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ON THE GROWTH OF ENTIRE
FUNCTIONS WITH APPLICATIONS TO
LINEAR DIFFERENTIAL EQUATIONS

Ki-Ho Kwon and Jeong-Heon Kim

Abstract. Let ρ(A) and ρ(B) denote the orders of entire functions

A(z) and B(z) respectively. Suppose that ρ(A) > 1 and 0 < ρ(B) ≤
1
2
, and that ρ(A) is not an integer. Then it is shown that every

nonconstant solution f of f ′′ + A(z)f ′ + B(z)f = 0 is of infinite

order if all the zeros of A(z) lie in a certain angular sector depending
on its genus. In addition, we investigate some growth properties of

A(z).

1. Statements of results

Let ρ(g) denote the order of an entire function g. Consider the
second order linear differential equation

(1) f ′′ + A(z)f ′ + B(z)f = 0

where A(z) and B(z) are entire functions. It is known that if ρ(B) <
ρ(A) ≤ 1

2 , then every nonconstant solution of (1) is of infinite order [2].
In the case that ρ(A) > 1

2 and ρ(B) < ρ(A), the possibility of finite
order solution of (1) remains open.

Recently we proved the following result in [4].

Theorem A. Suppose that A(z) is an entire function of finite non-
integral order with ρ(A) > 1, and that all the zeros of A(z) lie in the
angular sector θ1 ≤ argz ≤ θ2 satisfying

θ2 − θ1 <
π

q + 1
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if q is odd, and

θ2 − θ1 <
(2q − 1)π
2q(q + 1)

if q is even, where q is the genus of A(z). Let B(z) be an entire
function with 0 < ρ(B) < 1

2 . Then every nonconstant solution f of (1)
has infinite order.

In this paper, we extend Theorem A by proving

Theorem 1. Let A(z) satisfy the conditions of Theorem A. If B(z)
is an entire function with 0 < ρ(B) ≤ 1

2 , then every nonconstant
solution f of (1) has infinite order.

Thus our contribution is to treat the case ρ(B) = 1
2 . The main

ingredient in the proof is the growth of entire functions having their
zeros in certain angular sectors.

Theorem 2. Suppose that f(z) is an entire function of finite non-
integral order with genus q ≥ 1, and that for given ε > 0, all the zeros
of f(z) lie in the angular sector θ1 ≤ argz ≤ θ2 satisfying

θ2 − θ1 ≤
π

q + 1
− ε

if q is odd, and

θ2 − θ1 ≤
(2q − 1)π
2q(q + 1)

− ε

if q is even. Then for any c > 1, β1 and β2 with 0 < β2 − β1 < ε, there
exists a real number R, such that

log |f(reiθ)| ≤ −crq

for all r ≥ R and for all θ ∈ [β1, β2].

Theorem 3. Suppose that f(z) is an entire function of finite non-
integral order with genus q, and that for given ε > 0, all the zeros of
f(z) lie in the angular sector θ1 ≤ argz ≤ θ2 satisfying

θ2 − θ1 ≤
π

q + 1
− ε
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if q is even, and

θ2 − θ1 ≤
(2q − 1)π
2q(q + 1)

− ε

if q is odd. Then for any c > 1, β1 and β2 with 0 < β2 − β1 < ε, there
exists a real number R such that

log |f(reiθ)| ≥ crq, q ≥ 1;

log |f(reiθ)| ≥ c log r, q = 0

for all r ≥ R, and for all θ ∈ [β1, β2].

2. Proofs of Theorem 2 and 3

Proof of Theorem 2. Rotating properly the axes of the complex
plane, we may assume that all the zeros of f(z) have their arguments
in the set

S(q, ε) = {θ : |θ| ≤ π

2(q + 1)
− ε

2
}

if q is odd, and

S(q, ε) = {θ :
π

2q
+

ε

2
≤ |θ| ≤ 3π

2(q + 1)
− ε

2
}

if q is even.
Let an be nonzero zeros of f(z). Then we may set

(2) f(z) = zmeP (z)g(z)

for some nonnegative integer m, a polynomial P (z) with deg P ≤ q and
g(z) =

∏
E( z

an
, q), where E(w, q) is an elementary factor with genus

q. Note that an = rneiθn for some rn > 0 and θn ∈ S(q, ε).
Let z = reiφ with r > 0, |φ| < π. Then, from the well-known

representation due to Valiron[5], we have

log E(− z

rn
, q) = (−1)q

∫ ∞

rn

zq+1

tq+1(z + t)
dt.
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Taking the real parts, we obtain

(3) log |E(− z

rn
, q)| = (−1)qrq+1

∫ ∞

rn

t cos(q + 1)φ + r cos qφ

tq+1(t2 + 2tr cos φ + r2)
dt.

Set δ = ε−(β2−β1)
2 . If φ ∈ S(q, δ), then there is a positive real number

d such that

(4) (−1)q cos(q + 1)φ ≤ −d and (−1)q cos qφ ≤ −d.

If |θ−π| ≤ β2−β1
2 and θn ∈ S(q, ε), then θ−π− θn ∈ S(q, δ). Hence

it follows from (3) and (4) that for all r > 0 and for all θ satisfying
|θ − π| ≤ β2−β1

2 , we have

log |g(reiθ)| =
∑

log |E(
reiθ

an
, q)|

=
∑

log |E(−rei(θ−π−θn)

rn
, q)|

≤ −drq+1
∑ ∫ ∞

rn

dt

tq+1(t + r)
(5)

= −drq+1

∫ ∞

0

n(t)dt

tq+1(t + r)
,

where n(t) is the number of zeros of g(z) in the disk |z| ≤ t.
Since deg P ≤ q, there is real numbers b > 1 and R1 > 0 such that

|P (z)| ≤ brq for all z satisfying |z| = r ≥ R1. Since ρ(g) > q and

lim sup
r→∞

log n(r)
log r

= ρ(g),

there is an R2 > R1 such that

(6) n(R2) ≥
12bcqRq

2

d
.
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Hence it follows from (6) that for any r ≥ 2R2,∫ ∞

0

n(t)dt

tq+1(t + r)
≥

∫ r

R2

n(t)dt

tq+1(t + r)
(7)

≥ n(R2)
2r

∫ r

R2

dt

tq+1

≥ n(R2)
4qrRq

2

≥ 3bc

dr
.

Thus (5) and (7) imply that

log |g(reiθ)| ≤ −3bcrq

for all r ≥ 2R2, and for all θ satisfying |θ − π| ≤ β2−β1
2 .

Therefore, setting R = 2R2, we have

log |f(reiθ)| = m log r + <P (reiθ) + log |g(reiθ)|
≤ −bcrq < −crq

for all r ≥ R and for all θ satisfying |θ − π| ≤ β2−β1
2 . Hence Theorem

2 is proved.

Proof of Theorem 3. To prove Theorem 3, we set

S(q, ε) = {θ : |θ| ≤ π

2(q + 1)
− ε

2
}

if q is even, and

S(q, ε) = {θ :
π

2q
+

ε

2
≤ |θ| ≤ 3π

2(q + 1)
− ε

2
}

if q is odd. Then for q ≥ 1, we obtain

(−1)q cos(q + 1)φ ≥ d and (−1)q cos qφ ≥ d

instead of (4). Hence we have
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(8) log |g(reiθ)| ≥ drq+1

∫ ∞

0

n(t)dt

tq+1(t + r)

for all r > 0 and for all θ satisfying |θ − π| ≤ β2−β1
2 . Therefore the

result of Theorem 3 follows from (6), (7) and (8) by the same reasoning
as in the proof of Theorem 2.

If q = 0, it follows from (8) that

log |g(reiθ)| ≥ dr

∫ ∞

0

n(t)dt

t(t + r)

≥ dn(R2)
∫ ∞

R2

rdt

t(t + r)

= dn(R2) ln
R2 + r

R2
.

Since n(R2) →∞ as R2 →∞, there exists R ≥ R2 such that

log |g(reiθ)| ≥ c log r

for all r ≥ R and for all θ satisfying |θ − π| ≤ β2−β1
2 . Hence Theorem

3 is proved.

3. Proof of Theorem 1

For the proof of the theorem, we need the following results as well
as Theorem 2. Before stating these results, we recall the concepts of
density and logarithmic density of the subset of [1,∞). For E ⊂ [1,∞),
let m(E) denote the Lebesgue measure of E and define the logarithmic
measure of E by

ml(E) =
∫

E

dt

t
.

The upper density and upper logarithmic density of E are defined by

dens E = lim sup
r→∞

m(E ∩ [1, r])
r

log dens E = lim sup
r→∞

ml(E ∩ [1, r])
log r

.
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The lower density and lower logarithmic density are defined similarly
with lim sup replaced by lim inf. It is easy to verify

0 ≤ dens E ≤ log dens E ≤ log dens E ≤ dens E ≤ 1

for any E ⊂ [1,∞).

Lemma A [1]. Let f(z) be a nonconstant entire function, and let
α > 1 and ε > 0 be given constants. Then the following two statements
hold:

(i) There exist a constant c > 0 and a set E1 ⊂ [0,∞) having finite
Lebesgue measure such that for all z satisfying |z| = r /∈ E1 we
have∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ c[T (αr, f)rε log T (αr, f)]k, k ∈ N.

(ii) There exist a constant c > 0 and a set E2 ⊂ [0, 2π) having
Lebesgue measure zero such that if φ0 ∈ [0, 2π) − E2, then
there is a constant R0 = R0(φ0) > 0 so that for all z satisfying
argz = φ0 and |z| = r ≥ R0, we have∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ c[T (αr, f) log T (αr, f)]k, k ∈ N.

Lemma B [3]. Suppose that g(z) is entire with ρ(g) ≤ 1
2 and ρ <

ρ(g). Then either there exists {rm} such that rm →∞ and

min
|z|=rm

log |g(z)| > rρ
m,

or, if
Kr(ρ) = Kr = {θ ∈ [0, 2π] : log |g(reiθ)| < rρ},

there exists a set E(1) ⊂ [1,∞) of lower logarithmic density 1 such
that for r ∈ E(1), Kr satisfies

m(Kr) → 0, as r →∞.
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Proof of Theorem 1. If f is a nonconstant solution of (1), It
follows from (1) that

(9) |B(z)| ≤
∣∣∣∣f ′′(z)

f(z)

∣∣∣∣ + |A(z)|
∣∣∣∣f ′(z)
f(z)

∣∣∣∣ .

The proof is divided into two cases depending on the behavior of the
minimum modulus of B(z) on |z| = r by Lemma B. First, we assume
that there exists rm →∞ such that

(10) log |B(rmeiθ)| > rρ
m

for all θ ∈ [0, 2π], and for any positive real number ρ < ρ(B). Applying
Theorem 2 to A(z), we get real numbers β1, β2(β1 < β2) and R such
that

(11) |A(reiθ)| < 1

for all r ≥ R, and for all θ ∈ [β1, β2]. Furthermore, by Lemma A(ii),
there exists θ0 ∈ [β1, β2] such that if z = reiθ0 ,

(12)
∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ T (2r, f)3; k = 1, 2

for all sufficiently large r. Hence from (9), (10), (11) and (12), we have

exp(rρ
m) ≤ 2T (2rm, f)3

for all sufficiently large m. Therefore f has infinite order and the
theorem is proved in the first case.

Now, we assume that there is a set E(1) of lower logarithmic density
1 such that for r ∈ E(1), we have

(13) m(Kr) → 0, as r →∞,

where

(14) Kr = Kr(ρ) = {θ : log |B(reiθ)| < rρ}.
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By Lemma A(i) and (13), we have a set E ⊂ E(1) with lower logarith-
mic density 1 such that if z = reiθ,

(15)
∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ rT (2r, f)3, k = 1, 2

holds for all r ∈ E, and for all θ ∈ [0, 2π]. Therefore it follows from
(9), (11), (14) and (15) that

exp(rρ) ≤ 2rT (2r, f)3

for all r ∈ E, and for all θ ∈ [β1, β2] − Kr. Since [β1, β2] − Kr is
nonempty for all sufficiently large r ∈ E by (13), we conclude that f
has infinite order. Hence the proof of the theorem is complete.
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