WEAK COMPACTNESS AND EXTREMAL STRUCTURE IN $L^P(\mu, X)$

CHUN-KEE PARK

ABSTRACT. We characterize the compactness, weak precompactness and weak compactness in $L^p(\mu, X)$ and in more general space $P_c(\mu, X)$. Moreover, we present this characterization in terms of extremal structure in X.

1. Introduction

Let (Ω, Σ, μ) be a finite measure space, X a real Banach space, X^* the dual space of X and B_X the unit ball of X.

Denote by $L^p(\mu,X)(1\leq p<\infty)$ the Banach space of all equivalence classes of X-valued Bochner integrable functions f defined on Ω with $\int_\Omega \|f\|^P d\mu < \infty$. The norm $\|\cdot\|_p$ is defined by

$$\|f\|_p=(\int_\Omega\|f\|^pd\mu)^{rac{1}{p}},f\in L^p(\mu,X)$$

Denote by $\mathcal{L}^1(\mu, X)$ (resp. $P_c(\mu, X)$) the space of all strongly measurable Pettis integrable (resp. Pettis integrable)functions $f: \Omega \to X$ (resp. having an indefinite integral with relatively compact range)with the Pettis norm $||f||_{p_1} = \sup_{x^* \in B_{X^*}} \int_{\Omega} |x^* f| d\mu$.

Denote by $K(\mu, X)$ the space of all μ -continuous vector measures $G: \Sigma \to X$ whose range is relatively compact with the semivariation norm. Notice that $L_1(\mu, X) \subseteq \mathcal{L}^1(\mu, X) \subseteq P_c(\mu, X) \subseteq K(\mu, X)$. Diestel, Ruess and Schactermayer [5] and Diaz [2] presented characterizations of weakly compact subsets of $L^1(\mu, X)$. Brooks and Dinculeanu

Received January 14, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 46B25, 46E40, 28A20.

Key words and phrases: weak compactness, Bochner integrable functions, Pettis integrable functions, extremal structure.

This paper was supported by the Research Foundation of Kangwon National University 1997.

[1] and Emmanuele [6] characterized weak compactness (resp. precompactness) of subsets of $\mathcal{L}^1(\mu, X)$ (resp. $P_c(\mu, X)$).

THEOREM 1.1([7] COROLLARY 3.4). A sequence $(f_n) \subset \mathcal{L}^1(\mu, X)$ converges weakly to zero if and only if $\int_A f_n d\mu \to 0$ weakly for each $A \in \Sigma$.

If $\pi = (A_i)_{i \in I}$ be a finite partition of Ω , we define the conditional expectation $E_{\pi}f$ of f by

$$E_{\pi}f = \sum_{i \in I} [\mu(A_i)]^{-1} (\int_{A_i} f d\mu) \chi_{A_i}.$$

It is well known that the family of finite partitions is directed by refinement, that $||E_{\pi}f|| \leq ||f||$ and that $||E_{\pi}f - f|| = 0$ for all $f \in P_c(\mu, X)$.

THEOREM 1.2([6] THEOREM 1). Let H be a bounded subset of $P_c(\mu, X)$. Then the following facts are equivalent:

- H is precompact,
- (2) (i) {∫_A fdμ : f ∈ H} is relatively compact in X for all A ∈ Σ,
 (ii) l_π E_πf = f uniformly on f ∈ H.

We shall denote by $\operatorname{ext} B_{X^*}$ the set of all extreme points of the dull ball B_{X^*} and we shall denote by σ_e the weak topology on X generated by $\operatorname{ext} B_{X^*}$. Observe that the σ_e -topology on X is Hausdorff and that the closed unit ball B_X is also closed in the σ_e -topology. Moors [8] presented a characterization of weak compactness in Banach spaces in terms of σ_e -topology.

THEOREM 1.3([3]. Let X be a Banach space and (x_n) be a bounded sequence in X. Then (x_n) converges weakly to $x \in X$ if and only if (x_n) converges to x in the σ_e -topology.

In this paper, we characterize compactness of subsets of $L^1(\mu, X)$ and weak compactness of subsets of $P_c(\mu, X)$ in terms of conditional expectation and σ_e -topology.

2. Results

Notice that a subset K of a Banach space is relatively norm compact if and only if it is totally norm-bounded.

THEOREM 2.1. Let K be a bounded subset of $L^1(\mu, X)$. Then K is relatively $L^1(\mu, X)$ -norm compact in $L^1(\mu, X)$ if and only if

- (1) $\{\int_A f d\mu : f \in K\}$ is relatively norm compact in X for all $A \in \Sigma$,
- (2) for each $\epsilon > 0$, there is a finite partition π of Ω such that $||E_{\pi}f f||_1 < f$ uniformly on $f \in K$.

