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ON THE EXTENDED JIANG SUBGROUP
OF THE FUNDAMENTAL GROUP

SoNG-HO HaAN

ABsTRACT. We introduce an extended Jiang subgroup J(f, zo, G)
of the fundamental group of a transformation group as a general-
ization of the Jiang subgroup J(f,zo) and show some properties of
this extended Jiang subgroup.

1. Introduction

F. Rhodes [4] introduced the fundamental group o(X,xzo,G) of a
transformation group (X,G) as a generalization of the fundamental
group of a topological space X and showed that o(X,zo,G) is iso-
morphic to m; (X, zo) x G if (G, G) admits a family of preferred paths
at e. B. J. Jiang [3] introduced the Jiang subgroup J(f,zo) of the
fundamental group of a topological space X.

In the same line with D. H. Gottlieb [1], Jiang Bo-Ju [3] defined
the trace group J(f,zo) of cyclic homotopy from a continuous self-
map f to f which is also a subgroup of a fundamental group. The
Jiang’s subgroup J(f,z) is very important and interesting in fixed
point theory.

In this paper we introduce an evaluation subgroup J(f,zo,G) of
o(X, f(zo),G) which is a generalization of E(X,zo,G) and J(f,zo)
where f is a self-map from X to X. If f = 1x, then J(f,20,G) =
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" E(X, zo,G) which is defined in [6] and if G = {1x}, then J(f, z0,G) =
J(f,zo) where is a Jiang’s subgroup in [3].

2. Preliminaries and main results

Let (X,G,n) be a transformation group, where X is a path con-
nected space with zo as base point. Given any element g of G, a path
f of order g with base point ¢ is a continuous map f : I — X such
that f(0) = zo and f(1) = gzo. A path f; of order g, and a path fa
of order gy give rise to a path fi + g1f2 of order g;g» defined by the
equations

fi(2s),

0
(fi+a1f2)(s) = { gfal2s—1), L<s

Two paths f and f' of the same order g are said to homotopic if
there is a continuous map F : I? — X such that

F(s,0)=f(s), 0<s<1,
F(s,1) = f'(s), 0< s <1,
F(0,t) =z, 0 <t < 1,
F(1,t) =g20, 0 <t < 1.

The homotopy class of a path f of order g was denoted by [f : g].
Two homotopy classes of paths of different orders g; and g are distinct,
even if g1zo = ga2zo. F.Rhodes showed that the set of homotopy classes
of paths of prescribed order with the rule of composition * is a group,
where * is defined by [f1 : ¢1] *[f2 : g2] = [f1 +91f2 : g192]. This group
was denoted by o(X, zg, G), and was called the fundamental group of
(X, G) with base point zo.

Let f be a self-map of X. A homotopy H : X x I — X is called
an f-cyclic homotopy [3] if H(z,0) = H(z,1) = f(z). This concept
of a topological space is generalized to that of a transformation group.
A continuous map H : X x I — X is called an f-homotopy of order
g if H(z,0) = f(z),H(z,1) = gf(z), where g is an element of G. If
H is an f-homotopy of order g, then the path a : I — X given by
aft) = H(zo,t) will be called the trace of H.
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The trace subgroup of f-homotopies of prescribed order is defined
by

J(fa Zo, g) =
{[a: g] € o(z, f(z0), G)|3 f-homotopy of order g with trace a}.

J(1x,z9,G) was defined by E(X,z¢,G) in [6] and J(f,zg,{e}) was
also defined by J(f,zo) in [3]. From this fact, we say that J(f,zo,G)
is an extended Jiang subgroup.

It is easy to show that an extended Jiang subgroup J(f,zo,G) is a
subgroup of a(X, f(zq), G).

Let (X,G) be a transformation group and X% be the space of all
continuous mappings from X to X with compact-open topology. Let
G act on XX continuously by 7'(f,g) = gf. Then (X*,G,7’) is a
transformation group.

Let P : XX — X be the evaluation map given by P(f) = f(zo)-
If X is a locally compact, then the evaluation map P is continuous.
Since P(gf) = gf(z0) = gP(f), where g € G and f € X*,(P,1¢) :
(X%,G) — (X,G) is a category mapping. Thus we know that P, :
o(X*,1x,G) — o(X,zo,G) defined by Pila : g = [Poa :g]isa
homomorphism.

There is a natural homeomorphism ¢ : (X*)! — X**! given by
&(f)(z,s) = f(s)(z) forz € X and s € I.

