# ON THE EXTENDED JIANG SUBGROUP OF THE FUNDAMENTAL GROUP

## Song-ho Han

ABSTRACT. We introduce an extended Jiang subgroup  $J(f, x_0, G)$  of the fundamental group of a transformation group as a generalization of the Jiang subgroup  $J(f, x_0)$  and show some properties of this extended Jiang subgroup.

#### 1. Introduction

F. Rhodes [4] introduced the fundamental group  $\sigma(X, x_0, G)$  of a transformation group (X, G) as a generalization of the fundamental group of a topological space X and showed that  $\sigma(X, x_0, G)$  is isomorphic to  $\pi_1(X, x_0) \times G$  if (G, G) admits a family of preferred paths at e. B. J. Jiang [3] introduced the Jiang subgroup  $J(f, x_0)$  of the fundamental group of a topological space X.

In the same line with D. H. Gottlieb [1], Jiang Bo-Ju [3] defined the trace group  $J(f,x_0)$  of cyclic homotopy from a continuous selfmap f to f which is also a subgroup of a fundamental group. The Jiang's subgroup  $J(f,x_0)$  is very important and interesting in fixed point theory.

In this paper we introduce an evaluation subgroup  $J(f, x_0, G)$  of  $\sigma(X, f(x_0), G)$  which is a generalization of  $E(X, x_0, G)$  and  $J(f, x_0)$  where f is a self-map from X to X. If  $f = 1_X$ , then  $J(f, x_0, G) =$ 

Received January 3, 1999.

<sup>1991</sup> Mathematics Subject Classification: 54H25, 55M20, 55P05.

Key words and phrases: Jiang subgroup, homotopy extension properties, fixed point.

This paper was supported by the Research Foundation of Kangwon National University 1997

 $E(X, x_0, G)$  which is defined in [6] and if  $G = \{1_X\}$ , then  $J(f, x_0, G) = J(f, x_0)$  where is a Jiang's subgroup in [3].

## 2. Preliminaries and main results

Let  $(X, G, \pi)$  be a transformation group, where X is a path connected space with  $x_0$  as base point. Given any element g of G, a path f of order g with base point  $x_0$  is a continuous map  $f: I \to X$  such that  $f(0) = x_0$  and  $f(1) = gx_0$ . A path  $f_1$  of order  $g_1$  and a path  $f_2$  of order  $g_2$  give rise to a path  $f_1 + g_1f_2$  of order  $g_1g_2$  defined by the equations

$$(f_1+g_1f_2)(s)=\left\{egin{array}{ll} f_1(2s), & 0\leq s\leq rac{1}{2} \ g_1f_2(2s-1), & rac{1}{2}\leq s\leq 1. \end{array}
ight.$$

Two paths f and f' of the same order g are said to homotopic if there is a continuous map  $F:I^2\to X$  such that

$$F(s,0) = f(s), 0 \le s \le 1,$$
  
 $F(s,1) = f'(s), 0 \le s \le 1,$   
 $F(0,t) = x_0, 0 \le t \le 1,$   
 $F(1,t) = gx_0, 0 \le t \le 1.$ 

The homotopy class of a path f of order g was denoted by [f:g]. Two homotopy classes of paths of different orders  $g_1$  and  $g_2$  are distinct, even if  $g_1x_0 = g_2x_0$ . F.Rhodes showed that the set of homotopy classes of paths of prescribed order with the rule of composition \* is a group, where \* is defined by  $[f_1:g_1]*[f_2:g_2]=[f_1+g_1f_2:g_1g_2]$ . This group was denoted by  $\sigma(X,x_0,G)$ , and was called the fundamental group of (X,G) with base point  $x_0$ .

Let f be a self-map of X. A homotopy  $H: X \times I \to X$  is called an f-cyclic homotopy [3] if H(x,0) = H(x,1) = f(x). This concept of a topological space is generalized to that of a transformation group. A continuous map  $H: X \times I \to X$  is called an f-homotopy of order g if H(x,0) = f(x), H(x,1) = gf(x), where g is an element of G. If H is an f-homotopy of order g, then the path  $\alpha: I \to X$  given by  $\alpha(t) = H(x_0,t)$  will be called the trace of H.

The trace subgroup of f-homotopies of prescribed order is defined by

$$J(f, x_0, g) =$$
 $\{ [\alpha : g] \in \sigma(x, f(x_0), G) | \exists f \text{-homotopy of order } g \text{ with trace } \alpha \}.$ 

 $J(1_X, x_0, G)$  was defined by  $E(X, x_0, G)$  in [6] and  $J(f, x_0, \{e\})$  was also defined by  $J(f, x_0)$  in [3]. From this fact, we say that  $J(f, x_0, G)$  is an extended Jiang subgroup.

