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THE THEORY AND APPLICATIONS OF
SECOND-ORDER DIFFERENTIAL SUBORDINATIONS

JUN RAK LEE

ABSTRACT. Let p be analytic in the unit disc U and let g be univa-
lent in U. In addition, let 2 be asetin Candlet ¢ : C3 x U — C.
The author determines conditions on % so that

{¥(p(2), 2P (2), 2p"(2); 2)|z € U} C @ = p(U) C q(V).

Applications of this result to differential inequalities, differential
subordinations and integral inequalities are presented.

1. Introduction

In the field of differential equations of real-valued functions there
are many examples of differential inequalities that have important ap-
plications in the general theory. As a very simple example, consider
a function f which is twice continuously differentiable on I = (—1,1)
and suppose that the differential operator D[f](t) = [t2f(¢) + t3]" =
t2f"(t) + 4tf'(t) + 2f(t) + 6t satisfies

(1) 0 < DIf|(t) <2, fortel.

It is easy to show that —1 < f(t) < 2, for ¢t € I. This result can be
rewritten as

(2) D[f]I(I) € (0,2) = f(I) C (-1,2).

Two articles in 1978 [3] and 1981 [4] extended these ideas involving dif-
ferential inequalities for real-valued functions to complex-valued func-
tions. In this article we will describe some of these new results and their
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~ applications. A differential inequality of the form (1) does not have a
direct analog for complex-valued functions, i.e. we cannot merely re-
place the real-valued function f(t) in (1) with a complex-valued func-
tion f(z). However, the first inclusion relation of (2) does have a
natural complex analog such as

: DIfI(U) € &,
with D[f])(z) = 2*f"(z) +42f'(2) +2f(2) + 62, where U QCCandU
is the unit disk. If f : U — C satisfies this inclusions, then analogously
to (2) we can ask if there is a “smallest” set A C C such that

(3) D[fJU) c 2= f{U) C A.

There are other problems that are associated with (3). Given {2 and
A, does there exist a class of functions satisfying (3). And secondly,
given f and A, does there exist a “largest” set () satisfying (3). These
problems will be described in this article. Let Q and A be any sets
in C, let p be analytic in the unit disk U, with p(0) = a, and let
b(r, s,t;z) : C3 x U — C. The heart of this article deals with the
following implication

(4) {$(p(2), 20 (2), 20" (2); 2)|z € U} C 2 = p(U) C A.

Note that (3) is of this form with ¥(r, s,%; z)=t+48+2r + 6z.

If either  or A in (4) is a simply connected domain then (4) can
be rewritten in terms of subordination. Recall that if f and F' are
analytic in U and F is univalent in U then f is subordinate to F,
written f(z) < F(z) or f < F, if f(0) = F(0) and f(U) C F(O).

If A is a simply connected domain containing the point a and A(F#
C), then there is a conformal mapping g of U onto A such that q(0) = a.
In this case (4) can be rewritten as

{$(p(2), 20 (2), 2" (2); 2)|z € U} C @ = p(2) < q(2).
If () is also a simply connected domain and Q(# C), then there is a
conformal mapping h of U onto § such that h(0) = ¥(a,0,0;0). If
in addition ¥(p(2), 21’ (2), 2%p" (2); z) is analytic in U then (4) can be
rewritten as
(5) ¥(p(2), 20’ (2), 2°p" (2); 2) < h(z) = p(2) < q(2)-
This last result leads us to some of the important definitions that will
be used throughout this article.
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DEFINITION 1.1. Let ¢ : C2® x U — C and let A be univalent in
U. If p is analytic in U and satisfies the (second-order) differential
subordination

(6) ¥(p(2), 20'(2), 2°p" (2); 2) < h(2),

then p is called a solution of the differential subordination. The univa-
lent function g is called a dominant of the solutions of the differential
subordination, or more simply a dominant of the differential subordi-
nation if p < ¢ for all p satisfying (6). A dominant § which satisfies
4 =< g for all dominants g of (6) is said to be the best dominant of (6).
(Note that the best dominant is unique up to a rotation of U).

