SMOOTH FUZZY CLOSURE AND TOPOLOGICAL SPACES

YONG CHAN KIM

ABSTRACT. We will define a smooth fuzzy closure space and a subspace of it. We will investigate relationships between smooth fuzzy closure spaces and smooth fuzzy topological spaces. In particular, we will show that a subspace of a smooth fuzzy topological space can be obtained by the subspace of the smooth fuzzy closure space induced by it.

1. Introduction and preliminaries

R.N. Hazra et al. [6] introduced the concept of gradations of openness as an extension of Chang's fuzzy topology [1]. It has been developed in many directions [2,3,4,5,9].

In this paper, we will define a smooth fuzzy closure space and a subspace of it in view of K.C. Chattopadhyay et al. [3] as an extension of the definition of A.S. Masshour et al. [8]. Also, we will study relationships between smooth fuzzy closure spaces and smooth fuzzy topological spaces. In particular, we will show that a subspace of a smooth fuzzy topological space can be obtained by the subspace of the smooth fuzzy closure space induced by it.

In this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$.

A fuzzy set in X is a function $\mu: X \to I$ and I^X will denote the family of all fuzzy sets in X.

For a family of fuzzy sets $\{\mu_i \mid i \in \Lambda\}$ in X, we define

$$(\bigvee_{i\in\Lambda}\mu_i)(x)=sup_{i\in\Lambda}\mu_i(x),\ \ (\bigwedge_{i\in\Lambda}\mu_i)(x)=inf_{i\in\Lambda}\mu_i(x).$$

Received June 23, 1998.

1991 Mathematics Subject Classification: 54A40.

Key words and phrases: smooth fuzzy closure spaces, smooth fuzzy topological space.

For $\mu, \nu \in I^X$, we define $\mu \leq \nu$ iff $\mu(x) \leq \nu(x)$ for all $x \in X$. A fuzzy point $x_t, t \in I_0$, is an element of I^X such that

$$x_t(y) = \begin{cases} t, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$.

If $A \subset X$, we define the *characteristic function* χ_A on X by

$$\chi_A(x) = \left\{egin{array}{l} 1, ext{ if } x \in A, \ 0, ext{ if } x
ot\in A. \end{array}
ight.$$

Let $f: X \to Y$ be a function, $\mu \in I^X$ and $\nu \in I^Y$. We define

$$f(\mu)(y) = \left\{ egin{array}{ll} sup\{\mu(x) \mid x \in f^{-1}(\{y\})\}, & ext{ if } f^{-1}(\{y\})
eq \emptyset, \ 0, & ext{ if } f^{-1}(\{y\}) = \emptyset, \end{array}
ight.$$

and $f^{-1}(\nu)(x) = \nu(f(x))$ for all $x \in X$.

We denote $\tilde{0}(x) = 0$, $\tilde{1}(x) = 1$ for all $x \in X$.

LEMMA 1.1. [5] If $f: X \to Y$, then we have the following properties for direct and inverse image of fuzzy sets under mappings: for $\mu, \mu_i \in I^X$ and $\nu, \nu_i \in I^Y$,

- (1) $\nu \geq f(f^{-1}(\nu))$ with equality if f is surjective,
- (2) $\mu \leq f^{-1}(f(\mu))$ with equality if f is injective,
- (3) $f^{-1}(\tilde{1}-\nu) = \tilde{1} f^{-1}(\nu),$
- (4) $f(\tilde{1} \mu) = \tilde{1} f(\mu)$ if f is bijective,
- $(5) f^{-1}(\bigvee_{i \in \Lambda} \nu_i) = \bigvee_{i \in \Lambda} f^{-1}(\nu_i),$
- (6) $f^{-1}(\bigwedge_{i\in\Lambda}\nu_i)=\bigwedge_{i\in\Lambda}f^{-1}(\nu_i),$
- $(7) f(\bigvee_{i \in \Lambda} \mu_i) = \bigvee_{i \in \Lambda} f(\mu_i),$
- (8) $f(\bigwedge_{i\in\Lambda}^{i\in\Lambda}\mu_i) \leq \bigwedge_{i\in\Lambda}^{i\in\Lambda}f(\mu_i)$ with equality if f is injective.

2. Smooth fuzzy topological spaces and smooth fuzzy closure spaces

DEFINITION 2.1. [6,4] A function $\mathcal{T}: I^X \to I$ is called a *smooth* fuzzy topology on X if it satisfies the following conditions:

(O1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$,

(O2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$,

(O3) $\mathcal{T}(\bigvee_{i\in\Lambda}\mu_i)\geq\bigwedge_{i\in\Lambda}\mathcal{T}(\mu_i)$, for any family $\{\mu_i\mid i\in\Lambda\}\subseteq I^X$. The pair (X,\mathcal{T}) is called a *smooth fuzzy topological space*.

Let \mathcal{T}_1 and \mathcal{T}_2 be smooth fuzzy topologies on X, We say that \mathcal{T}_1 is finer than \mathcal{T}_2 (\mathcal{T}_2 is coarser than \mathcal{T}_2) iff $\mathcal{T}_2(\lambda) \leq \mathcal{T}_1(\lambda)$, for all $\lambda \in I^X$.

