A NOTE ON THE $\theta_3(0,\tau)$

DAEYEOUL KIM AND HYEONG-GON JEON

ABSTRACT. Let $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, where $q = e^{2\pi i \tau}$ and $\tau \in \mathbb{C}$. Then the transformation

$$g(\tau) = \rho \frac{\{\eta(\frac{\tau+1}{2})\eta(\frac{\tau+2}{2})\}^{16}}{\eta(\tau)^{24}} \left(\overline{\rho}\eta(\frac{\tau+1}{2})^8 + \eta(\frac{\tau+2}{2})^8\right)^2$$

is holomorphic for Im $\tau > 0$, and has the property

$$g(\tau + 1) = g(\tau), \quad g(-\frac{1}{\tau}) = \tau^{12}g(\tau).$$
 (Theorem)

1. Preliminaries

The study of theta-series is an important part of number theory. This paper mainly deals with theta-series and Dedekind η -function. We describe some preliminaries on theta-series which are needed in section 2. Let $\tau \in \mathfrak{h}$, where $\mathfrak{h} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$.

The Dedekind sum $s(\mu, \nu)$ is defined to be

$$s(\mu, \nu) = \sum_{j=1}^{\nu-1} \frac{j}{\nu} \left(\frac{j\mu}{\nu} - \left[\frac{j\mu}{\nu} \right] - \frac{1}{2} \right).$$

(The square brackets denote the greatest integer function.[1]) The Dedekind η -function satisfies the identities

(*)
$$\eta(\tau+1) = e^{\frac{2\pi i}{24}}\eta(\tau)$$
, and $\eta\left(-\frac{1}{\tau}\right) = \sqrt{-i\tau}\eta(\tau)$.

Here we take the branch of $\sqrt{\ }$ which is positive on the positive real axis.

Received December 29, 1997.

1991 Mathematics Subject Classification: 11GXX, 11F27.

Key words and phrases: Dedekind η -function, θ_3 -series, modular discriminant.

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ with c > 0. The Dedekind η -function satisfies the transformation formula

$$\eta(\gamma\tau) = e^{2\pi i\Phi(\gamma)/24} \sqrt{-i(c\tau+d)} \eta(\tau),$$

where $\sqrt{}$ is the branch of the square root which is positive on the positive real axis, $\Phi(\gamma)$ is given by the formula

$$\Phi(\gamma) = \frac{1}{c} + \frac{d}{c} - 12s(d, c),$$

and $s(\mu, \nu)$ is Dedekind sum defined above.

Let $\theta_3(v,\tau) = 1 + 2\sum_{n=1}^{\infty} q^{\frac{1}{2}n^2} \cos(n\pi v)$. Then $\theta_3(v,\tau)$ can be expressed by infinite products which exhibit its zero.

Proposition 1. ([4]) We have

$$\theta_3(v,\tau) = \prod_{n=1}^{\infty} (1 - q^n) \prod_{n=1}^{\infty} (1 + q^{n - \frac{1}{2}} e^{2\pi v}) \prod_{n=1}^{\infty} (1 + q^{n - \frac{1}{2}} e^{-2\pi v}),$$

where $q = e^{2\pi i \tau}$.

Proposition 2. ([4]) Let $\Delta(\tau)$ be modular discriminant. We have

$$\Delta(\tau) = (2\pi)^{12} q \sum_{n=1}^{\infty} \prod_{n=1}^{\infty} (1 - q^n)^{24}$$
$$= 16\pi^{12} \theta_3(0, \tau)^8 \theta_3(0, \tau + 1)^8 (\theta_3(0, \tau)^4 - \theta_3(0, \tau + 1)^4)^2.$$

Proposition 3.

$$\eta\left(\frac{\tau+1}{2}\right)^2 = e^{\frac{\pi i}{12}}\theta_3(0,\tau)\eta(\tau).$$

2. Main theorem

THEOREM. Let $\rho = e^{\frac{2\pi i}{3}}$ and $-\overline{\rho} = e^{\frac{2\pi i}{6}}$. Then the transformation

$$g(\tau) = \rho \frac{\{\eta(\frac{\tau+1}{2})\eta(\frac{\tau+2}{2})\}^{16}}{\eta(\tau)^{24}} \left(\overline{\rho}\eta(\frac{\tau+1}{2})^8 + \eta(\frac{\tau+2}{2})^8\right)^2$$

is holomorphic for Im $\tau > 0$, and has the property

$$g(\tau + 1) = g(\tau), \quad g(-\frac{1}{\tau}) = \tau^{12}g(\tau).$$

Proof. By Proposition 1, we obtain

$$(**) \theta_3(0,\tau) = e^{-\frac{\pi i}{12}} \frac{\eta(\frac{\tau+1}{2})^2}{\eta(\tau)}, \theta_3(0,\tau+1) = e^{-\frac{\pi i}{12}} \frac{\eta(\frac{\tau+2}{2})^2}{\eta(\tau+1)}.$$

