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CONVERGENCE OF C−SEMIGROUPS

Young S. Lee

Abstract. In this paper, we show convergence and approximation
theorem for C-semigroups. And we study the problem of approxi-

mation of an exponentially bounded C-semigroup on a Banach space

X by a sequence of exponentially bounded C-semigroup on Xn.

1. Introduction

Let X be a Banach space and let A be a linear operator from D(A) ⊂
X into X. Given x ∈ X, the abstract Cauchy problem consists of
finding a solution u(t) to the following initial value problem

du

dt
= Au, t ≥ 0

u(0) = x.

(IVP)

From Theorem 4.1 of [2], if A is the generator of C-semigroup {S(t) :
t ≥ 0}, then the abstract Cauchy problem (IVP) has a unique solution
for all x ∈ C(D(A)), given by u(t) = S(t)C−1x.

In this paper, we consider, roughly speaking, the continuous depen-
dency of an exponentially bounded C-semigroups on its generators.
That is, the solution of (IVP) depends continuously on the operator
A.

In section 2, we introduce the definition of C-semigroups and some
known results about C-semigroups and its generators. And we show
that the convergence of a sequence of generators implies the conver-
gence of the corresponding C-semigroups. In this section, we assume
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that the approximating C-semigroups are defined on the same space
as the limit C-semigroup.

In section 3, we introduce the approximating sequence {Xn} of Ba-
nach spaces to a Banach space X. Then we consider the approximation
of a C-semigroup of operators defined on a Banach space X by a se-
quence of C-semigroups acting in other Banach spaces.

We will write D(A) and R(A) for the domain and range of operator
A, respectively.

2. Convergence of C-semigroups.

Definition. Suppose that C is a bounded linear injective operator
with dense range. The family of bounded linear operators {S(t) : t ≥ 0}
is a C-semigroup if it satisfies the following conditions:

(1) S(0) = C.
(2) S(t)S(s) = CS(t + s) for t, s ≥ 0.
(3) S(t)x is continuous in t for each x ∈ X.

A C-semigroup {S(t) : t ≥ 0} is said to be exponentially bounded if
there exist M and ω such that ||S(t)|| ≤ Meωt for all t ≥ 0.

If C = I, the identity operator on X, then a C-semigroup is a
(C0) semigroup in the ordinary sense (see [3] and [5]). In this case, a
(C0) semigroup is always exponentially bounded. But there exists a
C-semigroup which is not exponentially bounded (see [1]). By (2), we
have S(t)C = CS(t) for all t ≥ 0.

Definition. The linear operator A is called the generator of a C-
semigroup {S(t) : t ≥ 0} if

D(A) = {x : lim
h→0

(S(h)x− Cx)/h exists and is in R(C)},

Ax = C−1( lim
h→0

S(h)x− Cx

h
).

The following lemma is known in [1, 2].
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Lemma 2.1. Suppose that A is the generator of a C-semigroup
{S(t) : t ≥ 0}. Then

(1) D(A) is dense.
(2) If x ∈ D(A), then for all t ≥ 0, S(t)x ∈ D(A), S(t)x is a differ-

entiable function of t and (d/dt)S(t)x = AS(t)x = S(t)Ax.

Lemma 2.2. Let A be the generator of an exponentially bounded
C1-semigroup {S(t) : t ≥ 0} with ||S(t)|| ≤ Meωt for all t ≥ 0. Let
B be the generator of an exponentially bounded C2-semigroup {T (t) :
t ≥ 0} with ||T (t)|| ≤ Meωt for all t ≥ 0. Suppose that S(t)T (s) =
T (s)S(t) for t, s ≥ 0. Then for x ∈ D(A) ∩D(B),

||S(t)C2x− T (t)C1x|| ≤ tM2eωt||Ax−Bx||.

Proof. Let x ∈ D(A)∩D(B). First, we will show that S(t)x ∈ D(B)
for t ≥ 0 and BS(t)x = S(t)Bx. Since x ∈ D(B), limh→0(T (h)x −
C2x)/h exists and is in R(C2). So

lim
h→0

T (h)S(t)x− C2S(t)x
h

= S(t) lim
h→0

T (h)x− C2x

h
= S(t)C2Bx = C2S(t)Bx.

Hence S(t)x ∈ D(B) for t ≥ 0, and

S(t)Bx = C−1
2 ( lim

h→0

T (h)S(t)x− C2S(t)x
h

) = BS(t)x.

Consider

d

dt
(T (t− s)S(s)x) = −T (t− s)BS(s)x + T (t− s)S(s)Ax

= T (t− s)S(s)(Ax−Bx).

Integrating this equation from 0 to t, we obtain∫ t

0

T (t− s)S(s)(Ax−Bx)ds =
∫ t

0

d

ds
(T (t− s)S(s)x)ds

= C2S(t)x− T (t)C1x = S(t)C2x− T (t)C1x.
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Therefore, we have

||S(t)C2x− T (t)C1x|| ≤
∫ t

0

||T (t− s)S(s)(Ax−Bx)||ds

≤
∫ t

0

||T (t− s)|| ||S(s)|| ||Ax−Bx|| ds

≤
∫ t

0

Meω(t−s)Meωs||Ax−Bx||ds

= tM2eωt||Ax−Bx||. �

Theorem 2.3. Let A be the generator of an exponentially bounded
C-semigroup {S(t) : t ≥ 0} with ||S(t)|| ≤ Meωt for t ≥ 0. For each n,
An be the generator of an exponentially bounded C-semigroup {Sn(t) :
t ≥ 0} with ||Sn(t)|| ≤ Meωt for t ≥ 0. Suppose that D(A) ⊂ D(An)
for all n and Sn(t)S(s) = S(s)Sn(t) for all n and t, s ≥ 0. If

lim
n→∞

Anx = Ax

for all x ∈ D(A), then

lim
n→∞

Sn(t)x = S(t)x

for all x ∈ X and the convergence is uniform on bounded t-intervals.

