ESTIMATIONS OF THE GENERALIZED REIDEMEISTER NUMBERS II

Soo Youp Ahn, Eung Bok Lee and Ki Sung Park

Abstract

This paper is a continuation of [1]. Let $\sigma\left(X, x_{0}, G\right)$ be the fundamental group of a transformation group (X, G). Let $R(\varphi, \psi)$ be the generalized Reidemeister number for an endomorphism $(\varphi, \psi):(X, G) \rightarrow(X, G)$. The main results in this paper concern the conditions for $R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$.

1. Introduction

F. Rhodes introduced the concept of the fundamental group $\sigma\left(X, x_{0}\right.$, G) of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ of a topological space X in [6]. Recently, we gave a definition of the generalized Reidemeister number $R(\varphi, \psi)$ for an endomorphism (φ, ψ) : $(X, G) \rightarrow(X, G)$ and studied the algebraic computations of $R(\varphi, \psi)$ in [1] and [5].

This article deals with the problem of determining the conditions for $R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$ as a continuation of [1].

Throughout this paper, the space X is assumed to be a compact connected polyhedron. In this paper, we follow F. Rhodes [6] for the basic terminologies.

2. Preliminaries

Let (X, G) be a transformation group and let $(\varphi, \psi):(X, G) \rightarrow$ (X, G) be an endomorphism. Since $\varphi(g x)=(\psi g)(\varphi x)$ for every pair (x, g), if α is a path in X of order g with base-point x_{0}, then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base-point $\varphi\left(x_{0}\right)$. Furthermore, if two

[^0]path α and β of the same order g is homotopic, $\alpha \simeq \beta$, then $\varphi \alpha \simeq \varphi \beta$. Thus (φ, ψ) induces a homomorphism
$$
(\varphi, \psi)_{*}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, \varphi\left(x_{0}\right), G\right)
$$
defined by $(\varphi, \psi)_{*}[\alpha ; g]=[\varphi \alpha ; \psi(g)]$.
If λ is a path from $\varphi\left(x_{0}\right)$ to x_{0}, then λ induces an isomorphism
$$
\lambda_{*}: \sigma\left(X, \varphi\left(x_{0}\right), G\right) \rightarrow \sigma\left(X, x_{0}, G\right)
$$
defined by $\lambda_{*}[\alpha ; g]=[\lambda \rho+\alpha+g \lambda ; g]$ for each $[\alpha ; g] \in \sigma\left(X, \varphi\left(x_{0}\right), G\right)$, where $\rho(t)=1-t$. This isomorphism λ_{*} depends only on the homotopy class of λ.

Conveniently, we denote by $(\varphi, \psi)_{\sigma}$ the composition $\lambda_{*}(\varphi, \psi)_{*}$.
Definition. ([5]) Let $(\varphi, \psi)_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, x_{0}, G\right)$ be a homomorphism. Two elements $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right]$ in $\sigma\left(X, x_{0}, G\right)$ are said to be $(\varphi, \psi)_{\sigma}$-equivalent, $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$, if there exists $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$ such that

$$
\left[\alpha ; g_{1}\right]=[\gamma ; g]\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left([\gamma ; g]^{-1}\right)
$$

For an endomorphism $(\varphi, \psi):(X, G) \rightarrow(X, G)$, the Reidemeister number $R(\varphi, \psi)$ of (φ, ψ) is defined to be the numbers of equivalence classes of $\sigma\left(X, x_{0}, G\right)$ under $(\varphi, \psi)_{\sigma}$-equivalence.

3. The estimates of the generalized Reidemeister number

In this section, we always assume that the group G is an abelian.
Let $C\left(\sigma\left(X, x_{0}, G\right)\right)$ be a commutator subgroup of $\sigma\left(X, x_{0}, G\right)$ and let

$$
\bar{\sigma}\left(X, x_{0}, G\right)=\sigma\left(X, x_{0}, G\right) / C\left(\sigma\left(X, x_{0}, G\right)\right) .
$$

Then $\theta_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \bar{\sigma}\left(X, x_{0}, G\right)$ is a canonical homomorphism such that $\operatorname{Ker} \theta_{\sigma}=C\left(\sigma\left(X, x_{0}, G\right)\right)$. Let $\eta_{\bar{\sigma}}: \bar{\sigma}\left(X, x_{0}, G\right) \rightarrow \operatorname{Coker}(1-$ $\left.(\varphi, \psi)_{\bar{\sigma}}\right)$ be the natural projection. Then $\eta_{\bar{\sigma}} \theta_{\sigma}$ is an epimorphism.

Theorem 3.1. ([5]) If $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is an endomorphism, then $R(\varphi, \psi) \geq\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$, where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}\left(X, x_{0}, G\right)$ induced by (φ, ψ). Furthermore, if $\sigma\left(X, x_{0}, G\right)$ is abelian,

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

Theorem 3.2. If the epimorphism $\eta_{\bar{\sigma}} \theta_{\sigma}$ induces a one-one correspondence between the set of $(\varphi, \psi)_{\sigma}$-equivalent classes and Coker $(1-$ $\left.(\varphi, \psi)_{\bar{\sigma}}\right)$, then $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$ implies $\left[\alpha ; g_{1}\right][\gamma ; g] \sim\left[\beta ; g_{2}\right][\gamma ; g]$ for any $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right)$.

Proof. Note that the $\eta_{\bar{\sigma}} \theta_{\sigma}$ images of all elements of a $(\varphi, \psi)_{\sigma}-$ equivalent class are the same element of $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$, that is, if $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$, then $\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)=\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)$ (See proof of Theorem 3.5 in [5]). Since $\eta_{\bar{\sigma}} \theta_{\sigma}$ is a homomorphism,

$$
\begin{aligned}
\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right][\gamma ; g]\right) & =\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)+\eta_{\bar{\sigma}} \theta_{\sigma}([\gamma ; g]) \\
& =\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\beta ; g_{2}\right]\right)+\eta_{\bar{\sigma}} \theta_{\sigma}([\gamma ; g]) \\
& =\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\beta ; g_{2}\right][\gamma ; g]\right) .
\end{aligned}
$$

Hence from the assumption of Theorem, we obtain

$$
\left[\alpha ; g_{1}\right][\gamma ; g] \sim\left[\beta ; g_{2}\right][\gamma ; g] .
$$

Corollary 3.3. If $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is an endomorphism, then the following statements are equivalent:
(1) The epimorphism $\eta_{\bar{\sigma}} \theta_{\sigma}$ induces a one-one correspondence between the set of $(\varphi, \psi)_{\sigma}$-equivalent classes and $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$.
(2) For any $[\gamma ; g] \in \sigma\left(X, x_{0}, G\right),\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$ implies $\left[\alpha ; g_{1}\right][\gamma ; g] \sim$ $\left[\beta ; g_{2}\right][\gamma ; g]$.
(3) For any $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right],\left[\gamma ; g_{3}\right] \in \sigma\left(X, x_{0}, G\right)$,

$$
\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right] .
$$

Proof. For $(2) \Rightarrow(3) \Rightarrow(1)$, we refer to [1, Lemma 2.4 and Theorem 3.2]. Hence it is clear from Theorem 3.2.

Corollary 3.4. If one of the three statements in Corollary 3.3 holds, then

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

Proof. From the first statement of Corollary 3.3, the proof is straight forward.

Lemma 3.5. ([1]) Let $(\varphi, \psi)_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, x_{0}, G\right)$ be a homomorphism. Then, for any $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right] \in \sigma\left(X, x_{0}, G\right)$,
(1) $\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right] \sim\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)$.
(2) $\left[\alpha ; g_{1}\right] \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)$.

Theorem 3.6. Let $Z\left(\sigma\left(X, x_{0}, G\right)\right)$ be a center of $\sigma\left(X, x_{0}, G\right)$. If $(\varphi, \psi)_{\sigma}$ image of $\sigma\left(X, x_{0}, G\right)$ is contained in $Z\left(\sigma\left(X, x_{0}, G\right)\right)$, that is,

$$
(\varphi, \psi)_{\sigma}\left(\sigma\left(X, x_{0}, G\right)\right) \subseteq Z\left(\sigma\left(X, x_{0}, G\right)\right)
$$

then

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

Proof. It is sufficient to prove that the third statement of Corollary 3.3 holds. For any $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right],\left[\gamma ; g_{3}\right] \in \sigma\left(X, x_{0}, G\right)$, from (2) of Lemma 3.5 and hypothesis of Theorem,

$$
\begin{aligned}
{\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] } & \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right]\right) \\
& \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right] .
\end{aligned}
$$

Corollary 3.7. ([1]) Let $(\varphi, \psi)_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, x_{0}, G\right)$ be a homomorphism. If $\sigma\left(X, x_{0}, G\right)$ is abelian, then

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

References

1. S. Y. Ahn, E. B. Lee and K. S. Park, Estimations of the Generalized Reidemeister numbers, Kangweon Kyungki Math. Jour. 5 (1997).
2. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview, Illinois, 1971.
3. B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14 Amer. Math. Soc. Providence, R. I. (1983), 1-99.
4. T. H. Kiang, The theory of fixed point classes, Science Press, Beijing, 1979 (Chinese); English edition, Springer-Verlag, Berlin, New York, 1989.
5. K. S. Park, Generalized Reidemeister number on a transformation group, Kangweon Kyungki Math. Jour. 5 (1997), 49-54.
6. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635-650.

Department of Mathematics Education
Kon-Kuk University
Seoul 143-701, Korea
Department of Liberal Arts
DaeYoo Technical College
Sungnam 461-714, Korea
Department of Mathematics
Kangnam University
Yongin 449-702, Korea

[^0]: Received December 29, 1997.
 1991 Mathematics Subject Classification: 55M20, 57M05.
 Key words and phrases: $(\varphi, \psi)_{\sigma}$-equivalent, generalized Reidemeister number.

