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ON BIPARTITE TOURNAMENT MATRICES
YOUNGMEE KOH AND SANGWOOK REE

ABSTRACT. We find bounds of eigenvalues of bipartite tournament
matrices. We see when bipartite matrices exist and how players
and teams of the matrices are evenly ranked. Also, we show that a
bipartite tournament matrix can be both regular and normal when
and only when it has the same team size.

1. Introduction

Let py,...,pq be positive integers. A digraph obtained by orienting
each edge of the complete d-partite graph K, . is called a d-partite
tournament and the associated adjacency matrix is called a d-partite
tournament matrix. This can be interpreted as the result of a round-
robin competition among d teams in which each player competes every
other player belonging to different teams from his own [6].

A 2-partite tournament is called a bipartite tournament. We assume
that the first team and the second team consist of the players in the
set {1,...,p} and {p +1,...,p + ¢}, respectively, where p + ¢ = n.
So a bipartite tournament matrix M of degree n can be written M =
[%’ Ci} for some p x g (0, 1)-matrix A, where O, is the zero matrix
of degree p and B = J, , — A® where J;, is the ¢ X p all one’s matrix,
and then M satisfies the equation

M+ M = J, — Join(Jp, In, Jy) = Jp, — [ Ip Op’q:l - [ Op Jp‘q} .
Jap  Oq
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The bounds of eigenvalues A of tournament matrices were found
by Brauer and Gentry [1,2]. There have been many developments on
spectral properties of tournament matrices 3,5,6,7,8,10] since then.
Further, to study the ranking scheme of the players has been an in-
teresting problem [5,6,9,10]. We here find the bounds of eigenvalues
of bipartite tournament matrices. We study the existence of bipartite
matrices and the cases of players and teams possibly-evenly ranked.
Also, we show that a bipartite tournament matrix can be both regular
and normal when and only when it has the same team size.

2. Bipartite tournament matrices

Let M be a bipartite tournament matrix and let A be an eigenvalue
of M and v be the corresponding eigenvector. Applying the Schwarz
inequality and assuming p < g, we obtain the following:

(2ReX) v*v = v*(M + M*)v

Jo Opal |
= "1 1% — [T1, ..., Tn] [op }W] :
q9.P q
Un
P n n U1
*4 |2 — — — — .
—IU ll |:§ 'Uu-":E Vi, E bE) ) E 'Ug:|
== §==1 Jj=p+1 j=p+1 Un
p P n n
=1 - E By~ Y W E v; vj
=1 i=1 j=p+1 j=p+1

where 1 is the column vector of n coordinates of 1’s so that 11* = Jy,
Op,q is the p X g zero matrix and Jn = Jnn- So we have (2 ReX +
g)v*v > |v*1[%, that is, ReX > —q/2. Therefore we have the following
theorem.

THEOREM 1. Let M be a bipartite tournament matrix with team
size p and q. Every eigenvalue A of M satisfies ReA 2 —q/2. Fur-
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thermore, Re A = —gq/2 if and only if the corresponding eigenvector
v=£k(1,...,1,-1,...,—1) consisting p 1’s and p (—1)’s for k € C.
Proof. If the equality holds, then v*1=0,p=4¢q,v;1 =--- = v, and
Vpy1 = -+ = v, are all satisfied. So vVt = (vy,...,v,) = k1%, and
vt = T Etlz for some k, k € C. In fact, k = —k since
©*1 = (0. The converse is clear. g

A nonnegative square matrix A of order n is said to be reducible
A O

* Ag
where A;, As are non-vacuous square matrices, and called irreducible
otherwise. It is known that a matrix is irreducible if and only if the as-
sociated digraph is strongly connected. It is also known by the Perron-
Frobenius theorem [4] that a nonnegative irreducible matrix has its
Perron value and corresponding Perron vector whose coordinates are
all positive. Note that the Perron value is the spectral radius, that is
the maximum modulus of eigenvalues. It suffices to consider irreducible
bipartite tournament matrices.

if there is a permutation matrix P such that P*AP =

Let M be an irreducible bipartite tournament matrix. Then it has
the Perron value p with the corresponding Perron vector v whose coor-
dinates are positive real numbers. Let wy = Y 7_, v;, wo = D iepl Vi
and w = (zz) We define the variance of a vector v = (vy,...,v,)?
by

varv = Z (v; — v;)2.