Note that f ~ f’ if and only if ¢(f) ~ ¢(f'). Motivated by the fol-
lowing theorem, we can consider J(f, g, G) as a generalized evaluation
subgroup of the fundamental group of a transformation group (X, G).

THEOREM A. Let X be a pathwise connected CW-complex. Then
P.o(X*%,f,@) = J(f, %0, G).

The Jiang’s result [3] can be generalized as follows.

THEOREM B. Let f and k be self maps of X.

(1) J(k, f(z0), G) C J(ko f,20,G).

(2) If k is a homomorphism of (X,G), i.e., kg(z) = gk(z) for any
element g of G, then k(J(f,z9,G)) C J(k o f,zg,G) where
kr[c : g] = [ka : g] for any element [a : g] of J(f,zo,G)-
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In [4], F. Rhodes showed that if A is a path from zy to z;, then
A induces an isomorphism A, : (X, 2, G) — o(X,z1,G) such that
Mla:gl=[Ap+a+gr: gl

TueoREM C. Assumes that X is a pathwise connected CW-complex.
Let (X,G) be a transformation group. If A is a path from zg to x; in
X, then the induced homomorphism (fA). carries J(f,zq,G) isomor-
phically onto J(f,z1,G).

THEOREM D. If f,k: X — X are homotopic, then J(f,z,G) and
J(k,zo,G) are isomorphic.

THEOREM E. If f : (X,G) — (X,QR) is a homomorphism, i.e.,
fg(z) = gf(z) for any element g of G and z; belongs to goXo for
some gg € (G, where X, is the path connected component of zg, then
J(f,zo0,G) and J(f,z1,G) are isomorphic.

THEOREM 1. If f,k : X — X are homeomorphisms and f(z¢) =
k(zo), then J(f,zo,G) is equal to J(k,zo, G).

Proof. Let [a : g] be any element of J(f, zg, G). Then there exists a
homotopy H : X x I — X such that H(z,0) = f(z),H(z,1) = gf(z)
and H(zo,t) = a(t). Let K : X x I be a homotopy such that K =
Ho (f~'k x 14). So,

K(z,0) = H(f " k(2),0) = ff k(z) = k(z)
K(z,1) = H(f'k(z),1) = gf f ' k(z) = gk(z)
and

K(zo,t) = H(f " k(zo),t) = H(f " f(20),2)
=uH (z6:0) =@lt);
Therefore [a : g] belongs to J(k, zo,G) and similarly J(k,zo,G) is
contained in J(f, zg,G). Thus J(f,zo,G) is equal to J(k,zo,G). O

COROLLARY 2.

(1) If f,k: X — X are homeomorphisms and f(z¢) = k(z¢), then
J(f,zo) is equal to J(k,zo).

(2) If f : X — X is a homeomorphism and f(zg) = zo, then
J(f,zo,G) is equal to E(X,xzo,G).
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THEOREM 3. Suppose X,Y are pathwise connected CW-complexes
respectively and two transformation group (X,G), (Y, H) are the same
homotopy type. Then J(f,zo,G) and J(k,yo, H) are isomorphic with
yo = ¢(xg) where ¢ : X — Y is a continuous function, and f,k are
homeomorphisms.

Proof. In [6], E(X,zo,G) and E(Y,yo, H) are isomorphic with yo =
é(zo). J(f,z0,G) and J(k, yo, H) have the following diagram:

J(fa mD:G) E— ‘](k3y0}H)

@1

E(X,ﬂ')g,f_laf) E(Y,yg,k_lHk)
o3| l

E(X, f(xo),G) E(Y,k(yo), H)
qu’ .

E(X,20,G) —— E(Y,y,H)

‘We prove the following properties.

(1) Let ¢y : J(f, 20, G) = B(X,zo, f 'Gf) be the map such that
p1{a: gl = [fla: f~lgf]. Let [o: g] be any element of J(f,zo, G).
Then there exists homotopy H : X x I — X such that H(z,0) =
f(z),H(z,1) = gf(z) and H(zp,t) = o(t). Therefore, there ex-
ists homotopy H’ : X x I — X such that H'(z,t) = f 'H(z,t).
So, H'(z,0) = f~f(z) = o, H'(z,1) = f'gf(z) and H'(zo,t) =
f~YH(zo,t) = fla(t). In other words, ¢; is well-defined since « is
homotopic with 3 implies f~'c is homotopic with f~'4. Indeed , ¢;
is one to one and onto.