Let 2 be a set in C and suppose (6) is replaced by
(6") ¥(p(2),20'(2), 2°p" (2); 2) € Q, for z € U.

Although this is a “differential inclusion” and ¥(p(z), zp'(2), 22p" (2); 2)
may not be analytic in U, we shall also refer to (6') as a (second-
order) differential subordination, and use the same definitions of solu-
tion, dominant and best dominant as given in Definition 1.1.

2. Preliminary lemmas

In this section we list the main lemmas that will be needed to prove
the theorems of the next section. Proofs will be omitted, but references
will be indicated. For zy = rpe®® with 0 < rg < 1, we let Uy, = {2 :
|z| < 7o} '

LEMMA 2.1 [3,p.290]. Let f(2) = anz™ + ant12™! + -+ be con-
tinuous on U,, and analytic on U,, U{zo} with f(z) #0 andn > 1. If
|f(z0)| = maz{|f(2)| : z € U,, } then there exists an m > n such that

(1) z0f'(20)/ f(20) = m, and

(2) Relz0f" (20)/ f'(20)] +1 2 m.

DEFINITION 2.2. We denote by @ the set of functions g that are
analytic and injective on U\ F(gq), where

Blg) = {¢ € 8U : lim g(2) = oo},

and are such that ¢'(¢) # 0 for { € BU\E(q).



88 JUN RAK LEE

LEMMA 2.3. [4,p.158] Let ¢ € Q with ¢(0) = a, and let p(z) =
a 4 ppz™ + - be analytic in U with p(z) # a and n > 1. If there
exist points zgp € U and {; € QU\E(q) such that p(zy) = g(¢o) and
p(Uy,) C q(U), where ro = |zo|, then there exists an m > n such that

(1) zop' (20) = mCoq' (o), and
(2) Re[zoP”(ZO)/p'(zo) +1) > mRe[ng”(CO)/q’(CU) +1].

We next discuss two important cases of Lemma 2.3 corresponding
to g(U) being a disk, and g(U) being a half-plane.

Case 1. The Disk = {w: |w| < M}. If we let
a(z) = M(Mz + a) /(M +az),

with M > 0, and |a| < M then q(U) = & = Uy, q(0) = a, E(q)
is empty and g € Q. If there are points 2y € U, (o € OU such that
p(20) = q(Co) and |p(z)| < M for |z| < |z0], then |p(20) = |g(Co)| = M

¢o = g *(p(20)) = Mlp(20) — al/[M* — ap(20)],
(7) Gog' (o) = [M? — ap(z0)][p(20) — al/[M* — |a’]],
(8) Re[¢og” (C0)/q' (o) + 1] = Ip(20) — af?/[M* —|a]?].

Using these results in Lemma 2.3 we obtain:

LEMMA 2.3'. Let p(z) = a + pp2™ + --+ be analytic in U with

P(z) # a and n > 1. If there exists zp € U such that |p(z)| =
Maz{|p(2)| : |z| = |z0|} then

(1)z0p'(20)/p(20) > n|p( zU ) —al?/[lp(=0)|* — |al’] and

(2)Re[20p" (20) /P’ (20) + 1] = nlp(20) — af* /[|p(20)|* — |al?].

For a = 0 this lemma reduces to Lemma 2.1.
Case 2. The Half-Plane = {w: Rew > a, a real}. If we let

q(z) = [a - (2a — a)z]/[1 - 2]
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with Rea > a then ¢(U) = A, ¢(0) = a, E(q) = {1} and g € Q. If
there are points zg € U and (o € OU\{1} such that p(z) = g(¢y) and
Rep(z) > a for |z| < |zg|, then Rep(z0) = «,

¢o = ¢~ (p(20)) = [p(20) — a]/[p(z0) — (2 — @),

(9) ¢oq'(¢o) = —la — p(20)|*/2 Re[a — p(z0)]
and
(10) Re[Coq" (C0)/q' (o) + 1] =

Using these results in Lemma 2.3 we obtain :

LEMMA 2.3. Letp(z) = a+pnz™+- - be analyticin U with p(z) # a
and n > 1. If there exists zg € U such that Rep(z9) = Min{Rep(z) :
|z] > |20|} then

(1) 20p'(20) < —nla —p(z0)[”/2Rea — p(z0)] and

(2) Re zop” (20) /9" (z0) + 1 > 0.

REMARK. 1. Since zp'(zg) is real and negatlve the inequality (2)
can be replaced by

(2') Re[20°p" (20)] + 209’ (20) < 0.

2. If « =0 and a = 1 the inequality (1) becomes

(1) 207’ (20) < —n(1 + |p(0)[*)/2 < —n/2

LEMMA 2.4. Let g € Q, with ¢(0) = a, and let p(z) = a+ppz™+---
be analytic in U with p(z) # a and n > 1. If p £ q, then there exist
points zy = rge??® € U and {, € OU\E(q) and an m > n for which

(1) p(Ur,) C q(U)

(2) p(20) = q(Co),

(3) zo0p'(20) = m{oq'(¢o), and

(4) Re[z0p" (20)/p'(20) + 1] = mRe[Coq" (¢o)/q' (o) + 1].



90 JUN RAK LEE

Proof. Since p(0) = ¢(0), and p and g are analytic on U, we can
define
ro = sup{r : p(Ur) C q(U)}-

Since p 4 g we have p(U) ¢ g(U). Thus for 0 < 7y < 1 we get p(Ur,) C
q(U) and p(Uy,) ¢ q(U). Since p(Uy,) C g(U) there exists 2o € Ux,
such that p(zg) € 8q(U). This implies there exists (o € OU\E(q)
such that p(zo) = g({o). The conclusions of this lemma now follow by
applying Lemma 2.3. : O

3. Admissible functions and fundamental theorems

In this section we define the class of functions 1 for which we intend
to prove (4).

DEFINITION 3.1. Let Q be a set in C, ¢ € @, and n be a positive
integer. We define the class of admissible functions ¥,[$,q] to be
those functions ¥ : C® x U — C that satisfy the following admissibility
condition :

P(r,5,1;) & Q when v =g((), s =m(q((),

(11) Re[t/s + 1] > mRe[¢q"(¢)/q'({) + 1] and z € T,

for ¢ € OU\E(q) and m > n.
We write ¥1[Q, q] as ¥[Q2,q].

In the special case when €)(# C) is a simply connected domain and
h is a conformal mapping of U onto Q we denote the class by ¥,[h, g].

THEOREM 3.2. Let 9 € ¥,[Q,q] with ¢(0) = a. If p(z) = a+ppz"+
. is analytic in U and satisfies

(12) W(p(2), 20 (2),2°p"(2);2) €9, 2 €U

then p < q.
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Proof. Assume that p £ g. By Lemma 2.4 there exist points zp € U
and {p € OU\E(q) and an m > n that satisfy (1)-(4) of Lemma 2.4.
Using these conditions with r = p(z), s = z0p'(20), t = 28p"(20) and

z = zg in Definition 3.1 we obtain

¥(p(20), 21’ (20), 260" (20); 20) & Q.

Since this contradicts (12) we must have p < q. O

REMARK. 1. The conclusion of Theorem 3.2 also holds if (12) is
replaced by

(12) ¥(p(2), 2p'(2), 2" (2); w(2)) € Q, z €T,

for any function w(z) mapping U into U.

2. On checking the definitions of @ and ¥,[,q] we see that the
hypothesis of Theorem 3.2 requires that g behave very nicely on its
boundary. If this is not the case or if the behavior of g on its boundary
is not known, it may still be possible to prove that p < ¢ by the
following limiting procedure.

COROLLARY 3.3. Let © C C and let ¢ be univalent in U. Let
Y € ¥,[Q,q,], for some p € (0,1), where qp( ) = qlpz). If p(z) =
a+ ppz™ + -+ - is analytic in U and ¥(p(2), zp'(2), 2%p" (2); 2) € Q for
z €U, thenp < q.

Proof. The function g, is univalent on U, and hence E(g,) is empty
and g, € Q. The class ¥,[(2, g,] is an admissible class and from Theo-
rem 3.2 we obtain p < g,. Since g, < g we deduce p < g. |

We next list the special case when 2(# C) is a simply connected
domain.

THEOREM 3.4. Let ¢ € ¥,[h,q], with ¢(0) = a and ¥(a,0,0;0) =
h(0). Ifp(2) = a+pn2z"+--- and ¥(p(2), 2p'(2), 2%p" (2); z) are analytic
in U, and

(13) ¥(p(2), 2p'(2), 2°p" (2); 2) < h(z)

then p < g.
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Proof. From (13), ¥(p(2), 2p'(2),2°p" (2);2) € h(U) = Q. There-
fore, the proof follows immediately from Theorem 3.2. O

An analogue of Corollary 3.3 can be given for ,[h,q] = ¥[A(U),q].

COROLLARY 3.5. Let h and q be univalent in U with ¢(0) = a. Let
W C3 x U— C, with ¢(a,0,0;0) = h(0), satisfy one of the following
conditions:

(1) ¢ € ¥,[h,q,), for some p € (0,1) or

(2) there exists pg € (0,1) such that ¢ € Uy [h,, gp| for all p € (po, 1),

where q,(z) = q(pz) and h,(z) = h(pz). If p(z) = a +ppz™ + -+

and ¥(p(z), 2z (2), 2%p" (z); z) are analytic in U and

¥(p(2), 20 (2), 2*p" (2); z) < h(2),

then p < q.

Proof. Case (1). By applying Theorem 3.4 we obtain p < g,. Since
g, < q we deduce p < q.
Case (2). If we let py(z) = p(pz) we have

¥(p,(2), 28,(2), 2, (2); p2)
= P(p(p2), p2p’ (p2), p°2°D" (p2); p2) € hyp(U)
for z € U. By using Theorem 3.2 and Remark 1 following it, with

w(z) = pz, we obtain p,(z) < g,(2) for p € (po, 1). By letting p — 1~
we obtain p < g. O

If n = 1 and g is a dominant and solution of (13) then g will be
the best dominant. Using this result together with Theorem 3.4 and
Corollary 3.5 yields the following theorem.

THEOREM 3.6. Let h be univalent in U, and let 1 : C3xU— C.
Suppose that the differential equation

P(q(2), 2¢'(2), 2°q" (2); 2) = h(z)

has a solution g and one of the following conditions is satisfied
(1) g € Q and ¢ € ¥[h, g,
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(2) q is univalent in U and ¢ € ¥[h,q,] for some p € (0,1), or
(3) q is univalent in U and there exists pg € (0,1) such that

% € Ulhy, g, for all p € (po,1).
If p(z) = q(0) + prz + --- and ¥(p, zp’, 2%p"; z) are analytic in U and
if p is a solution of (13), then p < ¢ and ¢ is the best dominant.

Theorem 3.2 can be used to show that the solutions of certain second
order differential equations are contained in a certain set.

THEOREM 3.7. Let ¢ € ¥,[Q,¢| and let f be an analytic function
satisfying f(U) C Q. If the differential equation

P(p(2), 2/ (2), 2°p" (2); 2) = f(2)
has a solution p(z) analytic in U with p(0) = ¢(0), then p < gq.

Proof. By hypothesis, ¥(p(z), zp'(2), 2°p"(2);2) = f(2) € f(U) C
Q. Therefore by Theorem 3.2, the theorem is proved. O

4. Special cases: the disc and half-plane

In this section we will apply the theorems of the last section to the
particular cases corresponding to g(U) being a disk and ¢(U) being
a half-plane. Some preliminary results for these two cases have been
presented in Section 2.

Case 1. The Disk A = {w : |w| < M}. The function
g(z) = M(Mz+a)/(M + az),

with M > 0 and |a|] < M satisfies ¢(U) = A, ¢(0) =a and g € Q. We
first determine the class of admissible functions, as defined in Definition
3.1, for this particular g. We set ¥,[Q, M,a] = ¥,[€,q] and in the
special case when @ = A we denote the class by ¥, [M,a]. Since
q(¢) = Me* with § € R when |{| = 1, by using (7) and (8) the
condition of admissibility (11) becomes

Y(r,s,t;2) € Q when r = Me¥,
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(14) s =mMe?|M — ae® > /(M? — |a]?),
Re(t/s +1) > miM — ae=[2/(M?  |a]?),
forzeU, 8 € Rand m > n.

If a = 0 then (14) simplifies to

gb(Meie,Kew,L;z) ¢ Q when K > nM,

(14 Re(Le ™) > (n— 1)K, z € U, and 6 € R,

THEOREM 4.1. Let p(z) = a + pp2™ + -+- be analytic in U. If
€ U,[Q, M, a] then
¥(p(z), 20 (2), 2°p" (2); 2) € Q = |p(2)| < M.
If € U, [M,a] then
W (p(2), 20’ (2), 2°p" (2); 2)| < M = |p(2)| < M.

The proof of this theorem follows immediately by applying Theorem
3.2.

EXAMPLE 4.2. Let a = 0, n = 1, Q@ = h(U) where h(z) = 2Mz,
and 9(r, s,t; 2) = r+ s +t. We first show that ¢ € ¥[h(U), M, 0], that
is, that admissibility condition (14') is satisfied. This follows since

|1/)(Mei9,Kei9,L;z)\ = M+K+Le¥>M+K + Re(Le™™)
> M+ Mn+ (n—1)nM = M(1+n®) =2M

when K > nM and Re(Le™*®) > (n—1)K. By Theorem 4.1 we deduce
the following result. If p(z) is analytic in U with p(0) = 0 then

Ip(2) + 20 (2) + 2°p" (2)| < 2M = |p(z)| < M.



The theory and applications of second-order differential subordinations 95

We can use Theorem 3.6 to present a different proof of this result,
and to also show that this result is sharp. The differential equation

a(z) + 24 () + 224" (2) = 2Mz,

has the univalent solution ¢(z) = Mz. In order to use Theorem 3.6
we need to show that ¥ € ¥[2Mz, Mz]. For r = M(, s = mM( and
Re[t/s + 1] > m, for || =1 and m > 1 we have

[ (r, s, t)| = |[M{ + Mm{ +t| = M|1 + m + mt/s|
>MQA+m+m?—m)=M(1+m?) >2M.
Hence 9 € ¥[2Mz, M z|, and by Theorem 3.6
p(2) + 2p'(2) + 2°p" (2) < 2Mz = p(z) < Mz,
and g(z) = Mz is the best dominant.
Case 2. The Half-Plane A = {w : Rew > 0}. The function
q(2) = (a+az)/(1 - z)

with Rea > 0 satisfies g(U) = A, q(0) = a, E(q) = {1}, and ¢ € Q. We
first determine the class of admissible functions, as defined in Definition
3.1, for this particular g. We set ¥,,{Q,a} = ¥,[f, g] and in the special
case when 2 = A we denote the class by ¥,{a}. Since Regq({) = 0
when ¢ € 8U\{1}, by using (9) and (10) the condition of admissibility
(11) becomes

Pio,,p+in;2) € Q, for z € U and for real 0,7, 1,7

(15) satisfying T < —nla — i0|®*/2Rea and 7 + p < 0.
If a = 1 then (15) simplifies to
{15°) Y(io, T, u+in;) € Q; for z€ U, and for real o, 7,1,

satisfying 7 < —n(l+c%)/2 and 7+ p < 0.

The proof of the following theorem follows immediately by applying
Theorem 3.2.
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THEOREM 4.3. Let p(z) = a + pn2™ + -+ be analytic in U. If
P € ¥,{Q,a} then
Y(p(z), 20’ (2), 22" (2);2) € @ = Rep(z) > 0.
If1 € ¥, {a} then
Re(p(2), 2p'(2), 2°p" (2); 2) > 0 = Rep(z) > 0.
EXAMPLE 4.4. a) A simple check of (15') shows that 1(r, s, t;2) =
r+s+te€ ¥{1}. Thusif p(z) =1+ p1z+--- is analytic in U then
Re[p(z) + 2p'(2) + 2°p"(2)] > 0 = Rep(z) > 0.

b) Let v(r,s,t;2) = r + B(z)s, where B : U — C and ReB(z) > 0.
A simple check of (15) shows that 1 € ¥{a} with Rea > 0. Thus if
p(z) = a+ p1z + --- is analytic in U then

Re[p(z) + B(z)zp'(2)] > 0= Rep(z) > 0.

c) Let 1(r, s,t;2) = t+3s—r% + 1. A simple check of (15") shows that
¥ & W,{1}, but ¥ € U,{1}. Thus if p(z) = 1 + paz® + -~ is analytic
in U then

Re[z2p" (20 + 32p'(2) — p*(2) + 1] > 0= Re P(z) > 0.

Other examples of similar differential inequalities may be found in

1], [2], [3] and [5].

5. Differential and integral operators preserving functions
with positive real part

In this section we will be interested in determining dominants of the
second-order linear differential subordination

(16) A(2)2%p" (2) + B(2)zp'(z) + C(2z)p(z) + D(z) € ©

for z € U, where Q@ C C, and A, B, C and D are complex-valued
functions defined on U. In this section we let 2 be a set in {w|Rew > 0}
and let g(z) = (1+2)/(1 —z) be a dominant of (16). We will determine
conditions on A, B, C and D corresponding to this particular {2 and

q.
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THEOREM 5.1. Let A(z) = A > 0 and suppose that B,C,D : U —
C and satisfy
(17
ReB(z) > A and [Im C(z)]* < [Re B(z) — A] - Re[B(z) — A — 2D(2)].

If p is analytic in U with p(0) = 1, and if
(18) Re[Azp"(z) + B(2)zp'(2) + C(2)p(z) + D(2)] > 0

then Rep(z) > 0.

Proof. If we let 9(r, s,t; z) = At + B(z)s + C(2)r + D(z), then the
conclusion will follow from Theorem 3.1 if we show that ¢ € ¥[Q,q],
where ) = {w|Rew > 0} and ¢ = (1 + z)/(1 — 2). This follows from
(17), and Definition 3.1 or (15’) since

Rev(io, 7, p + in; 2) = Ap + 7 Re B(z) — 0 Im C(z) + Re D(2)
< 7[Re B(z) — A] — 6 Im C(z) + Re D(z)
< [-(1+0?)/2][Re B(z) — A] — o Im C(z) + ReD(z)
= —~{[Re B(2) — AJo* + 2[Im C(2)]o + Re[B(z) — A — 2D(2)]}/2
<0,

for z € U, and for real o, 7, i1, 7 satisfying 7 < —(1+0?)/2 and 7+ < 0.
Hence 1 € ¥[Q, ¢, p < ¢ and Rep(z) > 0. O

If A= 0 and D(z) = 0 then Theorem 5.1 reduces to the following
first order result [6, Theorem 8.

COROLLARY 5.2. Let B(z) and C(z) be functions defined on U,
with

(19) |Im C(2)| < Re B(z).

If p is analytic in U with P(0) = 1, and if

(20) Re[B(2) - zp/(2) + C(2) - p(2)] > 0,
then Rep(z) > 0.

We can apply Corollary 5.2 to obtain a corresponding result for
integrals [6, Theorem 9].



98 JUN RAK LEE

THEOREM 5.3. Let v # 0 be a complex number with Rey > 0, and
let  and ® be analytic in U, with @(z) - ®(2) # 0, ¢(0) = ®(0), and

(21) | Im((v®(2) + 28 (2))/7¢(2)]| < Re[®(2)/79(2)]-
Let f be analytic in U with f(0) =1 and Re f(z) >0, for z € U. IfF
is defined
22 F() =y e() 7 [ 0 el d,
0

then F is analyticin U, F(0) =1 and Re F(z) >0 forz € U.

Proof. Tewelet B(z) = 8(2)/79(2), C(2) = () +2%'(2)] /1¢(2),
then condition (21) implies condition (19). By differentiating (22) we

obtain
Re[B(z) - zF'(2) + C(z) - F(2)] = Re f(2) > 0.

Hence (20) of Corollary 5.2 is satisfied with p = F, and we conclude
that Re F'(z) > 0. a

If we let @ = & and « > 0 then (21) reduces to

(23) | Im z¢(2)/p(2)] < 1.

In this case we deduce

Re f(z) > 0= Re [z—”’tp(z)_l /: FO () dt} >

EXAMPLE 5.4. The function @(z) = e* satisfies (23) for |A] < 1.
In this case we obtain

(24)  Ref(z) >0=>Re [z—“fe*"z / Fe e dt} > 0.
o

Corollary 5.2 involves a first order linear differential subordination
and its integral analog is the linear operator given in Theorem 5.3.
The second order linear differential subordination given in Theorem
5.1 also has an integral analog. However, in this case the second order
differential subordination gives rise to a double integral.
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THEOREM 5.5. Let § and v be complex numbers with By > 0,
Ref >0, Rey > 0, let ¢ and ® be analytic in U with ¢(z) - ®(z) # 0,
©(0) = ®(0) and let w be analytic in U with w(0) = 0. Suppose that
(17) holds with
(25)

A=1/p,
B(z) = [B+7 + 1+ 2¢'(2)/p(2) + 22'(2)/®(2)]/B7, and
C(z) = (B + 22'(2)/2(2)) (7 + 2¢'(2) [ 0(2)) + 2(2¢'(2) [ ¢(2))']/ B,
D(z) = ~w(z).

Let f be analytic in U with f(0) =1 and Re f(z) >0 forz € U. If F
is defined by

zZ) = Cal P(t) py-p-1 t 3) + w(s)]®(s)s’ Lds
26) F(s) = s [ 2307 [1500) +ulolje(e)s dsdt,

then F is analytic in U, F(0) = 1 and Re F(2) > 0 in U.

Proof. By differentiating (26) and using (25) we obtain Re[Az*F"'(z)
+ B(2)2F'(z) + C(z)F(z) + D(z)] = Re f(z) > 0. Since the conditions
of (17) hold, we apply Theorem 5.1 with p = F to conclude that
ReF(z) >0in U. O

Note that if D(z) = —w(z) = 0 the second-order linear differential
subordination (18) gives rise to a linear (double) integral operator F' =

I(f) given by (26
If we let ¢(z ) =1,w(z) =0, 8 > 0 and v > 0 then from (25) we

have D(z) =0,
B(z) = [B+ v+ 1+ 28'(2)/®(2)]/B7 and
C(z) = [B + 22'(2)/2(2)]/8.
In this case we obtain the following corollary.

COROLLARY 5.6. Let 8> 0, v > 0, and let ® be analytic in U with
®(z) # 0. Suppose that
2®'(z)

®(z)

< Re [ﬁ—l—'y + Z(I)I(z)] .

(27) v \Im 3(2)
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- Let f be analytic in U with f(0) =1 and Ref(z) > 0inU. If F is
defined by

F()=pve | R O fo H()()sP ds e,

0
then F is analytic in U, F(0) =1 and Re F(z) > 0in U.

The complicated condition (27) has a simple geometric interpreta-
tion. If we let w = 2®'(2)/®(z) = u + tv then (27) becomes

Tl £ B+ 7+ u.

Hence (27) requires that z®'/® lies in the closed sector S(8,~) con-
taining the origin and bounded by the lines

Yol =8+ +u.

If we take ®(z) = e** then 2®'(z)/®(z) = Az. Since the distance §
from the origin to the boundary of the sector S(3,) is given by

(28) §=(B+7)/(L+)2,

we obtain the following example.

EXAMPLE 5.7. If |A\| < § where § is given by (28) then
z 4
Re f(z) > 0= Re [z“"’/ e*)“t""_ﬂ_lf f(s)e*sP1ds dt} > 0.
0 0
In the particular case § = v = 1, we deduce that for |A| < +/2 we have
z t
(29) Re f(z) > 0 = Re [2_1/ e”)‘tt_I/ f(s)e* ds dt} > 0.
0 0

Note that in Example 5.4 we can apply (24) twice with v = 1 to obtain
(29). However, by using this method (29) will be valid only for |A| < 1.
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