1<i<j<n

As in the above proof, we denote vt = (vy,...,v,) and v@?t =
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“(Up41,---,Un). Since
0, J Ul
$ M= [Tiyess L
vﬂ
n P P 01
= [ ﬁj‘: ) Z ﬁjazﬁi:" azﬁt] :
j=p+1 j=p+1 . i=1 i=1 Up
T p P n
EDIE RS SR o
i=p+1 i=1 1=1 j=p+1
= Wawy + WiWs3
= w'w — |wy — wy]
and
wrw= (o4 )+ (g o+ 0,)?
=p@it-tud)— D (vi—v;)?
1<i<j<p
tqig +otvd) - D (wi—y)?
p+1<i<i<n
= poM* M 4 gu@*@ _vary® — varv®),
we obtain

2pv*v = v* (M + M)
=w*w — varw
= pvM* D 4 go@*p® —vary® — var v — varw,
or
var vV + varv® + varw = 2(p/2 — p)vM*v® 4 2(g/2 - p)v@*p(2),

The left hand side is 0 if and only if p = p/2 = ¢/2 (p < p/2 < q/2).
The closer p is to p/2, the more evenly ranked the teams and the players
in a team would be.
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THEOREM 2. For any eigenvalue A of M, it holds that —q/2 <
ReA < p/2.

We say that a bipartite tournament matrix M with p = g, i.e., of
same team size, is regular if the row sums of M are constant. This
implies that the column sums of M are also constant and equal to a
row sum. In the associated digraph each vertex has constant indegree
and outdegree, which is interpreted that every player in a regular tour-
nament wins and loses the same number of times. In this paper, we
simply adopt the name a regular bipartite tournament matriz for the
matrix M whose row sums are constant, or which satisfies M1 = ¢1 for
some positive integer ¢.

A bipartite tournament matrix M = Op " A is regular if
Jegp—A* O

and only if the row sums of A are constant. If M1 = t1, then from

M+ Mt = [ Op Jp’q] we find that the number of 1’s in M is pq and

7P q
so t = pg/n.

A row sum of A =t implies that a column sum of B= a row sum of
Bt =g —t, where B = Jp,q — At. Similarly a row sum of B = ¢ implies
that a column sum of A = p —¢. So we have 1I!M = (g —¢,...,q —
t,p—t,...,p—t). Notice that 1 is not a left eigenvector of M if p # q.

ExAMPLES. We have seen that if a bipartite tournament matrix M
satisfiles M1 = t1 then t = pg/n. We show here that if n is divisible
by a square then there are p’s and g¢’s such that p+ ¢ = n and n is
a divisor of pg so that we have regular bipartite tournament matrices.
We describes the cases and present some examples.

EXAMPLE 1. Suppose that k? be a divisor of n. Let p = n/k,
g=(k-1)n/k. Thenp+qg=mnandpg=(k—1)n?/k? Sot=pg/n=
(k — 1)n/k?. Therefore, there is a regular bipartite tournament matrix
with all the row sums ¢. For example, take n = 9, p = 3, ¢ = 6 so
that pg = 18 and ¢ = pg/n = 2. Then, there is a regular bipartite
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" tournament matrix

001 17

- 100010 i(::é
M=[3 },whereA=010100,B=

B Oe 001001 1 9 1

01 1

(1 1 ol

We can easily see that A + BY = Js, M1 = 2-1, and 1'M =
(4,4,4,1,1,1,1,1,1)". Every player of the two teams of 3 and 6 players
each wins twice.

When there are 18 players, divide them into two teams, each of
whose size is 6 and 12. Then we can have a regular tournament where
every player defeat others 4 times exactly.

EXAMPLE 2. When n is a square, we can take p = y/n and q =
n—+m. Then p+q=mn, pg =nyn—nandt=pg/n= Jyn— 1
For example, when n = 16 we may take p = 4 and ¢ = 12 to obtain a
regular bipartite tournament matrix with constant row sum 3.

THEOREM 3. There are positive integers p and g such that p+g=n
and n divides pq if and only if n is divisible by a square.