DEFINITION 2.2. [4] Let \mathcal{T} be a smooth fuzzy topology on X and a function $\mathcal{F}: I^X \to I$ defined by $\mathcal{F}(\mu) = \mathcal{T}(\tilde{1} - \mu)$ for all $\mu \in I^X$. Then \mathcal{F} is called a *smooth fuzzy cotopology* on X.

DEFINITION 2.3. A function $C: I^X \times I_0 \to I^X$ is called a *smooth* fuzzy closure operator on X if it satisfies the following conditions: for each $\lambda, \mu \in I^X$, $r, s \in I_0$,

(C1) $C(\tilde{0},r) = \tilde{0}, C(\tilde{1},r) = \tilde{1},$

(C2) $\lambda \leq C(\lambda, r)$,

(C3) if $\lambda \leq \mu$, then $C(\lambda, r) \leq C(\mu, r)$,

 $(\operatorname{C4}) \ C(\lambda \vee \mu, r) = C(\lambda, r) \vee C(\mu, r),$

(C5) if $r \leq s$, then $C(\lambda, r) \leq C(\lambda, s)$.

The pair (X, C) is called a smooth fuzzy closure space.

A smooth fuzzy closure space (X, C) is called *topological* if

(C6) $C(C(\lambda, r), r) = C(\lambda, r)$, for all $\lambda \in I^X$, $r \in I_0$.

Let C_1 and C_2 be smooth fuzzy closure operators on X, We say that C_1 is finer than C_2 (C_2 is coarser than C_1) iff $C_1(\lambda, r) \leq C_2(\lambda, r)$, for all $\lambda \in I^X$, $r \in I_0$.

Example 1. Define $C^0, C^1: I^X \times I_0 \to I^X$ as follows:

$$C^0(\lambda,r) = \left\{ egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ ilde{1}, & ext{otherwise}, \end{array}
ight.$$

and $C^1(\lambda, r) = \lambda$, for all $\lambda \in I^X$, $r \in I_0$. Then C^0 is the coarsest smooth fuzzy closure operator on X and C^1 is the finest one on X. \square

THEOREM 2.4. [3] Let (X, \mathcal{T}) be a smooth fuzzy topological space. For each $r \in I_0, \lambda \in I^X$, we define an operator $C_{\mathcal{T}}: I^X \times I_0 \to I^X$ as follows:

$$C_{\mathcal{T}}(\lambda, r) = \bigwedge \{ \mu \mid \mu \geq \lambda, \mathcal{F}(\mu) \geq r \}.$$

Then it satisfies the following properties: for each $\lambda, \mu \in I^X$, $r, s \in I_0$,

$$(1) \ C_{\mathcal{T}}(\tilde{0},r) = \tilde{0}, C_{\mathcal{T}}(\tilde{1},r) = \tilde{1},$$

(2) $\lambda \leq C_{\mathcal{T}}(\lambda, r)$,

(3) if $\lambda \leq \mu$, then $C_{\mathcal{T}}(\lambda, r) \leq C_{\mathcal{T}}(\mu, r)$,

$$(4) \ C_{\mathcal{T}}(\lambda \vee \mu, r) = C_{\mathcal{T}}(\lambda, r) \vee C_{\mathcal{T}}(\mu, r),$$

(5) if $r \leq s$, then $C_{\mathcal{T}}(\lambda, r) \leq C_{\mathcal{T}}(\lambda, s)$,

(6) $C_{\mathcal{T}}(C_{\mathcal{T}}(\lambda, r), r) = C_{\mathcal{T}}(\lambda, r),$

(7) if $r = \bigvee \{s \in I_0 \mid C_{\mathcal{T}}(\lambda, s) = \lambda\}$, then $C_{\mathcal{T}}(\lambda, r) = \lambda$.

THEOREM 2.5. [3] Let (X, C) be a smooth fuzzy closure space. Define the function $\mathcal{F}_C: I^X \to I$ on X by

$$\mathcal{F}_C(\lambda) = \bigvee \{r \in I_0 \mid C(\lambda, r) = \lambda\}.$$

Then:

(1) \mathcal{F}_C is a smooth fuzzy cotopology on X.

(2) We have $C = C_{\mathcal{T}_C}$ iff (X, C) satisfies the following conditions:

(a) It is a topological smooth fuzzy closure space.

(b) If
$$r = \bigvee \{s \in I_0 \mid C(\lambda, s) = \lambda\}$$
, then $C(\lambda, r) = \lambda$.

EXAMPLE 2. Let C^0, C^1 be smooth fuzzy closure operators on X defined by Example 1. Then C^0, C^1 induce the following smooth fuzzy cotopologies on X: for all $\lambda \in I^X$,

$$\mathcal{F}_{C^0}(\lambda) = \left\{ egin{array}{ll} 1, & ext{if } \lambda = ilde{0} & ext{or } ilde{1}, \ 0, & ext{otherwise} \end{array}
ight.$$

and $\mathcal{F}_{C^1}(\lambda) = 1$. Therefore \mathcal{T}_{C^0} is the coarsest smooth fuzzy topology on X and \mathcal{T}_{C^1} is the finest one on X.

The following example is that we have $C \neq C_{\mathcal{T}_C}$ if (X, C) does not satisfy the condition (a) of Theorem 2.5(2).