Now we compute

$$\begin{split} g(\tau) &= \rho \frac{\{\eta(\frac{\tau+1}{2})\eta(\frac{\tau+2}{2})\}^{16}}{\eta(\tau)^{24}} \left(\overline{\rho}\eta(\frac{\tau+1}{2})^8 + \eta(\frac{\tau+2}{2})^8 \right)^2 \\ &= -\frac{\eta(\frac{\tau+1}{2})^{16}\eta(\frac{\tau+2}{2})^{16}}{\eta(\tau)^{24}e^{\frac{4\pi}{3}}} \left(\eta(\frac{\tau+1}{2})^8e^{\frac{\pi i}{3}} - \eta(\frac{\tau+2}{2})^8 \right)^2 \\ &= -\frac{\eta(\frac{\tau+1}{2})^{16}\eta(\frac{\tau+2}{2})^{16}}{\eta(\tau)^{16}e^{\frac{16\pi i}{12}}\eta(\tau)^{16}} \left(\eta(\frac{\tau+1}{2})^8e^{\frac{4\pi i}{12}}\eta(\tau)^4 - \eta(\frac{\tau+2}{2})^8\eta(\tau)^4 \right)^2 \\ &= -\left(\frac{\eta(\frac{\tau+1}{2})\eta(\frac{\tau+2}{2})}{\eta(\tau)\eta(\tau+1)} \right)^{16} \left(\eta(\frac{\tau+1}{2})^8\eta(\tau+1)^4 - \eta(\frac{\tau+2}{2})^8\eta(\tau)^4 \right)^2 \\ & \text{(by (*))} \\ &= -e^{-\frac{24\pi i}{12}} \frac{\eta(\frac{\tau+1}{2})^{16}\eta(\frac{\tau+2}{2})^{16}}{\eta(\tau)^8\eta(\tau+1)^8} \left(\frac{\eta(\frac{\tau+1}{2})^8\eta(\tau+1)^4 - \eta(\frac{\tau+2}{2})^8\eta(\tau)^4}{\eta(\tau)^4\eta(\tau+1)^4} \right)^2 \\ &= -e^{-\frac{8\pi i}{12}} \frac{\eta(\frac{\tau+1}{2})^{16}}{\eta(\tau)^8} e^{-\frac{8\pi i}{12}} \frac{\eta(\frac{\tau+2}{2})^{16}}{\eta(\tau+1)^8} \left(e^{-\frac{4\pi i}{12}} \frac{\eta(\frac{\tau+1}{2})^8}{\eta(\tau)^4} - e^{-\frac{4\pi i}{12}} \frac{\eta(\frac{\tau+2}{2})^8}{\eta(\tau+1)^4} \right)^2 \\ &= -\theta_3(0,\tau)^8 \theta_3(0,\tau+1)^8 \{\theta_3(0,\tau)^4 - \theta_3(0,\tau+1)^4\}^2. \quad \text{(by (**))} \end{split}$$

Using proposition 2, $\Delta(\tau) = 16\pi^{12}\theta_3(0,\tau)^8\theta_3(0,\tau+1)^8(\theta_3(0,\tau)^4 - \theta_3(0,\tau+1)^4)^2$. Thus $\Delta(\tau) = -16\pi^{12}g(\tau)$ is a cusp form([3]), then $g(\tau)$ is holomorphic for Im $\tau > 0$.

 $g(\tau)$ under the transformations $\tau \to -\frac{1}{\tau}$ and $\tau \to \tau + 1$ follows from the property of $\Delta(\tau)$.

References

- T. Apostol, Modular functions and Dirichlet series in Number theory, Springer -Verlag, New York, GTM 41, 1976.
- 2. H. Park and D. Kim, A remark of the Dedekind $\eta(\tau)$ -function and θ_3 -series, FJMS **5. no. 4** (1997), Pushpa Publishing House, India, 611–622.
- 3. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton Univ. Press, Princeton, NJ, 1971.
- 4. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer -Verlag, New York, 1994.

Department of Mathematics Chonbuk National University Chonju, Korea