Proof. Tt is enough to show the necessity of the condition. If n
is square free, it is factored as n = p1p2...Pk for distinct primes p;
(i=1,...,k). Since n|pg and p+ g = n, we have n}(np — p?). So nlp?.
This implies that each p;|p so that n|p, a contradiction. O

3. Normal bipartite tournament matrices

A normal matrix N is a matrix satisfying NNt = N*N [8]. Now
0, A

we consider a normal bipartite tournament matrix M = B Ol
L q
Then it satisfies MM?* = M*M, where

0, A][0, Bt]_[A4} 0p,]
B 0,| |At 0,]  |Og» BB

MMtz[
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Oy Bt o, A BB O

t - P p o P\q
w2 o) 1% ol-1on %l

So MMt = M*M if and only if AA* = BB, equivalently A*4A = BB:.
Using A+ B* = J, 4 and B+ A* = J, ,,, we have AJ, , — AB = AA =
B'B = J,,B — AB, that is,

51 51 een S1 1 To ce T’p
82 59 e Sa2 TNy To - T‘p
= AJQ!p = JP:QB = . : .. s k]

5p Sp vt Sp Ty Tz ot Tp
where (s1,...,8p)" is the row sum vector of 4 and (ry,...,r,)t is the
column sum vector of B, which is again if and only if s; = -+ =5, =
ri = viesy = 8. Sorwe have (81:5580)5 = (Piys <5 7p)° = 81, Sinece

o, A 0 B° D of
M + Mt = P P o p P9
* [B OQJ * [At Oq] {Jq.p OqJ’

ith row sum of A + ith row sum of Bt = 25 = g¢.
Similarly, from the fact that BB* = A*A, we have BJ,, — BA =

JgpA — BA and so

Ih i - i My Mg o My

5-2 la - Iz B, = J, A ml T??z : ”?q ,

by Ay w0 g my mg - n*itq
where (l,...,1y)t is the row sum vector of B, and (my,...,m,)? is the
column sum vector of A, which is if and only ifl; = --- =1, =m; =

.«» =mg = 1. So ith row sum of B + ith row sum of 4* = 2] = p.
Hence a bipartite tournament matrix M is normal if and only if A
has constant row sum s, constant column sum [, and B has constant
row sum [, constant column sum s, where s = ¢/2 and [ = p/2. In
particular, if p # g then a normal bipartite tournament matrix M
can’t be regular. Also a regular bipartite tournament matrix M can’t

be normal if p # q.
Summarizing the result as a theorem, we therefore have:
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THEOREM 4. Let M be a bipartite tournament matrix of the form
Op A

Jq,p = A Oq
M is regular if and only if M is normal is true if and only if p = q.

, for some p x q (0,1)-matrix A. Then the fact that

References

1. A. Brauer and L. G. Gentry, On the characteristic roots of tournament matrices,
Bull. Amer. Math. Soc. 74 (1968), 1133-1135, MR:38#1107.

2. A. Brauer and I. C. Gentry, Some remarks on tournament matrices, Linear
Algebra and Appl. 5 (1972), 311-318, MR:46 3341.

3. D. de Caen, D. A. Gregory, S. J. Kirkland, J. S. Maybee and N. J. Pullman,, Al-
gebraic multiplicity of the eigenvalues of a tournament matriz, Linear Algebra
and Appl. 169 (1992), 179-193, MR:93b:05115.

4. R. Horn and C. R. Johnson, Matriz Analysis (1985), Cambridge University
Press, Cambridge, MR.:87e:15001.

5. 8. J. Kirkland, Spectral radii of tournament matrices whose graphs are re-
lated by an arc reversal, Linear Algebra and Appl. 217 (1995), 179-202,
MR.:96a:15006.

6. S. J. Kirkland and B. L. Shader, On multipartite tournament malrices
with constant team size, Linear and Multilinear Algebra 35 (1993), 49-63,
MR:95m:05175.

7. 8. J. Kirkland and B. L. Shader, Tournament matrices with ecrtremal spectral
properties, Linear Algebra and Appl. 196 (1994), 1-17, MR:95a:15014.

8. J. S. Maybee and N. J. Pullman, Tournament matrices and their generaliza-
tions I, Linear and Multilinear Algebra 28 (1990), 57-70, MR:91g:05094.

9. J. W. Moon and N. J. Pullman, On generalized tournament matrices, SIAM
Review 12 (1970), 384-399, MR:4247525.

10. B. L. Shader, On tournament matrices, Linear Algebra and Appl. 162-164
(1992), 335-368, MR.:92k:05056.

Department of Mathematics

The University of Suwon

Suwon P.O.Box 77

Kyoungkido, 440-600, Korea

E-mail: ymkoh@mail.suwon.ac.kr, swree@mail.suwon.ac.kr