It is easy to show that an extended Jiang subgroup  $J(f, x_0, G)$  is a subgroup of  $\sigma(X, f(x_0), G)$ .

Let (X,G) be a transformation group and  $X^X$  be the space of all continuous mappings from X to X with compact-open topology. Let G act on  $X^X$  continuously by  $\pi'(f,g)=gf$ . Then  $(X^X,G,\pi')$  is a transformation group.

Let  $P: X^X \to X$  be the evaluation map given by  $P(f) = f(x_0)$ . If X is a locally compact, then the evaluation map P is continuous. Since  $P(gf) = gf(x_0) = gP(f)$ , where  $g \in G$  and  $f \in X^X$ ,  $(P, 1_G) : (X^X, G) \to (X, G)$  is a category mapping. Thus we know that  $P_* : \sigma(X^X, 1_X, G) \to \sigma(X, x_0, G)$  defined by  $P_*[\alpha : g] = [P \circ \alpha : g]$  is a homomorphism.

There is a natural homeomorphism  $\phi:(X^X)^I\to X^{X\times I}$  given by  $\phi(f)(x,s)=f(s)(x)$  for  $x\in X$  and  $s\in I$ .

Note that  $f \sim f'$  if and only if  $\phi(f) \sim \phi(f')$ . Motivated by the following theorem, we can consider  $J(f, x_0, G)$  as a generalized evaluation subgroup of the fundamental group of a transformation group (X, G).

Theorem A. Let X be a pathwise connected CW-complex. Then

$$P_*\sigma(X^X, f, G) = J(f, x_0, G).$$

The Jiang's result [3] can be generalized as follows.

THEOREM B. Let f and k be self maps of X.

- (1)  $J(k, f(x_0), G) \subset J(k \circ f, x_0, G)$ .
- (2) If k is a homomorphism of (X,G), i.e., kg(x) = gk(x) for any element g of G, then  $k_{\pi}(J(f,x_0,G)) \subset J(k \circ f,x_0,G)$  where  $k_{\pi}[\alpha:g] = [k\alpha:g]$  for any element  $[\alpha:g]$  of  $J(f,x_0,G)$ .

In [4], F. Rhodes showed that if  $\lambda$  is a path from  $x_0$  to  $x_1$ , then  $\lambda$  induces an isomorphism  $\lambda_*: \sigma(X,x_0,G) \to \sigma(X,x_1,G)$  such that  $\lambda_*[\alpha:g] = [\lambda \rho + \alpha + g\lambda:g]$ .

THEOREM C. Assumes that X is a pathwise connected CW-complex. Let (X,G) be a transformation group. If  $\lambda$  is a path from  $x_0$  to  $x_1$  in X, then the induced homomorphism  $(f\lambda)_*$  carries  $J(f,x_0,G)$  isomorphically onto  $J(f,x_1,G)$ .

THEOREM D. If  $f, k : X \to X$  are homotopic, then  $J(f, x_0, G)$  and  $J(k, x_0, G)$  are isomorphic.

THEOREM E. If  $f:(X,G) \to (X,G)$  is a homomorphism, i.e., fg(x) = gf(x) for any element g of G and  $x_1$  belongs to  $g_0X_0$  for some  $g_0 \in G$ , where  $X_0$  is the path connected component of  $x_0$ , then  $J(f,x_0,G)$  and  $J(f,x_1,G)$  are isomorphic.

THEOREM 1. If  $f, k : X \to X$  are homeomorphisms and  $f(x_0) = k(x_0)$ , then  $J(f, x_0, G)$  is equal to  $J(k, x_0, G)$ .

*Proof.* Let  $[\alpha:g]$  be any element of  $J(f,x_0,G)$ . Then there exists a homotopy  $H: X \times I \to X$  such that H(x,0) = f(x), H(x,1) = gf(x) and  $H(x_0,t) = \alpha(t)$ . Let  $K: X \times I$  be a homotopy such that  $K = H \circ (f^{-1}k \times 1_t)$ . So,

$$K(x,0) = H(f^{-1}k(x),0) = ff^{-1}k(x) = k(x)$$
  

$$K(x,1) = H(f^{-1}k(x),1) = gff^{-1}k(x) = gk(x)$$

and

$$K(x_0,t) = H(f^{-1}k(x_0),t) = H(f^{-1}f(x_0),t)$$
  
=  $H(x_0,t) = \alpha(t)$ .

Therefore  $[\alpha:g]$  belongs to  $J(k,x_0,G)$  and similarly  $J(k,x_0,G)$  is contained in  $J(f,x_0,G)$ . Thus  $J(f,x_0,G)$  is equal to  $J(k,x_0,G)$ .  $\square$ 

COROLLARY 2.

- (1) If  $f, k: X \to X$  are homeomorphisms and  $f(x_0) = k(x_0)$ , then  $J(f, x_0)$  is equal to  $J(k, x_0)$ .
- (2) If  $f: X \to X$  is a homeomorphism and  $f(x_0) = x_0$ , then  $J(f, x_0, G)$  is equal to  $E(X, x_0, G)$ .

THEOREM 3. Suppose X, Y are pathwise connected CW-complexes respectively and two transformation group (X, G), (Y, H) are the same homotopy type. Then  $J(f, x_0, G)$  and  $J(k, y_0, H)$  are isomorphic with  $y_0 = \phi(x_0)$  where  $\phi: X \to Y$  is a continuous function, and f, k are homeomorphisms.

*Proof.* In [6],  $E(X, x_0, G)$  and  $E(Y, y_0, H)$  are isomorphic with  $y_0 = \phi(x_0)$ .  $J(f, x_0, G)$  and  $J(k, y_0, H)$  have the following diagram:

We prove the following properties.

(1) Let  $\phi_1: J(f,x_0,G) \to E(X,x_0,f^{-1}Gf)$  be the map such that  $\phi_1[\alpha:g]=[f^{-1}\alpha:f^{-1}gf]$ . Let  $[\alpha:g]$  be any element of  $J(f,x_0,G)$ . Then there exists homotopy  $H:X\times I\to X$  such that H(x,0)=f(x),H(x,1)=gf(x) and  $H(x_0,t)=\alpha(t)$ . Therefore, there exists homotopy  $H':X\times I\to X$  such that  $H'(x,t)=f^{-1}H(x,t)$ . So,  $H'(x,0)=f^{-1}f(x)=x,H'(x,1)=f^{-1}gf(x)$  and  $H'(x_0,t)=f^{-1}H(x_0,t)=f^{-1}\alpha(t)$ . In other words,  $\phi_1$  is well-defined since  $\alpha$  is homotopic with  $\beta$  implies  $f^{-1}\alpha$  is homotopic with  $f^{-1}\beta$ . Indeed,  $\phi_1$  is one to one and onto.

On the other hand,  $\phi_1$  is homomorphism since

$$\begin{split} \phi_1([\alpha_1:g_1]*[\alpha_2g_2]) &= \phi_1[\alpha_1 + g_1\alpha_2:g_1g_2] \\ &= [f^{-1}(\alpha_1 + g_1\alpha_2):f^{-1}g_1g_2f] \\ &= [f^{-1}\alpha_1 + f^{-1}g_1\alpha_2:f^{-1}g_1ff^{-1}g_2f] \\ &= [f^{-1}\alpha_1:f^{-1}g_1f]*[f^{-1}\alpha_2:f^{-1}g_2f] \\ &= \phi_1[\alpha_1:g_1]*\phi_1[\alpha_2:g_2]. \end{split}$$

Therefore,  $\phi_1$  is isomorphism.

(2) Let  $\phi_2: E(X, x_0, G) \to E(X, f(x_0), G)$  be the map defined in [6]. Since there exists a path  $\lambda$  from  $x_0$  to  $f(x_0), E(X, x_0, G)$  and  $E(X, f(x_0), G)$  are isomorphic by [6].

(3) Let  $\phi_3: E(X, f(x_0), G) \to E(X, x_0, f^{-1}Gf)$  be the map such that  $\phi_3[\alpha:g] = [f^{-1}\alpha:f^{-1}gf]$ , let  $[\alpha:g]$  be any element of  $E(X, f(x_0), G)$ . Then, there exists homotopy  $H: X \times I \to X$  such that H(f(x), 0) = f(x), H(f(x), 1) = gf(x) and  $H(f(x_0), t) = \alpha(t)$ . Therefore, there exists homotopy  $H': X \times I \to X$  such that  $H'(x, t) = f^{-1} \circ H \circ (f \times 1_t)(x, t)$ . So,

$$H'(x,0) = f^{-1}H(f(x),0) = f^{-1}f(x) = x,$$
  
 $H'(x,1) = f^{-1}H(f(x),1) = f^{-1}gf(x)$ 

and

$$H'(x_0,t) = f^{-1}H(f(x_0),t) = f^{-1}\alpha(t)$$

In other words,  $\phi_3$  is well-defined since  $\alpha$  is homotopic with  $\beta$  implies  $f^{-1}\alpha$  is homotopic with  $f^{-1}\beta$ . Thus,  $\phi_3$  is isomorphism as  $\phi_1$ . By (1), (2), (3),  $J(f, x_0, G)$  and  $E(X, x_0, G)$  are isomorphic and similarly  $J(k, y_0, H)$  and  $E(Y, y_0, H)$  are isomorphic. By [6],  $J(f, x_0, G)$  and  $J(k, y_0, H)$  are isomorphic with  $y_0 = \phi(x_0)$ .

In [4], a transformation group (X,G) is said to admit a family K of preferred paths at  $x_0$  if it is possible to associate with every element g of H a path  $k_g$  from  $gx_0$  to  $x_0$  such that the path  $k_e$  associated with 0identity element e of G is  $\hat{x}_0$  which is the constant map such that  $\hat{x}_0(t) = x_0$  for each  $t \in I$  and for every pair of elements g, h, the path  $k_{gh}$  from  $ghx_0$  to  $x_0$  is homotopic to  $gk_h + k_g$ .

DEFINITION 1. A family K of preferred paths at  $f(x_0)$  is called a family of preferred f-traces at  $x_0$  if for every preferred path  $k_g$  in  $K, k_g \rho$  is the trace of f-homotopy of order g.

THEOREM F. Let  $(X, G, \pi)$  be a transformation group. If (G, G) admits a family of preferred paths at e, then (X, G) admits a family of preferred f-traces at  $x_0$  for any self-map f of X.

THEOREM G. A transformation group (X,G) admits a family of preferred f-traces at  $x_0$  if and only if  $J(f,x_0,G)$  is a split extension of  $J(f,x_0)$  by G.

THEOREM H. Let  $f: X \to X$  be a homeomorphism. A transformation group (X,G) admits a family of preferred f-traces at  $x_0$  if and only if there exists an isomorphism  $\phi: J(f,x_0,G) \to J(f,x_0) \times G$  such that the diagram commutes

We show that the existence of family of preferred f-traces on a transformation group does not depend on base point.

THEOREM 4. Let (X,G) be a transformation group. If  $\lambda$  is a path from  $x_0$  to  $x_1$ , then a family of preferred f-traces at  $x_0$  gives rise to a family of preferred f-traces at  $x_1$ .

*Proof.* Let  $K = \{k_g | g \in G\}$  be a family of preferred f-traces at  $x_0$ . For each element g of G, let  $h_g$  be equal to  $gf\lambda\rho + k_g + f\lambda$ . We show that  $H = \{h_g | g \in G\}$  is a family of preferred f-traces at  $x_1$  since  $h_e = f\lambda\rho + k_e + f\lambda \sim f(x_1)$  and

$$\begin{split} h_{g_1g_2} &= (g_1g_2)f\lambda\rho + k_{g_1g_2} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + k_{g_1} + f\lambda \\ &\sim (g_1g_2)f\lambda\rho + g_1k_{g_2} + g_1f\lambda + g_1f\lambda\rho + k_{g_1} + f\lambda \\ &\sim g_1(g_2f\lambda\rho + k_{g_2} + f\lambda) + (g_1f\lambda\rho + k_{g_1} + f\lambda) \\ &\sim g_1h_{g_2} + h_{g_1}. \end{split}$$

Since the induced isomorphism  $(f\lambda)_*$  carries  $J(f,x_0,G)$  isomorphically onto  $J(f,x_1,G)$  by Theorem C,  $(f\lambda)_*[k_g\rho:g]=[f\lambda\rho+k_g\rho+gf\lambda:g]=[h_g\rho:g]$  belongs to  $J(f,x_1,G)$  for any element  $[k_g\rho:g]$  of  $J(f,x_0,G)$ . Thus  $H=\{h_g|g\in G\}$  is a family of preferred f-traces at  $x_1$ .

The representation is natural with respect to change of base point in the sense that the following diagrams are commutative.

$$J(f, x_0, G) \xrightarrow{(f\lambda)_*} J(f, x_1, G)$$

$$\phi_0 \downarrow \qquad \qquad \phi_1 \downarrow$$

$$J(f, x_0) \times G \longrightarrow J(f, x_1) \times G$$

### References

- 1. D.H.Gottlieb, A certain subgroup of the fundamental group, Amer. J. 87 (1965), 840–856.
- 2. —, Evaluation subgroups of homotopy groups, Amer. J. Math. 87 (1969), 729-756.
- B.J.Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. Providence, Amer.Math. Soc. 14 (1983).
- F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. So. 13(3) (1966), 635-650.
- M.H. Woo and Y.S. Yoon, Certain subgroups of homotopy group of transformation group, J. of Korea Math. Soc 20-2 (1983), 223-233.
- 6. M.H.Woo, A representation of  $E(X, x_0, G)$  in terms of  $G(X, x_0)$ , J.of Korean Math. Soc. 23 (1986), 101–108.
- 7. M.H.Woo and S.H.Han, An extended Jiang subgroup of the fundamental group of a transformation group, J. of Korean Math.So. 6(1) (1991), 135-143.
- 8. M.H.Woo and S.H.Han, An extended Jiang subgroup and its representation, J. of Kangwon-kyungki Math.Soc. 1 (1993), 71-83.
- 9. M.H.Woo and S.H.Han, The cartesian products of extended Jiang subgroup, J. of Kangwon-kyungki Math. 2 (1994), 73-77.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea