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SOME PROPERTIES OF FUZZY
QUASI-UNIFORM SPACES

YoNG CHAN KIM AND SEOK JONG LEE

ABSTRACT. We will define a fuzzy quasi-uniform space and inves-
tigate some properties of fuzzy quasi-uniform spaces. We will show
that the fuzzy bitopology and the fuzzy quasi-proximity can be in-
duced by a fuzzy quasi-uniformity.

1. Introduction

In [7,8,9], S.K. Samanta introduced the fuzziness in the concept of
openness of a fuzzy subset as a generalization of Chang’s fuzzy topol-
ogy. Moreover, S.K. Samanta [6] introduced the concept of gradations
of fuzzy proximity and fuzzy uniformity. It was shown that this fuzzy
proximity and fuzzy uniformity are more general than that of Artico
and Moresco [1] and that of B. Hutton [3].

On the other hand, M.H. Ghanim et al.[5] introduced fuzzy prox-
imity spaces with somewhat different definition of S.K. Samanta [6].
In [11], we defined a fuzzy quasi-proximity space in view of the def-
inition of M.H. Ghanim et al.[5] and investigated some properties of
fuzzy quasi-proximities.

In this paper, we will define a fuzzy quasi-uniform space in view of
the definition of Samanta [6] and investigate some properties of fuzzy
quasi-uniform spaces. We will show that the fuzzy bitopology and the
fuzzy quasi-proximity can be induced by a fuzzy quasi-uniformity.

In this paper, all the notations and the definitions are standard in
fuzzy set theory.
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2. Preliminaries

DEFINITION 2.1. [9] Let X be a nonempty set. A function 7 : I —
I is called a gradation of openness on X if it satisfies the following
conditions:

(01) 7(0) =7 (1) =1, where 0(z) = 0 and 1(z) = 1 for all x € X.
(02) T(p1 Apz) > T (1) AT (p2).
(03) T(\/iel" i) > /\iEF T (ps)-

The pair (X,7) is called a fuzzy topological space.

Let 7 be a gradation of openness on X and F : I*X — I be defined
by F(A) = T(1 = \). Then F is called a gradation of closedness on X.

Let (X,7) be a fuzzy topological space, then for each r € I, 7, =
{ue I*|T(u)>r}is a Chang’s fuzzy topology on X.

Let 77,75 be gradations of openness on X. The space (X, 77,73) is
called a fuzzy bitopological space.

From the definition of M.H. Ghanim [5], we can define a fuzzy quasi-
proximity.

DEFINITION 2.2. [11] A function § : I* x I* — I is said to be a
fuzzy quasi-prorimity on X which satisfies the following conditions:
(FQP1) 6(0,1) =0 and 6(1,0) = 0.
(FQP2) (1) 6(p, pV A) = (p, A) V S(p, A).
(2) 6wV p, A) =3d(u, A) V d(p, A).
(FQP3) If 6(u, p) < r for r € (0,1], then there exists A € I* such that
6(p, A) <rand 6(1 — A, p) <r.
(FQP4) If 6(p, p) # 1, then p <1 — p.
The pair (X, 9) is called a fuzzy quasi-proximity space.
A fuzzy quasi-proximity space (X, d) is called a fuzzy prozimity space
if the following is satisfied:
(FP) d(\, p) = 8(u, \), for all A\, € IX.
Let 41,02 be quasi-proximities on X. We say that dy is finer than
81 ( 61 is coarser than &) iff for any A\, pn € IX, (X, 1) < 61(\, ).

THEOREM 2.3. [5] Let (X,0) be a fuzzy (quasi-)proximity space.
Then, for eachr € (0,1] the family 6, = {(u, p) € IX xIX | §(u, p) > r}
is a classical fuzzy (quasi-)proximity space on X.
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Let (X,0) be a fuzzy quasi-proximity space. We define 6~ 1(\, p) =
§(u, \) for every A\, u € IX. Then 6! is a fuzzy quasi-proximity on X.

THEOREM 2.4. [11] Let (X,0) be a fuzzy quasi-proximity space.
We define, for A\, € I,

mf{\/ A i) A O (N )}

where for every finite fam1l1es (A;), (1x) such that A = \/ \; and p =
\ k. Then the structure §* is the coarsest fuzzy proximity on X which
is finer than § and §~1.

THEOREM 2.5. [6,11] Let 6 be a fuzzy quasi-proximity on X. For
each r € [0,1),\ € I, we define

cs(\r) = N{1—=p|d(p, ) <1—r}.
Then it satisfies the followings:
(i) cls(0,7) =0, cls(1,r) = 1.
(ii) cls(A,7r) > X and clg(A1,7r) < cls(Ag,7), if A < As.
(iii) els(cls(A,r),7r) = cls(A ).
(iv) cls(AV p, 1) = cls(A\,r) Vcls(p, 7).
(v) cs(\ 1) <cls(\, "), if r < 7', where r,7’ € [0,1).

THEOREM 2.6. [6] Let (X, ) be a fuzzy quasi-proximity space. The
function Fs : IX — I defined by

Fs(A) = \{relo,1) | cs(\r) =2}, rerl¥.

Then Fs is a gradation of closedness on X.

3. Some properties of fuzzy quasi-uniformity spaces

In [3], B. Hutton expanded the concept of entourages of the unifor-
mity as following results.

Let Qx denote the family of all functions U : I*X — IX with the
following properties:

(1) U0) =0,u < U(p), for every p € I¥.
(2) UV pi) =V Ulpa), for p; € I
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For U € Qyx, the function U~! € Qx is defined by
=N lU@-p) <T-p}.
For U,V € Qx, we define, for all u € IX,

UNV)(1) = AU VV (i2) | ma Vo = . UoV () = UV ()

Then UMV, U oV € Qx from Lemma 2 of [3].

LEMMA 3.1. For any U,V,W,U;,V; € Qlx, the following properties
hold:

(1) IfU<U; and V <Vy, then UMV < Uy M V4.
(2)U|—|V<U UnV<VandUNU="U.
(3) (UTH)~t=U.
4) U<VifUt<VL
(5) Let a function D : I — I*X be defined by
1 ifu#0
mm={~. -
0 ifu=0.

Then D=D"'e€Qx andUND=U.

(6) U(p) < NifFUY 1 =N <1—p, for p, A € I,
(1) UL -U"*(\) <1—\for \eIX.

8) (VoU)t=U"1toV~1L

9 Unv)t=u-tnv-iL

(10) (Unv)ymw =un((vnw).

Proof. (1) and (2) are easily proved from the definition of U M V.

(3) and (4) are proved from Lemma 3.8 of [10].

(5) From the definition of D, we have D = D™! € Qx.

From (2), we have UM D < U. Suppose that UM D ? U. Then
there exist x € X, pu € IX such that (U N D)(u)(z) < U(u)(x). From
the definition of U M D, there exist puy1, o € I such that pu1 V o = p
and

(UM D)(p)(x) < U(pa)(x) vV D(p2)(x) < U(p) ().

If po # 0, then D(uo) = 1. If o = 0, then U(u)(x) < U(p)(z). It is a
contradiction. Hence UT1 D > U.
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=
A
IN >
— 2

ehave U1 (1=2) = A{p | U(1—-p) <A} <1—p
— i, we have, by (3), U(u) = (U) " () = A{p

(9) By (2) and (4), we have (UN V)"t <U-1nv-1
On the other hand, by (2),(3) and (4), (U~'nV-H=l <unv
which implies U1 V-t < (UNV)"L
(10) Suppose that (UN V)N W £ U N (VA W). There exist u €
I*, x € X, ce (0,1) such that
(U V)W) (p)(z) > c> U NV IW))(u) ().

By the definition of U M (V M W), there exist u1,pus € IX,c; € (0,1)
with p = p1 V pg such that

U(p) (@) vV (VT W) (p2)(2) <1 < e

Again, by the definition of V M W, there exist pus, pg € IX with py =
w3 V g such that

U(pa) () VvV (ps)(x) VW () (z) <1 <ec.
On the other hand, since p = p1 V (us V pa) = (11 V ps) V g, we have

Ulpr) vV V(ps) VW (pa) = (UNV) (1 Vo) VW (pa)
> ((UNV)NW)(u1 V ps V pa)
= ((UNV)W)(u).

It is a contradiction. Hence (UM V)W <U N (VRW).
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Similarly, we have (UN V)W > U (VN W). O

In [3], a classical fuzzy uniformity on X is a subset U of Qx such
that it satisfies the following conditions:

(Ul) IfU,Uy €U, then Uy MU, €U.
(U2) For U € U, there exists Uy € U such that U; o Uy < U.

(U3) If U; > U and U € U, then U; € U.

(U4) U # 0.

(Us) If U €U, then U™t € U.

Here, each subset can be identified with its characteristic function.
Accordingly, a classical uniformity U can be interpreted as a function
from Qx into {0, 1}.

S.K. Samanta [6] introduced the concept of a gradation of uniformity
to allow grades of uniformity to be any value in the unit interval I =
[0, 1] instead of {0, 1}.

From the definition of S.K. Samanta [6], we can define a fuzzy quasi-
uniformity.

DEFINITION 3.2. A function U/ : Qx — I is said to be a fuzzy quasi-
uniformity on X if it satisfies the following conditions:

(FQUl) For Uy,Usy € Qx, we have U(U1 1 UQ) > U(Ul) /\U(Ug)

(FQU2) For U € Qx, there exists U; € Qx with Uy o Uy < U such that
UU) 2U).

(FQU3) If Uy > U, then U(Uy) > U(U).

(FQU4) There exists U € Qx such that U(U) = 1.

The pair (X,U) is said to be a fuzzy quasi-uniform space.
A fuzzy quasi-uniform space (X,U) is called a fuzzy uniform space
if the following is satisfied:

(FU) for U € Qx, there exists U; € Qx with U; < U~! such that
Uy = UU).

Let Uy,Us be fuzzy quasi-uniformities on X. We say that U is finer
than Uy ( or Us is coarser than Uy), denoted by Us < U, iff for any
U e Qx, UQ(U) < Lll(U)

REMARK 1. (1) Let (X,U) be a fuzzy quasi-uniform space. By
(FQU1), (FQU3) and Lemma 3.1 (2), we have U(U; MUsz) = U(Uy) A
U(U2).



Some properties of fuzzy quasi-uniform spaces 33

(2) If (X,U) is a fuzzy uniform space, then, by (FU), (FQU3) and
Lemma 3.1 (3), we have U(U) =U(U1).

(3) Let (X,U) be a fuzzy quasi-uniform space. Since U < D for all
U € Qx by Lemma 3.1 (5), we have (D) = 1 by (FQU3) and (FQU4).

THEOREM 3.3. [5] Let (X,U) be a fuzzy (quasi-)uniform space.
Then, for each r € (0,1], the family U, = {U € Qx | U({U) > r}
is a classical fuzzy (quasi-)uniform space on X.

THEOREM 3.4. Let (X,U) be a fuzzy quasi-uniform space. We de-
fine for U € Qx, U1 (U) =U(U'). Then the structure U " is a fuzzy
quasi-uniformity on X.

Proof. (FQU1) For Uy, U; € Qx, we have

U N UL NU) =U(U N U) ™Y
(U;7'nuyY)  (by Lemma 3.1(9))
U AUUS )

LU A UTHDY).

vV

U
U
U

(FQU2) For U € Qyx, there exists U; € Qx with Uy oU; < U™!
such that U(U;) > U(U~1). By (3),(4) and (8) of Lemma 3.1, since
UyoU < U Viff U7t oU;! < U, there exists U;' € Qx with
Ut oU! < U such that U=Y(UTH =U(Uy) > UYU).

(FQU3) If U; > U, then, by (4) of Lemma 3.1, U;* > U~!. Hence
U= Uy) > U1 D).

(FQU4) There exists U € Qx such that U(U) =U"1({U~!)=1. O

We will define the coarsest fuzzy uniformity on X which is finer than
U and U1

THEOREM 3.5. Let U and U~ be fuzzy quasi-uniformities on X.
We define, for U € Qx,

U (U) = sup{U(U)) NUHUR) | Uy MU, < U}

Then the structure U* is the coarsest fuzzy uniformity on X which is
finer than U and U~!.
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Proof. First, we will show that the structure U* is a fuzzy uniformity
on X.
(FQU1) For any U,V € Qx, we will show that

U ounv)>u*Uyau\v).
IfU*(U)=0or U*(V) =0, it is trivial.
If U (U) # 0 and U*(V) # 0, for e with U*(U) AU*(V) > ¢ > 0,

there exist families (U;);=1,2, (V});=1,2 such that

UUL) AU U) >U(U) —e, UiNU, <T,
UV ANUTTVR) >UNV) —e, ViV < V.

Since (U1 MU2) N1 (ViMVa) = (U V) M(Us M V) < UMV by Lemma
3.1 (10),

UUNV)>UU NV AU UM Ve) > (UU) AU*(V)) — e

Since € is arbitrary, this gives the desired result.

(FQU2) Let U € Qx be given. If U*(U) = 0, then there exists the
identity function F € Qx with F o E < U such that U*(E) > 0.

If U*(U) # 0, for e with U*(U) > € > 0, there exist Uy, U € Qx
such that

Z/{(Ul) /\Z/{_l(Ug) > U*(U) —€, Uy NU; <U.

Since U and U1 are fuzzy quasi-uniformities, by (FQU2), there exist
Vi, Vo € Qx such that

VioVi <UL, UTVL) >UTL), VaoVe < Uy, UTH(Va)>UTY(Ty).

By Lemma 3.1 (2), we have (Vi MV2)o (Vi V) < VoV fori=1,2.
Let V =V; M V5 be given. Then we have

VoV < (VioVy)M(VaoVa) <U MUy <U,

U(V) > UV AUV >UU) AU UL) > U*(U) —e.
(FQU3) By the definition of U*, it is trivial.
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(FQU4) There exists U € Qx such that U(U) =U~(U~!) = 1. By
the definition of U*, we have U*(U M U™1) = 1.

(FU) For U € Qx, there exists U™ € Qx with U~! < U~ such
that

U(UY) = sup{UU(U) AU (Us) | Uy MU, < U1}
= sup{U(U) N\ U™ (Us) | U MUy < U}
= sup{U~ (U ) AUUZ ) | UL MU < UY
=U*(U).

Second, we will prove that the structure &* is finer than &/ and /1.
For U € Qx,

U (U) = sup{U(Uy) AU (Us) | Uy MU, < U}
>UU) AU YD) ( by Lemma 3.1(5))
=U). ( by Remark 1.(3))

Similarly, we have U* > U™,
Finally, if V > U and V > U, we have, for U € Qy,

U (U) = sup{U(U)) NUTHUL) | UL MU, < U}
< sup{V(U1) ANV(Uz) | U1 U2 < U}
< sup{V(U,NUy) | U3 NU; < U}
= V(). O

If U is a classical fuzzy uniformity on X, we define (1) = sup{p |
U(p) < p for some U € U}. Then iy is an interior operator on I¥.
We will expand it from the following theorem.

THEOREM 3.6. Let (X,U) be a fuzzy quasi-uniform space. Define,
for each v € [0,1), A € I,

i\ 1) =\/{n € I |U(n) < X for some U with U(U) > r}.
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Then it satisfies the followings:
(13 iL{E(),T) =0, iy(l,r)=1.
i) iy (i (N, 1), ) =iu(\, ).
(iv)
) iu(

(V) (A, r) < ay(A\ '), if r >

Proof. (i) Suppose that there exists € X such that i;,(0, 7)(z) > 0.
Then there exist U € Qx,pu € IX such that U(U) > r and U(u) < 0
with

i (0,7)(z) > p(z) > 0.

Since 0 < p(z) < U(p(x)), it is a contradiction. Hence iz(0,7) = 0.
For all U € Qy, since U(1) < 1, we have iz (1,7) = 1 by (FQU4).
(ii) Suppose that iy (A, 7) £ A. Then there exists x € X such

that iy (A, 7)(z) > A(z). By the definition of i, (A, r), there exist

U € Qx,p € I such that U(U) > r and U(u) < X with

iu(A, ) () > p(x) > A(x).

This yields a contradiction since p < U(u) < .

If Ay < Ag, by the definition of i, we have iy (A1, 7) < iy (Aa, 7).

(iii) By (ii), we have iy (i, (N, 1), 1) < iy (A, 7).

Suppose that iy (igg (A, 7),7) 2 iy(\, 7). Then there exists x € X
such that iy (igs (A, 7),7)(x) < iy (A, 7)(x). By the definition of 4z, (A, ),
there exist p € IX, U € Qx such that U(U) >r, U(p) < A and

i (e (A, ), ) () < p(@) < i (A7) ().

On the other hand, for U € Qx, by (FQU2), there exists Uy € Qx with
Uy o Uy < U such that U(Uy) > UU) > r and Uy (Ui(p)) < A. By the
definition of iy/(A, ), we have Uy(p) < iy (A, 7). By the definition of
iu (i (N, ), 1), it follows that iy (iz (A, 7),7) > p. It is a contradiction.
(iv) By (ii), we have iyy(A A p, 7)) <'igg(A, 1) Adgg (e, 7).
We must show that iz (A A p,7) > iy (A, ) Adge(p, 7). Suppose that
there exists x € X such that iy (AA p, 7)(z) < dge(A,7)(2) Ay (e, ) ().
Then there exist p;, p2 € IX with

(AN p,r)(x) < pr(x) A pe(x) < iy (A r)(x) Ady(p,r)(x)
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such that U(Uy) > 7, Ui(p1) < Aand U(Usz) > r, Us(p2) < p.
It follows that U(U; MUsz) > r and

(U1 NUs)(p1 A p2) < (U1 MU2)(p1) A (U M U2)(p2)
< Ui(p1) ANUz(p2) (by Lemma 3.1 (2))
< AA .

Hence iy (A A p, ) > p1 A pa. It is a contradiction.
(v) It is easily proved from the definition of iy. O

Let (X,U) be fuzzy a quasi-uniform space. Similarly, we can define
ig—1 (A, ) and dyx (A, 7).

THEOREM 3.7. Let (X,U) be a fuzzy quasi-uniform space. The
function Ty : I — I is defined by

Tu(\) = \/{r€[0,1) [iyu(\r) = A}, for xeT¥.
Then Ty is a gradation of openness on X.

Proof. (O1) It is easily proved from Theorem 3.6 (i).
(02) For A1, Ay € IX, suppose that there exists ¢ € (0,1) such that

7;/{()\1 A )\2) <ec< Tu()\l) A\ Tu(>\2)

Then there exist r1,72 € (0,1) such that r1,ro > ¢, dy(A1,7m1) =
A1, iy(Ae, ) = Ao
If r =71 Arg, by Theorem 3.6 (v) and (iv), we have

A A Ay < iu()\l,r) A iu()\g,r) = ’iu()\l A )\2,7‘).

By Theorem 3.6 (ii) , it follows that A; A A2 = iz1(A1 A Mg, 7). Therefore
Tuu(A1 A Xg) > 7. Tt is a contradiction. Hence T (A A A2) > Ty(A) A
Tri(A2).

(0O3) Suppose that there exist ¢ € (0,1), \; € IX such that

Tu(\/ M) < e < N\ Tu(N).

el iel
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Then for all 7 € T, there exist r; > ¢ such that i (A;, 7)) = \;.
If r = A\,er i, we have

\/)\ = \/Zu (Niy7i)

el el
< \/ ir(Aiy ) (by Theorem 3.6 (v))
ier
<iy(\/ \i,r).  (by Theorem 3.6 (ii))
i€l
By Theorem 3.6 (ii) , it follows that \/, .- A; = ¢ (\/;cp Ai, 7). Therefore
Tu(Vier Mi) > 7 > c. It is a contradiction. O

Similarly, since (X,U ') be a fuzzy quasi-uniform space, 7;;-1 is a
gradation of openness on X. The space (X, 7y, Tyy-1) is called a fuzzy
bitopological space induced by (X,U).

THEOREM 3.8. Let U be a fuzzy quasi-uniformity on X. For each
r € [0,1),\ € IX, we define

cu(\r) = NUT' ) [UU) > r}.

Then it satisfies the followings:
(1) cly(0,7) =0, cly(1,7) = 1.
ii) cly(A\ 1) > X and cly(A1,7r) < cly(Ae,r), if A1 < As.
iii) cly(cly(N 1), r) = cly(\ ).
iv) cly( AV p,r) = cly (A7) Vcly(p,r).
v) cy(\r) <cly(\ "), if r <r', where r,r’ € [0,1).

Proof. (i), (ii) and (v) are easily proved from the definition of cly,.

(iii) By (ii), we have cly/(cly (N, 1), 7) > clyy (A, 7).

Suppose cly(cly (A1), 1) £ cly(A,r). By the definition of cly/(A, ),
Then there exist U € Qx, x € X such that Y(U) > r and

cly(cly(A\, 1), 7)(z) > U (N)(z) > el (A, 7).

On the other hand, by (FQU2),for U € Qx, there exists U; € 2x such
that

UpoUy <U, UUr) 2UU) >r
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It follows that
cly(cly(N,r),r) < U el (A r)) S UTHUTH ) S UTH).

It is a contradiction.

(iv) By (ii), we have clyy(AV p,r) > clyy (A, 1) V cly (p, ).

Suppose that cly (A V p, ) £ clyy(A\,r) V cly(p, 7). Then there exist
x € X, c € I such that

clyy(AV p,r)(x) > > cly (N r)(x) Vcly(p,r)(x).

By the definitions of cly/(A,r) and cly(p, ), there exist Uy, Us € Qx
such that

UUL) >r, U\ (2) < cand U(Uy) > r, Uy H(u)(z) < c.

From the definition of U; ' MU, !, since (U; MUz) YAV p)(z) < ¢ and
UUL, M Uy) > r, we have

clyy( AV pyr)(z) < (U NU) YAV p)(z) < c.

It is a contradiction. O

LEMMA 3.9. Let (X,U) be a fuzzy quasi-uniform space. For each
A€ I¥X, rel0,1), if we define

6:/\{i—p|U(p) < 1— X for some U with U(U) > r},

v=/ U\ [ UU) > r},
then B = .

Proof. Suppose that 8 £ v. Then there exist x € X,U € Qx such
that
UU) >r, Bx)>UT N (z) > ().
On the other hand, by Lemma 3.1(7), since U(1 —U~1(\)) <1\,
we have 3 < U~1()). It is a contradiction.
Suppose that 3 # ~. Then there exist € X, p; € IX, U € Qx
such that

UU) >, Ulp) <1=X Bl) <1-pie) < ().
On the other hand, by Lemma 3.1(6), since U(p1) < 1 — \iff
U=Y(\) <1—py, we have v <1 — p;. It is a contradiction. O

In general topology, we have A = (int(A°))°. In a sense, we will
expand it from the following lemma.
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LEMMA 3.10. Let (X,U) be a fuzzy quasi-uniform space. For each
A€ IX, rel0,1), we have

clyu(Nr) =1 — iy (1= A\, 7).

Proof. Using Lemma 3.9, for each A € I, r € [0,1), we have

cy(A\r) = NU ') [UU) >}

:A{l—p\U(p) < 1— A for some U with U(U) > r}
:1—\/{p|U(p)§i—)\ for some U with U(U) > r}
=1—iy(I—=M\7). O

THEOREM 3.11. Let (X,U) be a fuzzy quasi-uniform space. The
function Fyy : IX — I defined by

FuN) = \/{r €0,1) | clu(A\,r) = A}, AeT¥.
Then Fy; is a gradation of closeness on X.

Proof. For each \ € IX, we have

FuN) = \/{r €[0,1) | clu(A\,7) = A}
=\/{re€0,1) |iy(I1—=X\r)=1-A} (by Lemma 3.10)
= Ty(1-)).
Hence F; is a gradation of closeness on X. O

If U is a classical fuzzy uniformity on X, we define udp iff U(u) <
1 —p for some U €Y. Then § is a classical fuzzy proximity on X.

We will expand it from the following theorem. Thus we obtain a
fuzzy quasi-proximity space from a fuzzy quasi-uniform space.
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THEOREM 3.12. Let (X,U) be a (quasi-)fuzzy uniform space. De-
fine, for all p,p € IX,

L \VUO) [ U() ST—p} 0,0

Sulps p) =
Z/{(:u p) { 1 jf@ﬁhp :Q)

where ©, , = {U € Qx | U(u) < 1—p}. Then (X, &) is a (quasi-)fuzzy
proximity space.

Proof. (FQP1) Since U(0) = 0, by (FQU4), we have §,(0,1) = 0.

Similarly, since U(1) = 1, by (FQU4), we have &,(1,0) = 0.

(FQP2) (1) First, we will show that ©, ,yx = 0 iff ©,, = 0 or
Ouxr=0.

O, pvr = D iff for each U € Qx, U(u) £1—(pV A
iff for each U € Qx, dxr € X such that
U(p)(z) + (pV A)(x) > 1
iff for each U € Qx, dxr € X such that
U(p)(x) + p(z) > 1 or U(p)(z) + A(z) > 1
iff ©,,=0o0r O, =0.

Thus 0y (i, p) V St (s ) = 0ue(pe, p V) if O, pun = 0.
Now, we will show that if ©,y, x # 0,

Su (s p) V Ouu (s ) = S (1, p vV A).
If p1 < po, by the definition of &, oy (1, p1) < 0us(t, p2). Therefore

Su (s p) V (i A) < Sulp, pV A).
Suppose that there exists r € (0,1) such that

Sty p) V Oua(py A) <1 < Sty p V).