Proof. Suppose that K is relatively $L^1(\mu,K)$ -norm compact in $L^1(\mu,X)$. Then (1) follows from the continuity of the mapping $f\to \int_A f d\mu$ of $L^1(\mu,X)$ into X. Let $\epsilon>0$ be given. Then since K is totally bounded in $L^1(\mu,X)$ there are $f_1,f_2,\cdots,f_n\in K$ such that $K\subset \bigcup_{i=1}^n N_{\frac{\epsilon}{3}}(f_i)$, where $N_{\epsilon}(f_i)$ is a ϵ - neighborhood of f_i .

Notice that $\lim_{\pi} ||E_{\pi}f - f||_{1} = 0$ for each $f \in L^{1}(\mu, X)$, and so we can find a finite partition π of Ω such that $||E_{\pi}f_{i} - f_{i}||_{1} < \frac{\epsilon}{3}$ for $i = 1, 2, \dots, n$.

Fix $f \in K$. Then there is $i(1 \le i \le n)$ such that $f \in N_{\frac{\epsilon}{3}}(f_i)$. Hence we have

$$||E_{\pi}f - f||_{1} \leq ||E_{\pi}f - E_{\pi}f_{i}||_{1} + ||E_{\pi}f_{i} - f_{i}||_{1} + ||f_{i} - f||_{1}$$
$$\leq 2||f - f_{i}||_{1} + ||E_{\pi}f_{i} - f_{i}||_{1} < \epsilon.$$

Conversely, suppose that the conditions (1) and (2) hold. Let $\epsilon > 0$ be given. Then there is a finite partition $\pi = (A_i)_{1 \le i \le k}$ of Ω such that $||E_{\pi}f - f||_1 < \frac{\epsilon}{3}$ uniformly on $f \in K$.

We will first show that $\{E_{\pi}f: f\in K\}$ is relatively $L^1(\mu,X)$ - norm compact in $L^1(\mu,X)$. Consider a sequence $(E_{\pi}f_n)$ in $\{E_{\pi}f: f\in K\}$. From (1) we can obtain a subsequence (f_{n_j}) of (f_n) and $x_{A_1},\cdots,x_{A_k}\in X$ such that $\lim_{j\to\infty}\|\int_{A_i}f_{n_j}d\mu-x_{A_i}\|=0$ for $i=1,2,\cdots,k$. So we have

$$\begin{split} \| \sum_{i=1}^k \frac{x_{A_i}}{\mu(A_i)} \chi_{A_i} - E_{\pi} f_{n_j} \|_1 &= \sum_{i=1}^k \int_{A_i} \| \frac{x_{A_i}}{\mu(A_i)} - \frac{\int_{A_i} f_{n_j} d\mu}{\mu(A_i)} \| d\mu \\ &= \sum_{i=1}^k \| x_{A_i} - \int_{A_i} f_{n_j} d\mu \| \to 0 \text{ as } j \to \infty. \end{split}$$

This implies that $\{E_{\pi}f:f\in K\}$ is relatively $L^1(\mu,X)$ -norm compact in $L^1(\mu, X)$. Hence there are $f_1, \dots, f_n \in K$ such that $\{E_{\pi}f: f \in K\} \subset \bigcup_{i=1}^{n} N_{\frac{\epsilon}{3}}(E_{\pi}f_{i})$. Now fix $f \in K$. Then there is an $i(1 \le i \le n)$ such that $E_{\pi}f \in N_{\frac{\epsilon}{3}}(E_{\pi}f_i)$. We have

$$||f - f_i||_1 \le ||f - E_{\pi}f||_1 + ||E_{\pi}f - E_{\pi}f_i||_1 + ||E_{\pi}f_i - f_i||_1 < \epsilon.$$

Thus $K \subset \bigcup_{i=1}^n N_{\epsilon}(f_i)$. Hence K is totally bounded in $L^1(\mu, X)$. This completes the proof.

The next theorem is a generalization of Theorem 1.2

THEOREM 2.2. Let K be a bounded subset of $P_c(\mu, X)$. Then K is weakly precompact in $P_c(\mu, X)$ if and only if

- (1) $\{\int_A f d\mu : f \in K\}$ is weakly precompact in X for all $A \in \Sigma$, (2) $\lim_{\pi} E_{\pi} f = f$ weakly in $P_c(\mu, X)$ uniformly on $f \in K$.

Proof. Assume that K is weakly precompact in $P_c(\mu, X)$. Condition (1) follows from the fact that the mapping $f \to \int_A f d\mu$ of $(P_c(\mu, X), \Im^{\omega})$ into (X, \Im^{ω}) is continuous.

Now we note that K is totally bounded in $(P_c(\mu, X), \Im^{\omega})$. For each $g \in P_c(\mu, X)^*, g \circ E_{\pi}$ is also in $P_c(\mu, X)^*$. Let $\epsilon > 0$ be given. Then the set $N(O; g, g \circ E_{\pi}; \frac{\epsilon}{3}) = \{ f \in P_c(\mu, X) : |g(f)| < \frac{\epsilon}{3} \text{ and } |(g \circ E_{\pi})(f)| < \frac{\epsilon}{3} \}$ $\{\frac{\epsilon}{3}\}$ is an open neighborhood of O in $(P_c(\mu,X),\Im^\omega)$. Because K is totally bounded in $(P_c(\mu, X), \Im^{\omega})$, there are $f_1, f_2, \cdots, f_m \in P_c(\mu, X)$ such that $K \subset \bigcup_{i=1}^m [f_i + N(O; g, g \circ E_\pi; \frac{\epsilon}{3})]$. For any $f \in K$, there is an i $(1 \le i \le m)$ such that $f \in f_i + N(O; g, g \circ E_\pi; \frac{\epsilon}{3})$. Since $\lim E_{\pi}f = f$ in norm for all $f \in P_c(\mu, X)$, we have $\lim g(E_{\pi}f) = g(f)$ for all $f \in P_c(\mu, X)$. Hence there is a π' such that

$$\pi > \pi' \Rightarrow |g(E_{\pi}f_i) - g(f_i)| < \frac{\epsilon}{3} \text{ for } i = 1, 2, \cdots, m.$$

Hence

$$\pi > \pi' \Rightarrow |g(E_{\pi}f) - g(f)| \le |g(E_{\pi}f) - g(E_{\pi}f_i)| + |g(E_{\pi}f_i) - g(f_i)| + |g(f_i) - g(f)| < \epsilon.$$

Thus $\lim_{\pi} E_{\pi} f = f$ weakly in $P_c(\mu, X)$ uniformly on $f \in K$.

Conversely, assume that conditions (1) and (2) hold. Let (f_n) be any sequence in K and let $g \in P_c(\mu, X)^*$ be arbitrary. Then given $\epsilon > 0$, by (2) there is a finite partition $\pi' = (A_i)_{i \in I}$ of Ω such that $|g(E_{\pi'}f) - g(f)| < \frac{\epsilon}{3}$ uniformly on $f \in K$. So $E_{\pi'}(K)$ is contained in the set $\sum_{i \in I} \mu(A_i)^{-1} \{ \int_{A_i} f d\mu : f \in H \} \chi_{A_i}$, which is weakly precompact

by (1). Hence $(E_{\pi'}f_n)$ has a weak Cauchy subsequence, say $(E_{\pi'}f_{n_k})$. Therefore there is a $N \in \mathbb{N}$ such that

$$k, k' > N \Rightarrow |g(E_{\pi'}f_{n_k}) - g(E_{\pi'}f_{n_{k'}})| < \frac{\epsilon}{3}.$$

Hence we have

$$\begin{split} k, k' > N &\Rightarrow |g(f_{n_k}) - g(f_{n_{k'}})| \\ &\leq |g(f_{n_k}) - g(E_{\pi'}f_{n_k})| + |g(E_{\pi'}f_{n_k}) - g(E_{\pi'}f_{n_{k'}})| \\ &+ |g(E_{\pi'}f_{n_{k'}}) - g(f_{n_{k'}})| \\ &< \epsilon. \end{split}$$

Thus K is weakly precompact in $P_c(\mu, X)$.

THEOREM 2.3. Let K be a bounded subset of $P_c(\mu, X)$. Then K is weakly precompact in $P_c(\mu, X)$ if and only if

- (1) $\{\int_A f d\mu : f \in K\}$ is weakly precompact in X for all $A \in \Sigma$,
- (2) for any sequence $(f_k) \subset K$ there is a sequence (π_n) of finite partitions, cofinal to the net (π) , such that $\lim_n E_{\pi_n} f_k = f_k$ weakly in $P_c(\mu, X)$ uniformly on $k \in \mathbb{N}$.

Proof. Assume that K is weakly precompact in $P_c(\mu, X)$. Then it is clear that condition (1) holds.

Now let (f_k) be any sequence in K. It is well known that there is a sequence (π_n) of finite partitions cofinal to the net (π) such that $\lim_n \|E_{\pi_n} f_k - f_k\|_{p_1} = 0$ for all $k \in \mathbb{N}$. Notice that the set $\{f_k : k \in \mathbb{N}\}$ is totally bounded in $(P_c(\mu, X), \mathfrak{S}^{\omega})$. Using the similar method in the proof of Theorem 2.2, we have $\lim_n E_{\pi_n} f_k = f_k$ weakly in $P_c(\mu, X)$ uniformly on $k \in \mathbb{N}$.

Conversely, assume that conditions (1) and (2) hold. Using the similar method in the proof of Theorem 2.2, we can show that K is weakly precompact in $P_c(\mu, X)$.

Notice that the mapping $T: \mathcal{L}^1(\mu, X) \to K(\mu, X), T(f)(A) = \int_A f d\mu, f \in \mathcal{L}^1(\mu, X), A \in \Sigma$, is linear and isometry [4].

Define $\tilde{T}: P_c(\mu, X) \to K(\mu, X)$ by $\tilde{T}(f)(A) = \int_A f d\mu$ for each $f \in P_c(\mu, X)$ and $A \in \Sigma$. Then \tilde{T} is also well-defined, linear and isometry.

The next lemma is an extended version of Theorem 1.1.

LEMMA 2.4. Let (f_n) be a sequence in $P_c(\mu, X)$. Then (f_n) converges to 0 weakly in $P_c(\mu, X)$ if and only if $\int_A f_n d\mu \to 0$ weakly in X for each $A \in \Sigma$.

Proof. Suppose that (f_n) converges to 0 weakly in $P_c(\mu, X)$, and let $A \in \Sigma$. Then $T_A : P_c(\mu, X) \to X, T_A(f) = \int_A f d\mu$, is a bounded linear operator. For each $x^* \in X^*$, we have

$$< x^*, \int_A f_n d\mu > = < x^*, \ T_A(f_n) > = (x^* \circ T_A)(f_n) \to 0 \text{ as } n \to \infty.$$

Hence $\int_A f_n d\mu \to 0$ weakly in X.

Conversely, suppose that $\int_A f_n d\mu \to 0$ weakly in X for each $A \in \Sigma$. Let (f_n) be a sequence in $P_c(\mu,X)$. Then there is a sequence (G_{f_n}) in $K(\mu,X)$ such that $\|f_n\|_{p_1} = \|G_{f_n}\|_{S.V}$ for each $n \in \mathbb{N}$. Because $\mathcal{L}^1(\mu,X)$ is considered as a dense subspace of $K(\mu,X)[4]$, for each $n \in \mathbb{N}$ there is $f'_n \in \mathcal{L}^1(\mu,X)$ with $\|G_{f_n'} - G_{f_n}\|_{S.V} < \frac{1}{n}$ where $T(f'_n) = G_{f'_n}$. Hence $\|f'_n - f_n\|_{p_1} = \|G_{f_{n'}} - G_{f_n}\|_{S.V} < \frac{1}{n}$ for each $n \in \mathbb{N}$. We can show easily that $\int_A f'_n d\mu \to 0$ weakly in X for each $A \in \Sigma$. By Theorem 1.1, (f'_n) converges to 0 weakly in $\mathcal{L}^1(\mu,X)$.

Now let $g \in P_c(\mu, X)^*$. Then $g \in \mathcal{L}^1(\mu, X)^*$. Hence $g(f'_n) \to 0$ weakly as $n \to \infty$. We have $|g(f_n) - g(f'_n)| \le ||g|| ||f_n - f'_n||_{p_1} \le ||g|| \frac{1}{n} \to 0$ as $n \to \infty$. Thus $\lim_{n \to \infty} g(f_n) = \lim_{n \to \infty} g(f'_n) = 0$. This implies that (f_n) converges to 0 weakly in $P_c(\mu, X)$.

THEOREM 2.5. A bounded subset K of $P_c(\mu, X)$ is relatively weakly compact if

- (1) The set $\{\mu(A)^{-1} \int_A f d\mu : f \in K, A \in \Sigma, \mu(A) > 0\}$ is relatively weakly compact in X,
- (2) $\lim_{\pi} E_{\pi} f = f$ weakly in $P_c(\mu, X)$ uniformly on $f \in K$.

Proof. For every $A \in \Sigma$, we have

$$\left\{\int_A f d\mu: f \in K\right\} \subset \mu(A) \left\{\frac{1}{\mu(B)} \int_B f d\mu: f \in K, B \in \Sigma, \mu(B) > 0\right\}$$

Hence by (1), $\{\int_A f d\mu : f \in K\}$ is relatively weakly compact in X. By Theorem 2.2, H is weakly precompact in $P_c(\mu, X)$.

Now let (f_n) be a sequence in K. Then (f_n) has a weak Cauchy subsequence, say (f_{n_k}) . For every $A \in \Sigma$, the sequence $(\int_A f_{n_k} d\mu)$ is also a weak Cauchy sequence in $\{\int_A f d\mu : f \in K\}$. Since $\{\int_A f d\mu : f \in K\}$ is relatively weakly compact in X, there is an $m(A) \in X$ such that $< m(A), x^* >= \lim_{k \to \infty} \int_A < f_{n_k}(s), x^* > d\mu$, for all $x^* \in X^*$.

The set function $m: \Sigma \to X$ is a μ -continuous vector measure and the average range $\{m(A)/\mu(A): A \in \Sigma, \mu(A) > 0\}$ is contained in the weak closed convex hull of $\{\mu(A)^{-1}\int_A f d\mu: f \in K, A \in \sum, \mu > 0\}$, which is a weakly compact convex set in X. Hence the average range $\{m(A)/\mu(A): A \in \Sigma, \mu(A) > 0\}$ is relatively weakly compact in X. Thus there is an $f \in P_c(\mu, X)$ such that $m(A) = \int_A f d\mu$ for all $A \in \Sigma$. Hence $\int_A \langle f(s), x^* \rangle d\mu = \lim_{k \to \infty} \int_A \langle f_{n_k}(s), x^* \rangle d\mu$ for all $A \in \Sigma$ and $x^* \in X^*$. By Lemma 2.4, $\lim_{k \to \infty} f_{n_k} = f$ weakly in $P_c(\mu, X)$. Thus K is relatively weakly compact in $P_c(\mu, X)$.

We obtain the following corollary from Theorem 1.3 and Lemma 2.4.

COROLLARY 2.6. Let (f_n) be a sequence in $P_c(\mu, X)$. Then (f_n) converges to 0 weakly in $P_c(\mu, X)$ if and only if $\int_A f_n d\mu \to 0$ in the σ_e -topology for each $A \in \Sigma$.

We obtain the following corollaries from Theorem 2.2, Theorem 2.5 and Corollary 2.6.

COROLLARY 2.7. Let K be a bounded subset of $P_c(\mu, X)$. Then K is weakly precompact in $P_c(\mu, X)$ if and only if

- (1) $\{\int_A f d\mu : f \in K\}$ is precompact in the σ_e -topology for each $A \in \Sigma$,
- (2) $\lim_{\pi} \int_{A} E_{\pi} f d\mu = \int_{A} f d\mu$ uniformly on $f \in K$ in the σ_{e} -topology for each $A \in \Sigma$.

COROLLARY 2.8. Let K be a bounded subset of $P_c(\mu, X)$. Then K is relatively weakly compact if

- (1) $\{\mu(A)^{-1}\int_A f d\mu: f \in K, A \in \Sigma, \mu(A) > 0\}$ is relatively compact in the σ_e -topology,
- (2) $\lim_{\pi} \int_{A} E_{\pi} f d\mu = \int_{A} f d\mu$ uniformly on $f \in K$ in the σ_{e} -topology for each $A \in \Sigma$.

References

- J. K. Brooks and N. Dinculeanu, Weak and strong compactness in the space of Pettis integrable functions, Contemporary Math., 2 (1980), 116-187.
- S. Diaz, Weak compactness in L¹(μ, X), Proc. Amer. Math. Soc., 124(9) (1996), 2685-2693.
- J. Diestel, Sequences and Series in Banach spaces, Springer-Verlag, New York, 1984.
- J. Diestel and J.J.Uhl Jr., Vector measures, Math. Surveys Monographs, vol.15, Amer. Math. Soc., Providence, R.I., 1977.
- 5. J.Diestel , W.M. Ruess and W. Schachermayer, Weak compactness in $L^1(\mu, X)$, Proc. Amer. Math. Soc., 118 (2) (1993), 447-453.
- G. Emmanuele, Precompactness in the space of Pettis integrable functions, Acta Math. Hung., 62 (1993), 333-335.
- 7. D. R. Lewis, Conditional weak compactness in certain inductive tensor products, Math. Ann., 201 (1973), 201-209.
- W.B. Moors, A characterization of weak compactness in Banach spaces, Bull. Austral. Math. Soc., 55 (1997), 497-501.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea