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AN ANALYSIS OF THE CHIMNEY WALL
YoUNG-KYUN YANG

ABSTRACT. Asseen from the ammonium chloride experiment {Chen
& Chen [1], Roberts & Loper [11]), the interface near chimneys has
an up-tising shape and we observe thickening of mush next to chim-
ney. We analyze the thermal boundary layer around chimney that
forms as the mush is cooled locally by the fluid rising through the
chimney. We obtain solutions of the temperature, the solid fraction,
and the pressure in the chimney wall. Also, our expression of the
pressure shows that the fluid flow can require a huge pressure in or-
der to pass through the chimney wall if its permeability is very small.
‘We present a simple analytic description of the up-rising shape near
the exit of the chimney, due to the fact that the comparatively solute
(i.e. NH4Cl in the case of the ammonium chloride experiment)-rich
fluid near the chimney tends to crystallize as it is chilled by the rising
jet of cold fluid in the chimney.

1. Introduction

Copley et al.(1970) reported experiments in which they had cooled
and crystallized from below aqueous solutions of ammonium chloride.
This particular salt was chosen because its crystal habit is similar to that
of many metallic alloys. The authors found that convection of buoyant
fluid from the interstices of the mushy layer, which formed as crystals of
ammonium chloride grew at the base of the container, took the form of
narrow, vertical plumes rising through crystal-free vents or ‘chimneys’
in the dendritic matrix. They suggested that these convectively formed
chimneys are the cause of the ‘freckles’ that are often observed in cast-
ings of steel and binary alloy systems such as aluminum-copper, lead-tin
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- and nickel-aluminum. Freckles are imperfections that interrupt the uni-
formity of the microstructure of a casting, causing areas of mechanical
weakness.

The laboratory experiment is easy to perform and makes a simple
and attractive fluid-dynamical demonstration. A warm aqueous ammo-
nium chloride solution (for example, 28wt%NH4Cl) of composition more
concentrated than the eutectic value (20wt%) is placed in a suitable con-
tainer (a glass beaker will do) and cooled.from below, for example by
placing the glass beaker on a bed of ice. After a short while the bot-
tom of the beaker is completely covered with small dendritic crystals of
ammonium chloride and the thickness of the layer gradually increases
with time. It appears that a planar solid-liquid interface is highly (mor-
phologically) unstable, and that the actual interface is a highly irregular
surface, which takes the form of small dendrite arms occupying a zone
of finite thickness, often called the mushy zone. The reason for this fact
is that a planar interface leads to ‘constitutional’ supercooling, where
the liquid ahead of the interface has a temperature below the liquidus,
despite being above the interfacial temperature, because of the depen-
dence of the liquidus (freezing) temperature on solute concentration.
The common occurrence of dendritic or mushy zones is due to the fact
that compositional diffusivities are invariably much smaller than thermal
diffusivities, so that the thickness of the region over which the concen-
tration changes in the liquid is much thinner than the corresponding
region over which the temperature changes. In the early stages, finger-
like convection starts in the fluid region just above the mush. With
increased time, plumes with associated chimneys are visible. During an
extended period these coexist with the fingers. The finger convection be-
come progressively weaker and chimneys are eventually the only sites of
upwelling. Downward flow in the mush causes solidification and upward
flow promotes dissolution. The nonlinear interaction of dissolution and
convection leads to the formation of chimneys (Loper [10]). The NH4Cl
solution above the mush remains continually undersaturated. The circu-
lation above the mush consists of upward flow in isolated buoyant plumes
which is compensated by a downward return flow of the undersaturated
solution. This liquid slowly migrates towards the layer of crystals and
flows down to it. Because the flow through the crystals takes place
in a decreasing temperature field, the aqueous solution becomes satu-
rated and NH,Cl exsolves onto existing NH4Cl crystals, which exhibit
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secondary and tertiary branching. The NH4Cl-depleted solution from a
wide area within the mush flows to a central point and the less-dense
return flow takes place through a few isolated chimneys. The upward
flow in the plume induces motion of the bulk fluid toward the plume it-
self. The comparatively solute-rich fluid, meeting the cold plume, tends
to crystallize around the chimney. As a result, there is a buildup of
crystals around each chimney exit, like a mini-volcano. With time some
chimneys become inactive and the overall intensity of the convective mo-
tion decreases as the thickness of the mushy layer increases. (Huppert
[7]). The purpose of this study is to present that the fluid flow can re-
quire a huge pressure if the permeability in the chimney wall is small,
and is to analyze the up-rising top near the exit of the chimney by using
the temperature expression in the chimney.

2. An axisymmetric model for a mush

We consider an axisymmetric model of a mush-chimney system con-
taining only one chimney. We assume the system to be steady in a frame
fixed to the mush-solid interface, which moves upward relative to the
solid with a prescribed constant speed V. The liquid region has fixed
temperature T, and composition £, of light constitutent as z — oo,
where z measures vertical displacement in the moving frame. The tem-
perature decreases downward, and we consider the case in which a mushy
zone separates a completely solid region from a completely liquid region.
In this model problem we assume that the eutectic front, at which the
temperature is equal to the eutectic temperature 7, and below which
the system is completely solid, can be maintained at the fixed position
z = 0. The mush-liquid interface z = h is a free boundary to be de-
termined as part of the solution. We nondimensionalize the governing
equations by choosing a thermal length scale x/V and thermal time scale
/V?, where x is the thermal diffusivity x = k/p,c,, ¢, is the specific
heat, k is the thermal conductivity, and p, is a reference density. (Yang
[16]). Specifically, put x = (x/V)x*, w = VW*, p = £0/7p%, ¥ = 77",
T-T, = (T, —T.)T* £ — £ = (£ — €)™, Where 7, is a reference value
of the permeability of the mush, 7 is the dynamic viscosity of the liquid,
T, is the liquidus temperature of €., and £, is the eutectic composition
of light constitutent. Dropping the asterisks, conservation of total mass,
conservation of a constitutent in the liquid phase and energy, the liquid
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. momentum equation and the liquid relation, respectively, become

(1) Coweo
2) w.VE = % _ ?%Q _ Cg_j
(3) | W'VT:WT’L%_S%*
“) ,Y—wﬁr_—w + Vp+ RTz =0,

(5) T =—¢.

Let (7,8, z) be cylindrical coordinates with z upwards. We assume within
the main body of the mush that the vertical velocity w, the temperature
T, the mass fraction of light constitutent ¢ and the mass fraction of solid
#, depend on z only. Then the governing equations for the mush are

A(rum(r, 2)) _ O(rwm(z))

(6) or 0z =i

(7) —wi(2) T, (2) = Tr(2) = (dm(2)T(2)) + Cpn(2)

(8) — W (2) T (2) = Tia(2) + Tn(2) — S8 (2)
Un(r,z)  Opm(r,z) _

& F@a) T or

(10) —um(z) | OPm(n2) | b )=,

Flgm(z) | 02
(11) Tm(z) = —€m(2),

where the prime / denotes the derivative with respect to z, and F(¢n,) =
(1 — ¢m)® for Worster’s choice [15]. The parameters are a Stefan num-
ber S = L/c,(T» — T.), which represents the ratio of the latent heat
needed to melt the solid and the heat needed to warm the solid from its
eutectic temperature to the reference temperature 75, the ratio of com-
position C = €u/(£ — €w), which denotes the compositional contrast
between solid and liquid phases compared to the typical variations of
concentration within the liquid (Worster [15]), and a Rayleigh number
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R, = vop. (8 — al')g(T, — T.)/VnI', which will act to drive buoyancy in-
duced convection in the mush if it is large enough, where L is the latent
heat, I' is the liquidus slope, g is the gravity, o and 3, are constant co-
efficients of thermal and compositional expansion. Note that very large
Lewis number Le = x/D, is assumed in equation (3), where D, is the
compositional diffusivity in the liquid. ;From the above equations, we
obtain the set of equations involving variables T}, (z), ¢m(z) and w,,(2):

(12) T, =(C+S—T.)¢m + H,
(13) B = (L + i~ ),
(14) W, = WF(¢m),

(15) Pm(r, 2) = Pa(z) + po(r)

with the boundary conditions
(16) Tm(ho) =0, Gm(ho) =0, Tm(0) = —1, Wy, (0) = 0,

where hy is a constant mush-liquid interface away from the chimney
wall, as suggested by the experiments of ammonium chloride solution
(Roberts & Loper [11], Chen & Chen [1]), H = T'(h) measures the
amount of superheat and W = w'(hy).

3. An analysis of chimney wall

In this section, we assume that C' — T,, >> S, and the thickness € of
chimney wall is small as seen from the ammonium chloride experiments.
We find the temperature and the solid fraction in the chimney wall.
Furthermore, we obtain an analytical solution of pressure in the chimney
wall by assuming that the solid fraction away from the chimney wall is
much less than 1 and the radius of the chimney is constant.

We let

(17) ey Sqia02), Wew = Wi (2),
(18) Tew = Tm{z) E TI(T: Z)) fcw = gm(z) + 61(7", z),

(19) Pew = ¢m(z) + ¢1(T1 Z): Pew = pa{z) + pl(r: 2’),
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where subscripts ‘cw’ represent the chimney wall. Note that p;(r, z)
contains the horizontal pressure py(r) of the mush. Integrating the con-
tinuity equation yields
—R2 y
where R is the radius of the cylindrical catchment of one chimney. Note
that we neglected €? compared to R? in (20), and ue, = O(1/€).

If we substitute (17)~(19) into (2) and (3), we have by using the
liquidus relation

(20) Uy (T 2] =

or, 0

(21) Uew 5= = E[(C — To)éa),

oy, 10, 0T O
(22) Yo gr T T are or ) 9z’
where we have used (7) and (8) in (21) and (22), respectively, and we
neglected we,, 0T} /8z, 8T/ 8z, 8¢, T1 /B2 compared to u,,dT1/0r in (21)
and 0Ty /8z%, 8T1/0z compared to 8(roTy/0r)/rOr in (22).
In order to get a simple solution, we assume that C'—Tp >> 5. Then
we may neglect the second term in (22) on the right (contribution due
to the latent heat) compared to the advection term on the right. Then

we have
E @28 = 10 %,
o ™ dr  ror Or”
where ., has been replaced by (20). If we integrate (23), we get

(23)

(24) Ti(r, 2) = Ta(e, 2)(2)2%),
where T} (a, z) denotes the temperature on the wall of chimney, and
R*w! (2)  WR*1—¢n)°
4 4 ’
where Worster’s permeability relation has been used in (25).
We want to obtain a simple analytical solution for pressure in the

chimney wall, so that we assume that ¢m(z) << 1 and a is constant.
Then we get w’ (z) = W, and Q = R*W /4 which is constant.

(25) Q=
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In order to obtain ¢;(r, z), we substitute (24) into (21), and integrate
(21) with respect to z after replacing u., by (20). So, we get

o = 1 *4QTh(a, 2) 8.\ 20042 2
) D) = g | (R

Note that ¢, satisfies the boundary condition ¢;(r, h) = 0 at the top of
the mush. If Q is constant, we can rewrite ¢;(r, z) as

(27) $1(r, 2) = 6(2)(2)22*,

T

where
_ 49 :
f(z) = 2(C - 0)./}; Fiazpdz.

We obtain an expression of p,(r, z) by integrating the horizontal com-
ponent of momentum equation (4). Let’s substitute (17) and (19) into
(4). Then we have

s, i .
(28) /2 S . =

or (1= ¢m(2) — ¢a(r, 2))
Now, if neglect ¢,,(2) in (28), and replace uq, and ¢;1(r, z) by (20) and
(27), respectively, we get

opp @ go+d e
(29) % o+i@Een—gp Q)

Integrating (29) yields

Q 40 36* 46% @4
— Tegy st o 85 o By e
(30) PL=or Tlny R 4y4]’
where
(31) y =z — 9.

Note that since 29 = 8/¢; from (27), y = 6(1/¢, — 1) from (31). So,
y — 0 as ¢; — 1. Therefore, py - —o0 as ¢; — 1 which shows that
the fluid flow needs large pressure in order to get through the wall if the
permeability of the wall is very small.
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4. Shape of mush-liquid interface

‘We now analyze the up-rising shape of a chimney. Let’s assume that
on the top of the mush,

(32) z = h(r) = ho + ha(r).
We take Taylor series expansions of T, (z) about z = hy. Then we have
(33) Tcm (?", h) = Tm(hg) + h]_ (T)T:n(ho) + Tj_(?", hg},

If we apply the boundary condition T' = ‘0 on the top of the mush to
(32), i.e. Tow(r, h) = 0, Trn(ho) = 0, then we obtain

(34) = hl(T')T;n(ho) + Tl(r, hﬂ),
If we solve (32) for hq(r), then we obtain
Ti(r, ho)

PO L L

If we substitute (24) into (35), we obtain
Ti(a, ho) @20
h = T

(36) \(r) = - 118k G

where we used Tp(ho) = H from (12).
For the ammonium chloride experiment, we estimate @ ~ 1.0. When
Q = 1.0, the corresponding normalized form of h;(r) is
hl(r) - g)Z
hi(a) r’
Its graph for 0 < r < a agrees qualitatively with the up-rising shape
near the exit of the chimney and the nearly horizontal figure of the top

of the mush. Note that experimental measurement of hy(r) allows us to
determine both Q and Ti(a, hy)/H from (36).
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