Example 3. Define $C: I^X \times I_0 \to I^X$ as follows:

$$C(\lambda,r) = \left\{egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ \chi_{\{x,y\}}, & ext{if } \lambda = x_t \in \chi_{\{x,y\}}, r \leq rac{1}{2}, \ \chi_{\{z\}}, & ext{if } \lambda = z_s \in \chi_{\{z\}}, r \leq rac{1}{2}, \ ilde{1}, & ext{otherwise}. \end{array}
ight.$$

Then (X,C) is a smooth fuzzy closure space. Since $C(x_t,\frac13)=\chi_{\{x,y\}}$ and $C(\chi_{\{x,y\}},\frac13)=\tilde 1$, we have

$$C(C(x_t, \frac{1}{3}), \frac{1}{3}) \neq C(x_t, \frac{1}{3}).$$

Hence (X, C) is not a topological smooth fuzzy closure space.

From Theorem 2.5, we can obtain the smooth fuzzy cotopology \mathcal{F}_C on X induced by (X, C) as follows:

$$\mathcal{F}_C(\lambda) = \left\{ egin{array}{ll} 1, & ext{if } \lambda = ilde{0} ext{ or } ilde{1}, \ rac{1}{2}, & ext{if } \lambda = \chi_{\{z\}}, \ 0, & ext{otherwise}. \end{array}
ight.$$

From Theorem 2.4, we have the smooth fuzzy closure operator $C_{\mathcal{T}_C}$ on X induced by (X, \mathcal{T}_C) as follows:

$$C_{\mathcal{T}_C}(\lambda,r) = \left\{ egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ \chi_{\{z\}}, & ext{if } \lambda = z_s \in \chi_{\{z\}}, r \leq rac{1}{2}, \ ilde{1}, & ext{otherwise}. \end{array}
ight.$$

Hence $C \neq C_{\mathcal{T}_C}$.

The following example is that we have $C \neq C_{\mathcal{T}_C}$ if (X, C) does not satisfy the condition (b) of Theorem 2.5(2).

Example 4. For $\mu \in I^X$ such that $\mu \neq \tilde{0}, \tilde{1}$, we define a smooth fuzzy closure operator $C: I^X \times I_0 \to I^X$ as follows:

$$C(\lambda,r) = \left\{ egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ \mu, & ext{if } ilde{0}
eq \lambda \leq \mu, r < rac{1}{2}, \ ilde{1}, & ext{otherwise}. \end{array}
ight.$$

Then (X, C) is a topological smooth fuzzy closure space. Hence \mathcal{F}_C is defined by

$$\mathcal{F}_C(\lambda) = \left\{ egin{array}{ll} 1, & ext{if } \lambda = ilde{0} & ext{or } ilde{1} \ rac{1}{2}, & ext{if } \lambda = \mu \ 0, & ext{otherwise.} \end{array}
ight.$$

Since $C(\mu, r) = \mu$ for all $r < \frac{1}{2}$,

$$\bigvee \{r \in I_0 \mid C(\mu, r) = \mu\} = \frac{1}{2}, \quad ext{but} \ \ C(\mu, \frac{1}{2}) = \tilde{1}.$$

On the other hand, we have $C_{\mathcal{T}_C}(\mu, \frac{1}{2}) = \mu$. Hence $C \neq C_{\mathcal{T}_C}$.

THEOREM 2.6. Let (X, \mathcal{T}) be a smooth fuzzy topological space. Let $(X, C_{\mathcal{T}})$ be a smooth fuzzy closure space. Then $\mathcal{F}_{C_{\mathcal{T}}}$ is a smooth fuzzy cotopology on X such that

$$\mathcal{F}_{C_{\mathcal{T}}} = \mathcal{F}$$
, that is $\mathcal{T}_{C_{\mathcal{T}}} = \mathcal{T}$

where $\mathcal{F}(\mu) = \mathcal{T}(\tilde{1} - \mu)$, for all $\mu \in I^X$.

Proof. From Theorem 2.5, $\mathcal{F}_{C_{\mathcal{T}}}$ is a smooth fuzzy cotopology on X. We only show that $\mathcal{F}_{C_{\mathcal{T}}} = \mathcal{F}$.

Suppose that there exists $\lambda \in I^X$ such that

$$\mathcal{F}_{C_{\mathcal{T}}}(\lambda) > \mathcal{F}(\lambda).$$

From the definition of \mathcal{F}_{C_T} there exists $r_0 \in I_0$ with $C_T(\lambda, r_0) = \lambda$ such that

$$\mathcal{F}_{C_{\mathcal{T}}}(\lambda) \geq r_0 > \mathcal{F}(\lambda).$$

On the other hand, since $C_{\mathcal{T}}(\lambda, r_0) = \lambda$, we have $\mathcal{F}(\lambda) \geq r_0$ from the definition of $C_{\mathcal{T}}$. It is a contradiction. Hence $\mathcal{F}_{C_{\mathcal{T}}} \leq \mathcal{F}$.

Suppose that there exists $ho \in I^X$ such that

$$\mathcal{F}_{C_{\mathcal{T}}}(\rho) < \mathcal{F}(\rho).$$

Then there exists $r_1 \in I_0$ such that

$$\mathcal{F}_{C_{\mathcal{T}}}(\rho) < r_1 \leq \mathcal{F}(\rho).$$

On the other hand, since $\mathcal{F}(\rho) \geq r_1$, by the definition of $C_{\mathcal{T}}$ we have

$$C_{\mathcal{T}}(\rho, r_1) = \bigwedge \{ \mu \mid \mu \geq \rho, \mathcal{F}(\mu) \geq r_1 \} = \rho.$$

Hence $\mathcal{F}_{C_{\mathcal{T}}}(\rho) \geq r_1$. It is a contradiction. Hence $\mathcal{F}_{C_{\mathcal{T}}} \geq \mathcal{F}$.

DEFINITION 2.7. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be smooth fuzzy topological spaces. A function $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called smooth continuous if $\mathcal{T}_2(\mu) \leq \mathcal{T}_1(f^{-1}(\mu))$ for all $\mu \in I^Y$.

REMARK. A function $f:(X,\mathcal{T}_1)\to (Y,\mathcal{T}_2)$ is smooth continuous if $\mathcal{F}_2(\nu)\leq \mathcal{F}_1(f^{-1}(\nu))$ for all $\nu\in I^Y$ because $f^{-1}(\tilde{1}-\nu)=\tilde{1}-f^{-1}(\nu)$ from Lemma 1.2 (3).

DEFINITION 2.8. Let (X, C_1) , (Y, C_2) be two smooth fuzzy closure spaces. A function $f: (X, C_1) \to (Y, C_2)$ is called a C- map if for all $\lambda \in I^X$, $r \in I_0$, $f(C_1(\lambda, r)) \leq C_2(f(\lambda), r)$.

THEOREM 2.9. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be smooth fuzzy topological spaces. A function $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is a smooth continuous map iff $f: (X, C_{\mathcal{T}_1}) \to (Y, C_{\mathcal{T}_2})$ is a C- map.

Proof. Let f be a smooth continuous map. For all $\lambda \in I^X$, $r \in I_0$, from Lemma 1.1 we have the following:

$$C_{\mathcal{T}_2}(f(\lambda), r) = \bigwedge \{ \mu \mid \mu \geq f(\lambda), \mathcal{F}_2(\mu) \geq r \}$$

(Since
$$f^{-1}(\mu) \ge f^{-1}(f(\lambda)) \ge \lambda$$
, $\mathcal{F}_1(f^{-1}(\mu)) \ge \mathcal{F}_2(\mu) \ge r$,)

$$\ge \bigwedge \{ f(f^{-1}(\mu)) \mid f^{-1}(\mu) \ge \lambda$$
, $\mathcal{F}_2(f^{-1}(\mu)) \ge r \}$

$$\ge f(\bigwedge \{ f^{-1}(\mu) \mid f^{-1}(\mu) \ge \lambda$$
, $\mathcal{F}_2(f^{-1}(\mu)) \ge r \}$)
$$\ge f(C_{\mathcal{T}_1}(\lambda, r)).$$

Conversely, we will show that $\mathcal{F}_2(\nu) \leq \mathcal{F}_1(f^{-1}(\nu))$, for all $\nu \in I^Y$. Suppose that there exists $\nu \in I^Y$ such that

$$\mathcal{F}_2(\nu) > \mathcal{F}_1(f^{-1}(\nu)).$$

Since $\mathcal{F}_{C_{\mathcal{T}_2}} = \mathcal{F}_2$ from Theorem 2.6, by the definition of $\mathcal{F}_{C_{\mathcal{T}_2}}$, there exists $r \in I_0$ with $C_{\mathcal{T}_2}(\nu, r) = \nu$ such that

$$\mathcal{F}_2(\nu) \geq r > \mathcal{F}_1(f^{-1}(\nu)).$$

. Let uzzy

n X.

 $=\lambda$

ı the

ave

On the other hand, since f is a C-map, we have

$$f(C_{\mathcal{T}_1}(f^{-1}(\nu),r)) \leq C_{\mathcal{T}_2}(f(f^{-1}(\nu)),r) \leq C_{\mathcal{T}_2}(\nu,r) = \nu.$$

Using Lemma 1.1(2), we have

$$C_{\mathcal{T}_1}(f^{-1}(\nu),r) \leq f^{-1}(f(C_{\mathcal{T}_1}(f^{-1}(\nu),r))) \leq f^{-1}(\nu).$$

Hence $C_{\mathcal{T}_1}(f^{-1}(\nu), r) = f^{-1}(\nu)$ from Definition 2.3(C2). Since $\mathcal{F}_{C_{\mathcal{T}_1}} = \mathcal{F}_1$ from Theorem 2.6, by the definition of $\mathcal{F}_{C_{\mathcal{T}_1}}$, we have $\mathcal{F}_1(f^{-1}(\nu)) \geq r$. It is a contradiction.

Using Theorem 2.9, we can easily prove the following corollary.

COROLLARY 2.10. Let (X, C_1) , (Y, C_2) be smooth fuzzy closure spaces. If $f: (X, C_1) \to (Y, C_2)$ is a C-map, then $f: (X, \mathcal{T}_{C_1}) \to (Y, \mathcal{T}_{C_2})$ is a smooth continuous map.

The following example shows that $f:(X,C_1)\to (Y,C_2)$ is not a C-map but $f:(X,\mathcal{T}_{C_1})\to (Y,\mathcal{T}_{C_2})$ is a smooth continuous map.

EXAMPLE 5. Let $X = \{x, y, z\}$ be a set.

Define $C_1, C_2: I^X \times I_0 \to I^X$ as follows:

$$C_1(\lambda,r) = \left\{egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ \chi_{\{z\}}, & ext{if } \lambda = z_s, r \leq rac{1}{2}, \ ilde{1}, & ext{otherwise}, \end{array}
ight.$$

and

$$C_2(\lambda,r) = \left\{egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0}, \ r \in I_0, \ \chi_{\{x,y\}}, & ext{if } \lambda = x_t, r \leq rac{1}{3}, \ \chi_{\{z\}}, & ext{if } \lambda = z_s, r \leq rac{1}{2}, \ ilde{1}, & ext{otherwise}. \end{array}
ight.$$

Then the identity function $1:(X,C_1)\to (Y,C_2)$ is not a C- map because $\tilde{1}=C_1(x_t,\frac{1}{4})\not\leq C_2(x_t,\frac{1}{4})=\chi_{\{x,y\}}.$

On the other hand, from Theorem 2.5, we can obtain the smooth fuzzy topology $\mathcal{T}_{C_1}: I^X \to I$ as follows:

$$\mathcal{T}_{C_1}(\lambda) = \left\{egin{array}{ll} 1, & ext{if } \lambda = ilde{0} ext{ or } ilde{1}, \ rac{1}{2}, & ext{if } \lambda = \chi_{\{x,y\}}, \ 0, & ext{otherwise}. \end{array}
ight.$$

Also, we have $\mathcal{T}_{C_2} = \mathcal{T}_{C_1}$. Therefore $1: (X, \mathcal{T}_{C_1}) \to (Y, \mathcal{T}_{C_2})$ is a smooth continuous map.

THEOREM 2.11. Let X be a set and (Y, C_1) be a smooth fuzzy closure space. Let $f: X \to Y$ be a function. For all $\lambda \in I^X$, $r \in I_0$, we define the function $C^f: I^X \times I_0 \to I^X$ by

$$C^f(\lambda, r) = f^{-1}(C_1(f(\lambda), r)).$$

Then C^f is the coarsest smooth fuzzy closure operator on X which f is a C-map.

Proof. First, we will show that C^f is the smooth fuzzy closure operator on X

(C1) From the definition of C^f , we easily prove $C^f(\tilde{0}) = \tilde{0}$ and $C^f(\tilde{1}) = \tilde{1}$.

(C2) Since $C^f(\lambda, r) = f^{-1}(C_1(f(\lambda), r)) \ge f^{-1}(f(\lambda)) \ge \lambda$ from Lemma 1.1 (2) and Definition 2.3 (C2), we have $\lambda \le C^f(\lambda, r)$.

(C3) and (C5) are trivial.

(C4) It is proved from the following:

$$\begin{split} C^f(\lambda \vee \mu, r) &= f^{-1}(C_1(f(\lambda \vee \mu), r)) \\ &= f^{-1}(C_1(f(\lambda) \vee f(\mu), r)) \qquad \text{(Lemma 1.1 (7))} \\ &= f^{-1}(C_1(f(\lambda), r) \vee C_1(f(\mu), r)) \qquad \text{(C4))} \\ &= f^{-1}(C_1(f(\lambda), r)) \vee f^{-1}(C_1(f(\mu), r)) \text{ (Lemma 1.1 (5))} \\ &= C^f(\lambda, r) \vee C^f(\mu, r). \end{split}$$

Second, from the definition of C^f , since $C^f(\lambda, r) = f^{-1}(C_1(f(\lambda), r))$, we have

$$f(C^f(\lambda,r)) = f(f^{-1}(C_1(f(\lambda),r)) \le C_1(f(\lambda),r).$$

Hence $f:(X,C^f)\to (Y,C_1)$ is a C-map.

Finally, if $f:(X,C^*)\to (Y,C_1)$ is a C-map, then we have

$$f(C^*(\lambda, r)) \le C_1(f(\lambda), r).$$

It follows that $f^{-1}(f(C^*(\lambda,r))) \leq f^{-1}(C_1(f(\lambda),r))$. Hence

$$C^*(\lambda, r) \le C^f(\lambda, r).$$

From Theorem 2.11, we can define a subspace of a smooth fuzzy closure space.

 $C_{\mathcal{T}_1} = (\nu) \geq 0$

y.
losure (Y, \mathcal{T}_{C_2})

t a C-

ap be-

mooth

DEFINITION 2.12. Let (X,C) be a smooth fuzzy closure space and A a subset of X. The pair (A,C^i) is said to be a subspace of (X,C) if C^i is the coarsest smooth fuzzy closure operator on X for which the inclusion map $i:A\to X$ is a C-map.

THEOREM 2.13. [7] Let X be a set and (Y, \mathcal{T}) be a smooth fuzzy topological space. Let $f: X \to Y$ be a function and $\Gamma_{\mu} = \{ \nu \in I^{Y} \mid f^{-1}(\nu) = \mu \}$. Define by $\mathcal{T}^{f}: I^{X} \to I$ as follows:

$$\mathcal{T}^f(\mu) = \left\{ egin{array}{ll} \sup\{\mathcal{T}(
u) \mid
u \in \Gamma_\mu\}, & ext{if } \Gamma_\mu
eq \emptyset, \ 0, & ext{otherwise.} \end{array}
ight.$$

Then \mathcal{T}^f is the coarsest smooth fuzzy topology on X for which f is a smooth continuous map.

DEFINITION 2.14. [7] Let (X, \mathcal{T}) be a smooth fuzzy topological space and A a subset of X. The pair (A, \mathcal{T}^i) is said to be a subspace of (X, \mathcal{T}) if \mathcal{T}^i is the coarsest smooth fuzzy topology on X for which the inclusion map $i: A \to X$ is a smooth continuous map.

LEMMA 2.15. Let (X, \mathcal{T}) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r, s \in I_0$, we have

$$\bigvee_{s < r} C_{\mathcal{T}}(\lambda, s) = C_{\mathcal{T}}(\lambda, r).$$

Proof. Let $\mathcal{F}_r = \{ \mu \in I^X \mid \mathcal{F}(\mu) \geq r \}$ and $\mathcal{F}_{r-} = \bigcap_{s < r} \{ \mu \in I^X \mid \mathcal{F}(\mu) \geq s \}$. Since $\bigvee_{s < r} C_{\mathcal{T}}(\lambda, s) = \bigwedge \{ \mu \in I^X \mid \mu \geq \lambda, \ \mu \in \mathcal{F}_{r-} \}$ from the definition of $C_{\mathcal{T}}$, we only show that

$$\mathcal{F}_r = \mathcal{F}_{r-}$$
.

Since $\mathcal{F}_s \supseteq \mathcal{F}_r$ for s < r,

$$igcap_{s < r} \{\mu \in I^X \mid \mathcal{F}(\mu) \geq s\} \supseteq \{\mu \in I^X \mid \mathcal{F}(\mu) \geq r\}.$$

Conversely, if $\rho \notin \{\mu \in I^X \mid \mathcal{F}(\mu) \geq r\}$, that is, $\mathcal{F}(\rho) < r$, then there exists $s_0 \in I_0$ such that

$$\mathcal{F}(\rho) < s_0 < r$$
.

Hence $\rho \notin \bigcap_{s_0 < r} \{ \mu \in I^X \mid \mathcal{F}(\mu) \ge s_0 \}$. It follows that

$$\bigcap_{s \leq r} \{ \mu \in I^X \mid \mathcal{F}(\mu) \geq s \} \subseteq \{ \mu \in I^X \mid \mathcal{F}(\mu) \geq r \}.$$

X, C h the

 $fuzzy I^{Y}$

f is a

ogical sub-X for

e. For

 $I^X \mid from$

there

MO1

THEOREM 2.16. Let X be a set and (Y, \mathcal{T}) be a smooth fuzzy topological space. Let $f: X \to Y$ be a function. For each $\lambda \in I^X$, $r \in I_0$, we define the function $C^f: I^X \times I_0 \to I^X$ by

$$C^f(\lambda,r) = f^{-1}(C_{\mathcal{T}}(f(\lambda),r)).$$

Then we have the following statements:

- (1) $\mathcal{T}_{C^f} = \mathcal{T}^f$.
- (2) For each $\lambda \in I^X$, $r \in I_0$, $C_{\mathcal{T}^f}(\lambda, r) = f^{-1}(C_{\mathcal{T}}(f(\lambda), r))$.
- (3) (a) (X, C^f) is a topological smooth fuzzy closure space. (b) If $r = \bigvee \{ s \in I_0 \mid C^f(\lambda, s) = \lambda \}$, then $C^f(\lambda, r) = \lambda$.

Proof. (1) Suppose there exists $\lambda \in I^X$ such that

$$\mathcal{T}_{C^f}(\lambda) > \mathcal{T}^f(\lambda).$$

By the definition of \mathcal{T}_{C^f} , there exists $r_0 \in I_0$ such that $C^f(\tilde{1} - \lambda, r_0) = \tilde{1} - \lambda$ and

$$\mathcal{T}_{C^f}(\lambda) \geq r_0 > \mathcal{T}^f(\lambda).$$

From the definition of C^f , it implies $f^{-1}(C_{\mathcal{T}}(f(\tilde{1}-\lambda),r_0))=\tilde{1}-\lambda$. Hence

$$\lambda = \tilde{1} - f^{-1}(C_{\mathcal{T}}(f(\tilde{1} - \lambda), r_0)) = f^{-1}(\tilde{1} - C_{\mathcal{T}}(f(\tilde{1} - \lambda), r_0)).$$

From the definition of \mathcal{T}^f , we have

$$\mathcal{T}^f(\lambda) \geq \mathcal{T}(\tilde{1} - C_{\mathcal{T}}(f(\tilde{1} - \lambda), r_0)) \geq r_0,$$

because $C_{\mathcal{T}}$ is a topological smooth fuzzy closure space from Theorem 2.4(6) and $\mathcal{T}_{C_{\mathcal{T}}} = \mathcal{T}$ from Theorem 2.6. It is a contradiction. Therefore we have

$$\mathcal{T}_{Cf} \leq \mathcal{T}^f$$
.

Suppose there exists $\mu \in I^X$ such that

$$\mathcal{T}_{C^f}(\mu) < \mathcal{T}^f(\mu).$$

From the definition of \mathcal{T}^f , there exists $\nu \in I^Y$ such that $f^{-1}(\nu) = \mu$ and

$$\mathcal{T}_{C^f}(\mu) < \mathcal{T}(\nu) \leq \mathcal{T}^f(\mu).$$

From the definition of \mathcal{T} , there exists $r_1 \in I_0$ such that $C_{\mathcal{T}}(\tilde{1}-\nu,r_1) = \tilde{1}-\nu$ and

$$\mathcal{T}_{C^f}(\mu) < r_1 \leq \mathcal{T}(\nu).$$

Hence we have the followings:

$$\begin{split} C^f(\tilde{1}-\mu,r_1) &= f^{-1}(C_{\mathcal{T}}(f(\tilde{1}-\mu),r_1)) \\ &= f^{-1}(C_{\mathcal{T}}(f(\tilde{1}-f^{-1}(\nu)),r_1)) \ \ (\text{ since } f^{-1}(\nu) = \mu \) \\ &= f^{-1}(C_{\mathcal{T}}(f(f^{-1}(\tilde{1}-\nu)),r_1)) \ \ (\text{ by Lemma 1.1 }) \\ &\leq f^{-1}(C_{\mathcal{T}}(\tilde{1}-\nu,r_1)) \ \ \ (\text{ by Lemma 1.1 }) \\ &= f^{-1}(\tilde{1}-\nu) \\ &= \tilde{1}-f^{-1}(\nu) = \tilde{1}-\mu. \end{split}$$

It follows that $C^f(\tilde{1}-\mu, r_1) = \tilde{1}-\mu$ from Definition 2.2 (C2). Therefore $\mathcal{T}_{C^f}(\mu) \geq r_1$. It is a contradiction.

(2) From Theorem 3.4, we have

$$C_{\mathcal{T}^f}(\lambda, r) = \bigwedge \{ \mu \mid \mu \ge \lambda, \ \mathcal{T}^f(\mu) \ge r \}$$

and using Lemma 1.1(6),

$$f^{-1}(C_{\mathcal{T}}(f(\lambda), r)) = f^{-1}(\bigwedge \{\rho \mid \rho \ge f(\lambda), \ \mathcal{T}(\rho) \ge r\})$$
$$= \bigwedge \{f^{-1}(\rho) \mid \rho \ge f(\lambda), \ \mathcal{T}(\rho) \ge r\}.$$

Since $f^{-1}(\rho) \ge f^{-1}(f(\lambda)) \ge \lambda$ and $\mathcal{T}^f(f^{-1}(\rho)) \ge \mathcal{T}(\rho) \ge r$ from definition of \mathcal{T}^f , we have

$$C_{\mathcal{T}f}(\lambda, r) \leq f^{-1}(C_{\mathcal{T}}(f(\lambda), r)).$$

Suppose there exist $\lambda \in I^X$, $r \in I_0$ such that

$$C_{\mathcal{T}^f}(\lambda, r) \not\geq f^{-1}(C_{\mathcal{T}}(f(\lambda), r)).$$

Then there exists $x_0 \in X$ such that

$$C_{\mathcal{T}^f}(\lambda, r)(x_0) < f^{-1}(C_{\mathcal{T}}(f(\lambda), r))(x_0).$$

$$(r_1) =$$

From the definition of $C_{\mathcal{T}^f}(\lambda, r)$, there exists $\mu \in I^X$ with $\mu \geq \lambda$ and $\mathcal{T}^f(\tilde{1} - \mu) \geq r$ such that

$$C_{\mathcal{T}^f}(\lambda, r)(x_0) \le \mu(x_0) < f^{-1}(C_{\mathcal{T}}(f(\lambda), r)(x_0).$$

On the other hand, since $\mathcal{T}^f(\tilde{1}-\mu) \geq r$, for every s < r, there exists $\nu_s \in I^Y$ such that

$$\mathcal{T}(
u_s) \geq s \ \ ext{and} \ \ f^{-1}(
u_s) = ilde{1} - \mu.$$

Since $f^{-1}(\nu_s) = \tilde{1} - \mu \leq \tilde{1} - \lambda$, we have

$$\lambda \leq \tilde{1} - f^{-1}(\nu_s).$$

It implies

$$f(\lambda) \leq f(\tilde{1} - f^{-1}(\nu_s)) = f(f^{-1}(\tilde{1} - \nu_s)) \leq \tilde{1} - \nu_s.$$

Since $\mathcal{T}(\nu_s) \geq s$, we have $C_{\mathcal{T}}(f(\lambda), s) \leq \tilde{1} - \nu_s$. Hence we obtain

$$f^{-1}(C_{\mathcal{T}}(f(\lambda),s)) \leq f^{-1}(\tilde{1}-\nu_s) = \mu.$$

It follows

$$f^{-1}(C_{\mathcal{T}}(f(\lambda), r)) = f^{-1}(\bigvee_{s < r} C_{\mathcal{T}}(f(\lambda), s)) \text{ (by Lemma 2.15)}$$
$$= \bigvee_{s < r} f^{-1}(C_{\mathcal{T}}(f(\lambda), s)) \text{ (by Lemma 1.1 (5))}$$
$$\leq \mu.$$

It is a contradiction.

(3) Since $C_{\mathcal{T}_{C^f}}=C_{\mathcal{T}^f}=C^f$ from (1) and (2), it is easily proved from Theorem 2.5.

From Theorem 2.16, we can easily obtain the following corollary.

erefore

· from

COROLLARY 2.17. Let (X, \mathcal{T}) be a smooth fuzzy topological space and A a subset of X. Let $i: A \to X$ be a inclusion map. For all λ , $r \in I_0$, define the function $C^i: I^A \times I_0 \to I^A$ by

$$C^i(\lambda, r) = i^{-1}(C_{\mathcal{T}}(i(\lambda), r)).$$

Then:

(1) The space (A, C^i) is a subspace of a smooth fuzzy closure space (X, C_T) .

(2) The space (A, \mathcal{T}_{C^i}) is a subspace of a smooth fuzzy topological space (X, \mathcal{T}) where the smooth fuzzy topology \mathcal{T}_{C^i} induced by C^i .

Example 6. Let $A = \{a, b\}, X = \{a, b, c\}$ be sets.

$$\mu(a) = 0.2, \mu(b) = 0.3, \mu(c) = 0.5$$

and
$$\rho(a) = 0.2, \rho(b) = 0.3, \rho(c) = 0.4.$$

Define $\mathcal{T}:I^X\to I$ as follows:

$$\mathcal{T}(
u) = \left\{ egin{array}{ll} 1, & ext{if }
u = ilde{0} ext{ or } ilde{1}, \ rac{2}{3}, & ext{if }
u = \mu, \ rac{1}{2}, & ext{if }
u =
ho, \ 0, & ext{otherwise.} \end{array}
ight.$$

Using Theorem 2.4, we can obtain

$$C_{\mathcal{T}}(
u,r) = \left\{egin{array}{ll} ilde{0}, & ext{if }
u = ilde{0} ext{ or } ilde{1}, \ r \in I_0 \ ilde{1} - \mu, & ext{if }
u \leq ilde{1} - \mu, \ 0 < r \leq rac{2}{3} \ ilde{1} -
ho, & ext{if } ilde{1} - \mu <
u \leq ilde{1} -
ho, \ 0 < r \leq rac{1}{2} \ ilde{1}, & ext{otherwise}. \end{array}
ight.$$

Since $C^i(\lambda,r)=i^{-1}(C_{\mathcal{T}}(i(\lambda),r))$ for $\lambda\in I^A,\ r\in I_0$ from Theorem 2.15 , we have

$$C^i(\lambda,r) = \left\{ egin{array}{ll} ilde{0}, & ext{if } \lambda = ilde{0} ext{ or } ilde{1}, r \in I_0 \ ilde{1} - i^{-1}(\mu), & ext{if } \lambda \leq ilde{1} - i^{-1}(\mu), \ 0 < r \leq rac{2}{3} \ ilde{1}, & ext{otherwise.} \end{array}
ight.$$

From Theorem 2.5, we can obtain the function $\mathcal{T}_{C^i}:I^A\to I$ on A by

$$\mathcal{T}_{C^i}(\lambda) = \left\{ egin{array}{ll} 1, & ext{if } \lambda = ilde{0} ext{ or } ilde{1}, \ rac{2}{3}, & ext{if } \lambda = i^{-1}(\mu), \ 0 & ext{otherwise}. \end{array}
ight.$$

Let $\lambda_1=i^{-1}(\mu)=i^{-1}(\rho)$ be given. By the definition of \mathcal{T}^i from Theorem 2.13 , we have

$$\mathcal{T}^i(\lambda) = \left\{ egin{array}{ll} 1, & ext{if } \lambda = ilde{0} ext{ or } ilde{1}, \ rac{2}{3}, & ext{if } \lambda = \lambda_1, \ 0, & ext{otherwise.} \end{array}
ight.$$

Hence $\mathcal{T}_{C^i}(\lambda) = \mathcal{T}^i(\lambda)$ for all $\lambda \in I^A$.

References

- 1. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 2. K.C. Chattopadhyay, R.N. Hazra and S.K. Samanta, Gradation of openness: Fuzzy topology, Fuzzy sets and Systems 49(2) (1992), 237-242.
- 3. K.C. Chattopadhyay and S.K. Samanta, *Fuzzy topology*, Fuzzy sets and Systems **54** (1993), 207–212.
- 4. M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy sets and Systems 90 (1997), 83-88.
- M.K. El Gayyar, E.E. Kerre and A.A. Ramadan, Almost compactness and near compactness in smooth fuzzy topological spaces, Fuzzy sets and Systems 62 (1994), 193-202.
- R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, Fuzzy topology redefined, Fuzzy sets and Systems 45 (1992), 79–82.
- 7. Y.C. Kim, *Initial smooth fuzzy topological spaces*, J. of Fuzzy Logic and Intelligent Systems. to appear.
- A.S. Masshour and M.H. Ghanim, Fuzzy closure spaces, J. Math. Anal. Appl. 106 (1985), 154-170.
- A.A. Ramadan, Smooth topological spaces, Fuzzy sets and Systems 48 (1992), 371-375.

Department of Mathematics Kangnung National University Kangnung, Kangwondo 210-702, Korea