Proof. Let x ∈ D(A) and 0 ≤ t ≤ T . Then, by Lemma 2.3 with
C = C1 = C2, we have

||CSn(t)x− CS(t)x|| ≤ tM2eωt||Anx−Ax||
≤ TMeωT ||Anx−Ax||.

Thus we have
lim

n→∞
CSn(t)x = CS(t)x

for all x ∈ D(A) and the convergence is uniform on bounded t-intervals.
Since C is injective,

lim
n→∞

Sn(t)x = S(t)x.
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By Lemma 2.1, D(A) is dense. So the result follows. �

By the similar argument in Lemma 2.2 and Theorem 2.3, we have the
following theorem. In Theorem 2.4, we assume that An are bounded
linear operators. This is a special case of convergence theorem which
can be shown by a simple proof.

Theorem 2.4. Let A be the generator of an exponentially bounded
C-semigroup {S(t) : t ≥ 0} with ||S(t)|| ≤ Meωt for t ≥ 0. For each
n, let An be the generator of an exponentially bounded C-semigroup
{Sn(t) : t ≥ 0} with ||Sn(t)|| ≤ Meωt for t ≥ 0. Suppose that each An

is a bounded linear operator on X and AnS(t) = S(t)An for all n and
t ≥ 0. If

lim
n→∞

Anx = Ax

for all x ∈ D(A), then

lim
n→∞

Sn(t)x = S(t)x

for all x ∈ X and the convergence is uniform on bounded t-intervals.

3. Variation of the Space

Let X and Xn be Banach spaces. Suppose that for each n, there
exists a bounded linear operator Pn : X → Xn such that

(1) ||Pn|| ≤ M1, where M1 is independent of n.
(2) limn→∞ ||Pnx|| = ||x|| for each x ∈ X.
(3) there exists a constant M2 such that for each xn ∈ Xn there

exists x ∈ X such that

xn = Pnx and ||x|| ≤ M2||xn||.

A sequence {xn}, xn ∈ Xn, is said to converge to x ∈ X, denoted
by xn → x, if

lim
n→∞

||xn − Pnx|| = 0.

Note that the limit of such convergent sequence is unique.
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Let {An : Xn → Xn} be a sequence of operators. We say that the
sequence {An} is said to converge strongly to an operator A : X → X,
denoted by An →s A, if

AnPnx → Ax, that is, lim
n→∞

||PnAx−AnPnx|| = 0.

For more information and examples about the approximating sequences
of Banach spaces, see [4, 6]. The result that we present in this section
is rather special, because we make a stronger assumption on the gener-
ators. Since our goal in this section is to show that this method is valid
for C-semigroups, we will make a strong assumption on the generators
in order to avoid some of technicalities.

Theorem 3.1. Let A be the generator of an exponentially bounded
C-semigroup {S(t) : t ≥ 0} in X with ||S(t)|| ≤ Meωt for all t ≥ 0.
Let An be the generator of an exponentially bounded Cn-semigroup
in Xn with ||Sn(t)|| ≤ Meωt for all t ≥ 0. Suppose that Cn →s C,
limn→∞ ||AnPn−PnA|| = 0 and Pn(D(A)) ⊂ D(An) for each n. Then

Sn(t) →s S(t).

Proof. Let x ∈ D(A) and 0 ≤ t ≤ T . Then

d

ds
(Sn(t− s)PnS(s)x) = Sn(t− s)(PnA−AnPn)S(s)x.

Integrating this equation from 0 to t, we obtain

CnPnS(t)x− Sn(t)PnCx =
∫ t

0

Sn(t− s)(PnA−AnPn)S(s)xds.

So we have

||CnPnS(t)x− Sn(t)PnCx||

≤
∫ t

0

||Sn(t− s)|| || (PnA−AnPn)|| ||S(s)|| ||x|| ds

≤ tM2eωt||PnA−AnPn|| ||x|| .
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Hence limn→∞ ||CnPnS(t)x− Sn(t)PnCx|| = 0.
Since Cn →s C, we have

lim
n→∞

||PnCS(t)x− Sn(t)PnCx|| = 0.

Thus the result holds for C(D(A)). Since C has the dense range and
D(A) is dense, the result follows. �

If Xn = X for all n with Pn = I, the identity operator on X, then
we have the following result.

Corollary 3.2. Let A be the generator of an exponentially bounded
C-semigroup {S(t) : t ≥ 0} with ||S(t)|| ≤ Meωt for all t ≥ 0. Let
An be the generator of an exponentially bounded Cn-semigroup with
||Sn(t)|| ≤ Meωt for all t ≥ 0. Suppose that limn→∞ Cnx = Cx for all
x, limn→∞ ||An −A|| = 0 and D(A) ⊂ D(An) for each n. Then

lim
n→∞

Sn(t)x = S(t)x

for all x ∈ X and the convergence is uniform on bounded t-intervals.
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