Since 0y (i, p) < 7 and & (p, A) < r, by the definition of oy, there exist
Ui,Us € Qx such that

UUN) >1—r, Ul(p)<l—p, UU)>1—7r Uy(p)<1—A\
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It follows that U(U; MUy) > 1 —r and

(U M U) () < Ur(p) AUs(p) ( by Lemma 3.1(2))
<(@—p)n(d-n
=1—(pVA).
Hence we have oy (i, p V A) < r. It is contradiction.
Therefore &y (p, p) V dus (s A) > 0y (1, p V A).
(2) We will show that ©,y,x =0if ©, =0 or ©,, = 0.
Ovpr = 0 iff for each U € Qx, U(pVp) £1— A
iff for each U € Qx, dxr € X such that
U(pVp)(x)+ Ax) > 1
iff for each U € Qx, Jdxr € X such that
U(p)(z) + Az) > 1or Up)(z) + A(z) > 1
iff ©,,=0o0r0,, =0

Thus 0y (p, A) V ou(ps A) = du(pe V p, A) if ©pypn = 0.
Now, we will show that if ©,y, x # 0,

Ou (s A) V S0 (ps A) = du(p V p, A).
Since U(u) < U(p V p), by the definition of &, we have
u(ps A) < dup v p, A).

Similarly, we have
du(ps A) < du(pV p, ).

Hence
v (ps A) V 0u(ps A) < du(pV p, A).
Suppose that there exists r € (0,1) such that
(s A) V S (p, A) <1 < du(pV p,A).
By the definition of &, there exist Uy, Us € Qx such that

UU) >1—r, Ul(p)<1-X UU)>1—7r Uslp)<I—A\
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It follows that U (U3 MUy) > 1 —r and

(U U2) (Vv p) <Ui(p) VUs(p) (by the definition of Uy M Us)
<1-A

Hence we have 0 (p V p, A) < r. It is contradiction.

Therefore &y (p6, A) V du(p, A) > (e V p, A).

(FQP3) If 6y (i, p) < r for r € (0,1], then for some U € Qx, U((U) >
1—rand U(u) < 1—p. By (FQU2), there exists V such that VoV < U
and U(V) >UU) >1—r.

Since V(1) < V(p) and VoV (u) < 1—p, there exists 1 —V(u) € IX
such that &y (p, 1 — V(1)) < r and & (V (), p) < 7.

(FQP4) Let i £ 1 — p be given. Since u < U(u), for all U € Qx,
we have U(u) £ 1 — p. By the definition of &, we have & (i, p) = 1.

(FP) Since U(U) = UU ) and U(u) <1 —pif U7 (p) <1y,
we have 0y (i, p) = du(p, ). O

THEOREM 3.13. Let (X,U) be a fuzzy quasi-uniform space. Then:
(1) Fu=Fsys Fu—r=7Fs Fur = Fsy,n-
(2) (Ou)~" = by

Proof. (1) From Theorem 2.6 and Theorem 3.11, it suffices to show
that cly(\,7) = cls, (\,7), for all A € IX r € [0,1). By Theorem 3.8 ,
Lemma 3.9 and Theorem 2.5, we have

cly(\r) = /\{U )>T}
_/\{1_p|U p) <1— X\ for some U with U(U) > r}

cls, (A, r) = A{l—p[&up, A) <1—r}.

u—1’

It is proved that cly(p,r) = cls, (p,r) from the following:
Sulp\) <1—r<=1-\/{UU)|U(p)<T-A}<1-r
= U(p) <1— X for some U with U(U) > r.

Hence Fyy = F5,,-
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Similarly, we have Fyy—1 = Fs,_,, Fur = Foyu-
(2) From the definition of (&) ", we must show that

5L{(p7 :u’) = Oy-1 (:ua p)

First, if ©,,, = 0, we will show that ©, , =0iff ©, , = 0.

0,, =0iff for U € Qx, U(p) £1—p
iff for U € Qx, U™ (u) £1—p (by Lemma 3.1 (6))
iff @,,=>0.

Second, if ©, ,, # (), we have

J

ulp, ) =1 =\ {UU) | U(p) <T—p}

=1-\/{u (W) | U (u) <1-p} (by Lemma 3.1 (3,6))
= 61/{_1(:“7 p) O
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