On the other hand, ¢; is homomorphism since

¢1(lea 2 g1] * [@zga]) = ¢1[on + g1z : G199]
=[f" o1 + g102) : f 1092 f]
=[flor+ flgren s TR ff g
=[f e f oSl % [fon £ g2 f]
= ¢1]on : 1] * b1z : g2



136 On the extended Jiang subgroup of the fundamental group

" Therefore, ¢, is isomorphism.

(2) Let ¢2 : E(X,20,G) — E(X, f(z0),G) be the map defined in
[6] . Since there exists a path A from zg to f(zo), E(X,z0,G) and
E(X, f(zo), G) are isomorphic by [6].

(3) Let ¢3 : E(X, f(z0),G) — E(X,zq, f~YGf) be the map such
that ¢sfa : g] = [f~la : f7lgf], let [@ : g] be any element of
E(X, f(zg),G). Then, there exists homotopy H : X x I — X such
that H(f(z),0) = f(z), H(f(z),1) = gf(z) and H(f(zo),t) = ot).
Therefore, there exists homotopy H' : X x I — X such that H'(z,t) =
f~loHo (f x 1;)(z,t). So,

Hl(wﬂ 0) = f—lH(f(m)':O) = filf(m) =z,
H’(:E,l) = f_lH(f(x): 1) - f—lgf(ﬁ,'”)

and

H'(=o,t) = T H(f(20),t) = f a(t)

In other words, ¢3 is well-defined since « is homotopic with 4 implies
f~'a is homotopic with f~'8. Thus, ¢3 is isomorphism as ¢;. By
(1), (2), (3), J(f,z0,G) and E(X,xzq,G) are isomorphic and similarly
J(k,yo,H) and E(Y,yo, H) are isomorphic. By [6], J(f,z0,G) and
J(k,yo,H) are isomorphic with ¥ = ¢(zo). O

In [4], a transformation group (X, G) is said to admit a family K of
preferred paths at zg if it is possible to associate with every element g
of H a path k, from gz to zo such that the path k. associated with
Oidentity element e of G is &y which is the constant map such that
#o(t) = zo for each t € I and for every pair of elements g, h, the path
kg from ghxo to zo is homotopic to gkn + kg-

DEFINITION 1. A family K of preferred paths at f(zg) is called
a family of preferred f-traces at mp if for every preferred path k; in
K, kgp is the trace of f-homotopy of order g.

THEOREM F. Let (X,G,n) be a transformation group. If (G,G)
admits a family of preferred paths at e, then (X, G) admits a family of
preferred f-traces at zq for any self-map f of X.
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THEOREM G. A transformation group (X,G) admits a family of
preferred f-traces at xq if and only if J(f,zq,G) is a split extension of

J(f7 230) by G.

THEOREM H. Let f : X — X be a homeomorphism. A transfor-
mation group (X, G) admits a family of preferred f-traces at xy if and
only if there exists an isomorphism ¢ : J(f,zo,G) — J(f,zo) x G such
that the diagram commutes

0O —— J(f,z0) —— J(f,x0,G) y G y O
H [ H
0O —— J(f,z0) —— J(f,m0) x G s G y O

We show that the existence of family of preferred f-traces on a
transformation group does not depend on base point.

THEOREM 4. Let (X,G) be a transformation group. If A is a path
from zy to z1, then a family of preferred f-traces at zq gives rise to a
family of preferred f-traces at ;.

Proof. Let K = {ky|lg € G} be a family of preferred f-traces at
zo. For each element g of G, let hy be equal to gfAp + kg + fA. We
show that H = {hy|g € G} is a family of preferred f-traces at z; since
he = fAp+ke + fA ~ f(z1) and

= (9192)fAp + kgyg, + fA

~ (g192)fAp + g1kg, + kg, + fA

~ (g192)fAp + gikg, + 1 fA+ g1 fAp + kg, + fA
~ g1(g2fAp + kg, + fA) + (g1 Ap + kg, + fA)

~ grhg, + hg, .

hgz g2

Since the induced isomorphism (fA), carries J(f, zg, G) isomorphi-
cally onto J(f, 1, G) by Theorem C, (fA)«[kgp : g = [fAp+kgp+gfA:
gl = [hgp : g] belongs to J(f,z1,G) for any element [k;p : g] of
J(f,z0,G). Thus H = {hy|lg € G} is a family of preferred f-traces
at z1.
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The representation is natural with respect to change of base point
in the sense that the following diagrams are commutative.

I(fr20,G) 2% 5(f,21,G)

o] o]

J(frzo) x G —— J(f,21) x G
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