ON M-OPEN MAPPINGS

Won Keun Min and Hong Soon Chang

ABSTRACT. In this paper, we introduce m-open(closed) mappings by m-sets, and obtain a number of their properties. In particular, m-open(closed) mappings are used to extend known results for α -open mapping, semi-open mappings and preopen mappings.

1. Introduction

Let X,Y and Z be topological spaces on which no separation axioms are assumed unless explicity stated. Let S be a subset of X. The closure (resp. interior, boundary) of S will be denoted by S^- (resp. $S^0,b(S)$). A subset S of X is called semi-open set[1] (resp. preopen set[2], α -set[3]) if $S \subset S^{0-}$ (resp. $S \subset S^{-0}, S \subset S^{0-0}$). The complement of a semi-open set (resp. preopen set, α -set) is called semi-closed set(resp. preclosed set, α -closed set). The family of all semi-open sets(resp. preopen sets, α -sets) in X will be denoted by SO(X) (resp. $PO(X), \alpha(X)$). A function $f: X \to Y$ is called semi-open mapping[5] (resp. pre-open mapping[2], α -open mapping[6]) if $f(U) \in SO(X)$ (resp. $f(U) \in PO(X), f(U) \in \alpha(X)$) for each open set U of X.

A subclass $\tau^* \subset P(X)$ is called a supratopology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X,τ^*) is called a supratopological space. The members of τ^* are called supraopen sets[7]. Let (X,τ) be a topological space and τ^* be a supratopology on X. We call τ^* a supratopology associated with τ if $\tau \subset \tau^*$. The topological space (X,τ) with τ^* will be denoted by (X,τ,τ^*) . Let (X,τ) be topological space and (Y,μ^*) be supratopological space. A function $f:X\to Y$ is an sopen(s-closed) mapping if the image of each open(closed) set in X is a supraopen(supraclosed) set in Y[7]. Let (X,τ^*) be a supratopological

Received January 6, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 54C08, 54A10.

Key words and phrases: m-open mappings, m-closed mappings, supratopological spaces, m-sets, $\alpha(X)$, SO(X), PO(X).

space. A subset A of X is called an m-set with τ^* if $A \cap T \in \tau^*$ for all $T \in \tau^*[4]$. The class of all m-sets with τ^* will be denoted by τ_m . A subset B of X is called an m-closed set if the complement of B is an m-set. In this paper, we introduce m-open(closed) mappings by m-sets, and obtained a number of their properties. In particular, a mapping $f:(X,\tau) \to (Y,\mu^*)$ is m-open if and only if for each $x \in X$ and each open set U of X containing x, there exists an m-open set $W \subset Y$ containing f(x) such that $W \subset f(U)$. And m-open(closed) mappings are used to extend known results for α -open mapping, semi-open mappings and preopen mappings. Finally we get that if $f:(X,\tau) \to (Y,\mu,PO(Y))$ is α -open, then f is m-open.

m-open(closed) mappings

DEFINITION 2.1. Let (X,τ) be a topological space and (Y,μ^*) be a supratopological space. A mapping $f:(X,\tau)\to (Y,\mu^*)$ is called an m-open(m-closed) mapping if the image of each open(closed) set in X is an m-set(m-closed set).

From the above definition, m-open(m-closed) mappings are s-open (s-closed) mappings. The converse of these implications is not true as the following example illustrates.

EXAMPLE 2.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a, b\}\}$. Consider $\tau^* = \{\phi, X, \{a, b\}, \{b, c\}, \{c, a\}\}$. Then $\tau_m = \{\phi, X\}$. If $f: X \to X$ is the identity mapping, then f is an s-open mapping but it is not an m-open mapping.

By the bellow two examples, we know the independence of the concepts of open mappings and *m*-open mappings.

EXAMPLE 2.3. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}\}$ and $\tau^* = \{\phi, X, \{a, b\}, \{b, d\}, \{a, b, d\}\}$. Then $\tau_m = \{\phi, X, \{a, b, d\}\}$. If $f: X \to X$ is the identity mapping, then f is an open mapping but it is not an m-open mapping.

EXAMPLE 2.4. Let $X=\{a,b,c,d\}$ and $\tau=\{\phi,X,\{a,b\}\}$. Let $Y=\{1,2,3,4\}, \mu=\{\phi,Y,\{1\}\}$ and

$$\mu^* = {\phi, Y, {1}, {2,3}, {1,2,3}, {2,3,4}, {1,4}}.$$

Then $\mu_m = \{\phi, Y, \{1\}, \{2,3\}, \{1,2,3\}\}$. If a mapping $g: X \to Y$ is defined by g(a) = 2, g(b) = 3, g(c) = 1, and g(d) = 1, then g is an m-open mapping but it is not an open mapping.

Now we get the following thing, by the definitions m-sets and m-open mappings.

THEOREM 2.5. If $f:(X,\tau)\to (Y,\mu,\mu^*)$ is an open mapping and $\mu\subset\mu_m$, then f is an m-open mapping and s-open mapping.

COROLLARY 2.6. If $f:(X,\tau)\to (Y,\mu,SO(Y))$ is an open mapping, then f is an α -open mapping and semi-open mapping.

Proof. Since every m-set with the supratopology SO(Y) is an α -set, $\mu \subset \alpha(X) = \mu_m$. By Theorem 2.5, we get that f is α -open and semi-open.

LEMMA 2.7. For a topological space $(Y, \mu, PO(Y))$, we have $\alpha(Y) \subset \mu_m$.

Proof. Let $A \in \alpha(Y)$. Then for all $B \in \mu^* = PO(Y)$, $A \cap B \subset A^{0-0} \cap B^{-0} \subset (A \cap B)^{-0}$. Thus $A \cap B \subset PO(Y)$.

THEOREM 2.8. If $f:(X,\tau)\to (Y,\mu,PO(Y))$ is α -open, then f is m-open and pre-open.

Proof. By Lemma 2.7, it is obvious.

THEOREM 2.9. A mapping $f:(X,\tau)\to (Y,\mu^*)$ is m-open if and only if for each $x\in X$ and each open set U of X containing x, there exists an m-open set $W\subset Y$ containing f(x) such that $W\subset f(U)$.

Proof. Suppose that f is an m-open mapping. For each $x \in X$ and each open set U of X containing x, f(U) is an m-open set in Y containing f(x). Set W = f(U), then W is an m-open set containing f(x) such that $W \subset f(U)$.

Conversely, it is obvious.

COROLLARY 2.10. Let $f:(X,\tau)\to (Y,\mu,SO(Y))$ be a mapping, then f is α -open if and only if for each $x\in X$ and each open set U of X containing x, there exists an α -open set $W\subset Y$ containing f(x) such that $W\subset f(U)$.

Proof. It follows from $\alpha(Y) = \mu_m$ in the supratopology SO(Y). \square

THEOREM 2.11. A mapping $f:(X,\tau)\to (Y,\mu^*)$ is an m-closed mapping if and only if $mcl(f(A))\subset f(A^-)$ for each $A\subset X$.

Proof. Suppose that f is an m-closed mapping. For each $A \subset X$, since $f(A^-)$ is an m-closed set, we have $f(A^-) = mcl(f(A^-)) \supset mclf(A)$.

Conversely, let A closed in X. Since $mcl(f(A)) \subset f(A^-) = f(A)$, f(A) is an m-closed set, and hence f is m-closed.

COROLLARY 2.12. Let $f:(X,\tau)\to (Y,\mu,SO(Y))$ be a mapping, then f is an α -closed mapping if and only if $cl_{\alpha}(f(A))\subset f(A^{-})$ for each $A\subset X$.

THEOREM 2.13. A mapping $f:(X,\tau)\to (Y,\mu^*)$ is m-open (m-closed) if and only if a mapping $f:(X,\tau)\to (Y,\mu_m)$ is open (closed).

Proof. If $f:(X,\tau)\to (Y,\mu^*)$ is an m-open(m-closed) mapping then image of each open(closed) set in X is an m-set(m-closed set) in μ^* . Since m-sets(m-closed sets) in μ^* are open(closed) sets in μ_m .

The converse is obvious.

Theorem 2 of [8] follows immediately from Theorem 2.13 and $\mu_m = \alpha(X)$. Thus we get the following thing.

COROLLARY 2.14. A mapping $f:(X,\tau)\to (Y,\mu,SO(Y))$ is α -open (α -closed) if and only if $f:(X,\tau)\to (Y,\mu_m)$ is an open(closed) mapping.

THEOREM 2.15. A mapping $f:(X,\tau)\to (Y,\mu^*)$ is an m-open mapping. If $W\subset Y$ and $F\subset X$ is a closed set containing $f^{-1}(W)$, then there exists an m-closed set $H\subset Y$ containing W such that $f^{-1}(H)\subset F$.

Proof. Let $W \subset Y$ and let $F \subset X$ be a closed set containing $f^{-1}(W)$. Set H = Y - f(X - F). Then H is an m-closed set, $f^{-1}(H) \subset F$, and $W \subset H$.

COROLLARY 2.16. Let $f:(X,\tau)\to (Y,\mu,SO(Y))$ be a mapping, then if f is α -open, $W\subset Y$, and $F\subset X$ is a closed set containing $f^{-1}(W)$, then there exists an α -closed set, $H\subset Y$ containing W such that $f^{-1}(H)\subset F$.

REMARKS. Let $f:(X,\tau)\to (Y,\mu,\mu^*)$ be a function. In conclusion we can get the following diagrams:

- (1) In $\mu \subset \mu_m$, open $\Longrightarrow m$ -open $\Longrightarrow s$ -open
- (2) In $\mu^* = SO(Y)$, open $\Longrightarrow m$ -open($=\alpha$ -open) \Longrightarrow semi-open
- (3) In $\mu^* = PO(Y)$, open $\Longrightarrow \alpha$ -open $\Longrightarrow m$ -open \Longrightarrow pre-open
- (4) If f is an open mapping and $g:(Y,\mu)\to (Z,\nu,\nu^*)$ is an m-open mapping then $g\circ f$ is an m-open mapping.

References

- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- A.S.Mashhour. M. E. Abd El-Monsef and S.N.El-deeb, On precontinuous and weak precontinuous mappings, Pro. Math. and Phys. Soc. Egypt 51(1981).
- 3. O. Njastad, On some classes of nearly open sets, pacific journal of mathematics 15,no 3(1965).
- 4. W. K. Min and H. S. Chang, On m-continuity, Kangweon-Kyungki Math. Jour. 6,323-329(1998).
- 5. Biswas.N, One some mappings in topological spaces, Bull.calcurra Math Soc. 61,61-127(1969).
- A.S.Mashhour. I.A.Hasanein and S.N.El-deeb, α-cotinuous and α-open mappings, Acta Math. Hung. 41(3-4)(1983), 213-218.
- 7. A.S.Mashhourr, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supratopological spaces, Indian J.pure appl. Math 14(4), 502-510.
- 8. I.L.Reilly and M.K.Vamanamurthy (Auckland), On α -continuity in topological spaces, Acta Math. Hung 45 (1-2)(1985).

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea