequence in X such that xj PHXT, x, and
A€ F,e>0. Since {foT, : f e An € N} is o(X?® X)-bounded,
limy f(Thzr) = f(T,z) uniformly in both f € A and n € N. Hence
there is a kg € N such that

F(Tuwn) = [(Tuw)| < 5, Vfe A neN, k= ko.

Fix a k > kg. Since lim,, f(T,,zr) = f(Tx)) uniformly in f € A and
lim,, f(T,x) = f(Tz) uniformly in f € A, there is an ng € N such that

F(Tugwr) = F(Tan)| < 5, 1f(Tupr) = f(Ta)| < 5. V€A
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Therefore,

|f(Tzy) — f(Tx)| < [f(Tor) = f(Tngzn) | + [f (Tngzn) = f(Tng )]

+1f(Tnga) = f(T2)| < S+ 5 +5, VfeA
This shows that limy f(Tzx) = f(T'z) uniformly in f € A. Since
A € F is arbitrary, limy Tz, = T2 in (Y, ). Thus T is B(X, X*®)-p
sequentially continuous. O O

A linear dual pair (E, F) is said to be Banach-Mackey if o(F, F')-
bounded subsets of E are 3(F, F')-bounded, i.e., {f(x) : xz € B, f € A}
is bounded for every o(F, F')-bounded subset B of E and o(F, E)-
bounded subset A of F'. A locally convex space X is called a Banach-
Mackey space if (X, X’) is Banach-Mackey. It is easy to see that for
subsets of a locally convex space X the o(X, X’)-boundedness, the
o(X, X*®)-boundedness and the (X, X?)-boundedness are equivalent.
Hence if X is not Banach-Mackey, i.e., (X, X’) is not Banach-Mackey,
both (X, X*) and (X, X?) are not Banach-Mackey because X’ C X*® C
X?. This shows that (X, X?) is not Banach-Mackey for many locally
convex spaces. A recent result due to Li Ronglu and C. Swartz ([7],
Th. 8) can be stated in the following way.

PRrROPOSITION 3. Let X be a locally convex space. The followings
are equivalent.
(1) (X, X?) is Banach-Mackey.
(2) If{f,} C X? and lim,, f,,(x) = f(z) exists at each v € X, then
the limit functional f is in X°.

Now let X and Y be locally convex spaces and 7}, : X — Y bounded
linear operators for n € N. Proposition 3 shows that the limit operator
T can be unbounded even if T,x — Tz at each x € X, i.e., T(B) can
be unbounded for some bounded B C X. Hence we would like to show
that for some kind of bounded set B, T'(B) must be bounded. To see
this we recall that in a duality pair (E, F') a subset A of F' is said to be
conditionally o(F, F)-sequentially compact if every sequence {f,} in
A has a subsequence { f,,, } such that limy, f,,, (z) exists at each = € E.

Let n(E, F') denote the topology of uniform convergence on condi-
tionally o(F, E')-sequentially compact subsets of F. P.Dierolf ([8]) has
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shown that in the case of linear dual pair (E, F') the topology n(E, F)
and the weak topology o(F, F) have the same subseries convergent
series.

THEOREM 4. Let X andY be locally convex spaces andT,, : X —'Y
bounded linear operators, n € N. If weak-lim,, T,,x = Tx exists at each
x € X, then the limit operator T sends 1n(X, X?)-bounded sets into
bounded sets.

Proof. Let y' € Y'. Then lim, v/ (T,,z) = y'(Tz) for each z € X so
{y/ 0T, : n € N} is conditionally o(X?, X)-sequentially compact. Sup-
pose that B is a n(X, X®)-bounded subset of X and {x;} C B. Then

X, x° . . .
%xk XX 0, so for every ¢y’ € Y’ limy %y’(Tna:k) = 0 uniformly in

n € N.

Now fix an ¢ € Y’ and € > 0. There is a kg € N such that
}%y’(Tna:k)‘ < g foralln € Nand all £ > ko. Fix a k > ko. Since
lim,, ¥/ (Thzr) = ¥/ (Tzy) there is an ng € N such that |y (T,,xx) —
y'(Txy)| < §. Therefore,

1 1 1 1 € €
2/ (Ta)| < |/ (D) = 2o/ (D) |70/ (Togi)| < o4 5 < e
This shows that {y/(Txz) : + € B} is bounded. Since 3y’ € Y’ is ar-
bitrary, {7z : € B} is bounded in Y by the classical Mackey theo-

rem. O ]

Let us denote by #(X, X°) the topology of uniform convergence on
o(X?, X)-Cauchy sequences in X°. A subset B of X is said to be
6(X, X®)-bounded if for every sequence {x;} in B and every o(X?, X)-
Cauchy sequence {f,} in X°, limy ¢ f,,(zx) = 0 uniformly in n € N.
Then the proof of Theorem 4 gives the following.

THEOREM 5. Let X andY be locally convex spacesandT),, : X — Y
bounded linear operators, n € N. If weak-lim, T,x = Tx exists at
each v € X, then the limit operator T sends 0(X, X®)-bounded sets to
bounded sets.

Now we have a useful proposition as follows.
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THEOREM 6. For a locally convex space X the following conditions
are equivalent.

(1) For every locally convex space Y and for every sequence {T,}
of bounded linear operators from X into Y such that weak-
lim,, T),x = Tx exists at each x € X, the limit operator T is
also bounded.

(2) (Xt o(X" X)) is sequentially complete.

Proof. (1)==(2). Let {f,} be a o(X?, X)-Cauchy sequence in X°.
Then lim,, f,,(z) = f(x) exists at each 2 € X and f € X° by (1).

(2)==(1). Let Y be a locally convex space and {T},} a sequence of
bounded linear operators form X into Y such that weak-lim,, T),,x = T,
exists at each x € X. Suppose that B is a bounded subset of X and
y' € Y'. Then lim,, ¢/ (T,z) = y'(Tz) at each x € X. Since 30T}, € X°
for all n € N, 4/ oT € X° by (2). Therefore {y/(Tx) : z € B} is
bounded and hence {T'z : € B} is bounded in Y by the classical
Mackey theorem. 0 O

A locally convex space X is said to be semibornological if X’ = X?°.
Let ¢ be a family of number sequences such that each {¢;} € ¢ has
only finite many of nonzero t;. With the norm |{t;}||oc = sup; |t;],
X = (p,] - llo) is a noncomplete normed space. It is easy to see
that X’ = X = 1! i.e., X is semibornological, and (X°,o(X?, X)) =
(X', 0(X', X)) = (11,0(1%, ¢)) is not sequentially complete. By The-
orem 6, there exists a locally convex space Y and a sequence {T,}
of bounded linear operators such that weak-lim,, T,,x = Tz exists at
each z € X but the limit operator 7" is not bounded., i.e., T'(B) is
unbounded in Y for the unit ball By of X. Now by Theorem 4, By can
not be n(X, X")-bounded, i.e., By is not 7(X, X’)-bounded because
X’ = X =1'. Thus, we have the following interesting fact.

COROLLARY 7. For a linear dual pair (X, X') the polar topology
n(X, X') need not be compatible, e.g., n(¢, 1) is not compatible.
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