A REMARK ON FORMALITY

DOOBEUM LEE

Abstract. In this paper we prove two independent theorems concerning formality of a nilmanifold and a differential graded algebra using the well-known theorem of Deligne-Griffiths-Morgan-Sullivan. We first give a rational homotopy theoretic proof to the statement that a nilmanifold is formal if and only if it is a torus. And then we study some conditions with which formality of one dga implies formality of the other in an extension of dga’s.

1. Minimal models and KS-extensions

We recall here the basic facts and notation we shall need from Sullivan’s theory of minimal models, for which the basic references are [3, 4, 8]. We assume the reader to be familiar with the basics of differential graded algebras [2] over a field k of characteristic 0.

Definition. A dga (M, d) is called minimal, if:

i) $M = \Lambda V$ is freely generated for some graded k-vector space V;

ii) d is decomposable in the following sense: there exists an ordering in the set $\{x_a, a \in I\}$ of all free generators of M such that $x_\beta < x_a \implies \deg(x_\beta) < \deg(x_a)$ and such that $dx_a \in \Lambda(V_{<a})$, $V_{<a}$ denoting the span of the $x_\beta < x_a$.

Notation. If $\{x_1, x_2, \ldots\}$ is a basis for V, then we write $V = \langle x_1, x_2, \ldots \rangle$ and $\Lambda V = \Lambda(x_1, x_2, \ldots)$.

Received July 24, 1998.
1991 Mathematics Subject Classification: 55P62.
Key words and phrases: Minimal model, formality.
This work was supported by a research fund of the Catholic University of Korea, 1998.
Remark. When $A = \Lambda V$ is connected, that is $A^0 = k$, ii) is equivalent to $d : V \to \Lambda^{\geq 2} V$. $\Lambda^{\geq m} V$ denotes the differential ideal of ΛV having additive basis the monomials $x_{i_1} \cdots x_{i_k}$ with $k \geq m$.

Definition. i) A minimal model for a dga A is a minimal dga M_A and a dga map $\rho_A : M_A \to A$ such that the induced homomorphism on cohomology ρ^* is an isomorphism.

ii) A minimal model for a space X is a minimal model of the dga $A^*(X)$, the rational polynomial forms on X.

Example 1. i) $\Lambda(CP(n)) = \Lambda(x_2, y_{2n+1})$, $dy = x^{n+1}$.

ii) $\Lambda(T^n) = \Lambda(x_1^1, x_1^2, \ldots, x_1^n)$, $d = 0$.

The aim of the second part of this section is to describe the algebraic fibrations, which serve as models for fibrations [9]. Only augmented algebras are considered, that is, (A, d_A) is always endowed with a homomorphism $\varepsilon : A \to k$ such that $\text{Ker } \varepsilon = \oplus_{k>0} A^k$.

Definition. A KS-extension is a sequence of augmentation preserving dga morphisms

$$(A, d_A) \xrightarrow{i} (A \otimes \Lambda V, d) \xrightarrow{\rho} (\Lambda V, d)$$

with the following conditions:

i) $i(a) = a \otimes 1$, $\rho = \varepsilon_A \otimes \text{id}_{\Lambda V}$, where ε_A is the augmentation of A.

ii) there exists an ordered homogeneous basis $\{x_a : a \in I\}$ for V indexed by a well ordered set I such that $d(1 \otimes x_a) \in A \otimes \Lambda(V_{<a})$.

We will also call simply $(A, d_A) \xrightarrow{i} (A \otimes \Lambda V, d)$ a KS-extension.

2. Minimal model of a nilmanifold

Definition. A nilmanifold M is a compact homogeneous space of the form N/π where N is a simply connected Lie group and π is a lattice, that is, a discrete co-compact subgroup of N.

It is well known that N is diffeomorphic to some \mathbb{R}^n and therefore, M is $K(\pi, 1)$. Furthermore, this entails the fact that π is a finitely generated torsion free nilpotent group.
The general theory of nilmanifolds is contained in [6]. We only need a minimal model of a nilmanifold. Following [7] we decompose $M = K(\pi, 1)$ into a tower S^1-bundles

$$S^1 \to M_{i-1} \xrightarrow{\tau_i} \mathbb{C}P(\infty), \quad i = 2, \ldots, n$$

which is, in fact, the Postnikov decomposition of M with k-invariants the τ_i. Note that $[M_{i-1}, \mathbb{C}P(\infty)] = [M_{i-1}, K(\mathbb{Z}, 2)] = H^2(M_{i-1}; \mathbb{Z})$.

Lemma 1. [7] The minimal model of a nilmanifold M^n of dimension n has the form

$$\Lambda(M^n) = (\Lambda(x_1, \ldots, x_n), d), \deg(x_i) = 1$$

with $dx_i = \tau_i$, where τ_i is a cocycle representing the class $\tau_i \in H^2(M_{i-1}; \mathbb{Z})$.

3. Formality of a dga and the theorem of Deligne-Griffiths-Morgan-Sullivan

The basic reference for this section is [1]. Let M be a minimal dga and $H^*(M)$ the cohomology of M viewed as a dga with the differential 0.

Definition. i) M is **formal** if there is a dga map $\Psi : M \to H^*(M)$ inducing the identity on cohomology.

ii) A dga (A, d_A) is a **formal consequence** of its cohomology algebra if its minimal model is formal.

iii) A smooth manifold M is **formal** if the de Rham algebra $\Omega^*(M)$ is a formal consequence of its cohomology algebra.

Example 2. Consider the 3-dimensional Heisenberg group $U_3(\mathbb{R})$ and mod out by $U_3(\mathbb{Z})$. The resulting manifold M is a 3-manifold obtained as a principle bundle,

$$S^1 \to M \to T^2.$$

The minimal model of M is given by

$$\Lambda(M) = \Lambda(x, y, z), \deg(x) = \deg(y) = \deg(z) = 1$$
with \(dx = 0 = dy \) and \(dz = xy \). Thus \(xz \), for example, is closed but not exact. But since \(x \cdot H^1(M) = 0 \), there can be no map of \(M \to H^*(M) \) inducing the identity in cohomology. Hence \(M \) is not formal.

We will use the following criterion for formality.

Lemma 2. (Deligne-Griffiths-Morgan-Sullivan) [1] A minimal dga \((\Lambda V, d)\) is formal if and only if \(V \) decomposes as a direct sum \(V = C \oplus N \) with \(d(C) = 0 \) and \(d \) injective on \(N \) such that every closed element in the ideal generated by \(N \) is exact.

Nonexact cocycles in the ideal \((N)\) are called **Massey products**.

4. Main theorems

We now present our main theorems.

Theorem 1. A nilmanifold \(M^n \) is formal if and only if it is a torus.

Proof. Since the minimal model of a torus is given by the dga \((\Lambda(x_1, \ldots, x_n), 0)\) where each \(x_i \) has degree one and the differential is 0 (See Example 1), it is clearly formal. Conversely, let \(M \) have a minimal model of the form \((\Lambda(x_1, \ldots, x_n), d)\) where \(\deg(x_i) = 1, i = 1, \ldots, n \) and \(d \neq 0 \). Then there exists \(k \) such that \(dx_1 = \cdots = dx_{k-1} = 0 \), \(dx_k \neq 0 \). By the minimality condition \(dx_k \) can be written as \(dx_k = \sum_{i<j<k} x_i x_j \). Let \(\{x_{i_1}, x_{i_2}, \ldots, x_{i_l}\}, i_1 < i_2 < \cdots < i_l, \) be the set of different \(x_i \)'s appearing in the summation of \(dx_k \). We may assume that \(l > 2 \) (See Example 2). Consider the element \(a = \Sigma x_{i_1} \cdots \hat{x}_{i_s} \cdots x_{i_l} \) ranging all the permutations of \(\{i_1, \ldots, i_l\} \). Suppose that \(\Lambda V \) is formal. Then \(V \) has a decomposition \(V = C \oplus N \) as in Lemma 2. Then clearly \(ax_k \in (N) \). Note that \(d(ax_k) = (da)x_k \pm adx_k = \pm(\Sigma x_{i_1} \cdots \hat{x}_{i_s} \cdots x_{i_l})(\Sigma x_i x_j) = 0 \) since each term reduces to 0. But it is not hard to see that \(ax_k \) is not a coboundary, which is a contradiction. Hence \(d = 0 \), and \(M \) has the rational homotopy type of a torus. We now follow the argument in [7] P.204 to conclude that \(M \) has the homotopy type of a torus. \(\square \)

Theorem 2. Let \(i : (\Lambda V, d) \to (\Lambda V \otimes \Lambda W, D) \) be a KS-extension. Then we have the followings:
i) if \((\Lambda V, d)\) is formal and \(i^*\) is an epimorphism, then \((\Lambda V \otimes \Lambda W, D)\) is formal and,

ii) if \((\Lambda V \otimes \Lambda W, D)\) is formal and \(i^*\) is a monomorphism, then \((\Lambda V, d)\) is formal.

Proof. 1) Since \((\Lambda V, d)\) is formal, there exists a dga map \(\Phi : \Lambda V \to H^*(AV)\) such that \(\Phi^* = id\). We proceed by induction on the number \(n\) of generators of \(W\). When \(n = 1\), that is \(W = \langle y \rangle\), define a map \(\Psi : \Lambda V \otimes \Lambda(y) \to H^*(\Lambda V \otimes \Lambda(y))\) by \(\Psi|_{\Lambda V} = i^*\Phi\) and \(\Phi(y) = 0\). \(\Psi\) is indeed a dga map since \(dy \in Z(\Lambda V)\), the cocycles in \(\Lambda V\). Since \(i^*\) is onto, each element in \(H^*(\Lambda V \otimes \Lambda(y))\) has a preimage which maps identically into itself by \(\Phi^* = id\). Hence, \(\Phi = id\). Now assume that the statement is true when \(n = k-1\) and \(i^*_1 : H^*(\Lambda V) \to H^*(\Lambda V \otimes \Lambda(y_1, \ldots, y_{k-1}, y_k))\) is an epimorphism. Note that \(i^*_2 : H^*(\Lambda V \otimes \Lambda(y_1, \ldots, y_{k-1})) \to H^*(\Lambda V \otimes \Lambda(y_1, \ldots, y_k))\) is also an epimorphism and \(dy_k \in \Lambda V \otimes \Lambda(y_1, \ldots, y_{k-1})\). Repeating the above argument we conclude that \(\Lambda V \otimes \Lambda(y_1, \ldots, y_k)\) is formal.

2) Suppose that \((\Lambda V \otimes \Lambda W, D) = (\Lambda(V \oplus W), D)\) is formal. By Lemma 2 there exists a decomposition \(V \oplus W = C \oplus N\) with \(D(C) = 0\) and \(D\) is injective on \(N\) such that every closed element in \(N\), the ideal generated by \(N\) in \(\Lambda V \otimes \Lambda W\), is exact. By taking \(C' = C \cap V\) and \(N' = N \cap V\) we have \(d(C) = 0\) and \(d\) is injective on \(N'\) since \(D|_V = d\). Let \(a \in (N')\), the ideal generated by \(N'\) in \(\Lambda V\), and \(da = 0\). Since \(a \in (N') \subset (N)\), \(a = Db\) for some \(b \in \Lambda V \otimes \Lambda W\). Since \(i^*([a]) = [Db] = 0\) and \(i^*\) is a monomorphism we have \([a] = 0\). Hence \(a = da'\) for some \(a' \in \Lambda V\), which completes the proof.

Remark. For any non-formal dga \((\Lambda V, d)\) we may continuously add generators to kill the Massey products producing an extension \((\Lambda V \otimes \Lambda W, D)\) which is formal. Clearly \(i^* : H^*(\Lambda V, d) \to H^*(\Lambda V \otimes \Lambda W, D)\) is not a monomorphism.

References

Department of Mathematics
The Catholic University of Korea
Yokkok-Dong Wonmi-Gu
Bucheon, Kyunggi-Do
KOREA 420–743