SOME CONDITIONS FOR COMAXIMALITY OF IDEALS

Sung Hun Ahn

ABSTRACT. In this paper, it is shown that if R is a commutative ring with identity and there exists a multiplicatively closed subset S of R such that $S \cap Z(R/(I_1I_2 \cdots I_n)) = \emptyset$ and $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal, then $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1}I_{i+1} \cdots I_n)$.

1. Introduction

Throughout this paper, R will be a commutative ring with identity and I, J and I_1, I_2, \cdots, I_n are ideals of R, unless otherwise stated. If S is a multiplicatively closed subset of R, then R_S is the quotient ring of R with respect to S and IR_S is the extension of I in R_S . $Ass_R(R/I)$ denotes the set of all associated prime ideals of I. We denote by $(I:_RJ)=\{\ r\in R: rJ\subseteq I\ \}$ the annihilator of (J+I)/I. It is well known that if I_1,I_2,\cdots,I_n are pairwise comaximal ideals of R, then $I_1\cap I_2\cap\cdots\cap I_n=I_1I_2\cdots I_n$. In [3], Ratliff gave some variations of this. He showed that if I_1,I_2,\cdots,I_n are ideals of a Noetherian ring R, then $I_1I_2\cdots I_n=I_1\cap I_2\cap\cdots\cap I_n=\bigcap_{i=1}^n (I_i:_RI_1\cdots I_{i-1}I_{i+1}\cdots I_n)$ if and only if each $P\in Ass_R(R/I_1I_2\cdots I_n)$ contains exactly one of the ideals I_1,I_2,\cdots,I_n . The purpose of this paper is to generalize this result for ideals in a commutative ring with identity.

In section 2, it is shown that if R is a commutative ring with identity and there exists a multiplicatively closed subset S of R such that $S \cap Z(R/(I_1I_2\cdots I_n)) = \emptyset$ and $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal, then $I_1I_2\cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i:_R$

Received January 5, 2000.

¹⁹⁹¹ Mathematics Subject Classification: 13A15, 13A30, 13C12.

Key words and phrases: Associated prime ideals, Comaximal ideals.

This paper was supported by Dongguk University Research Fund, 1999

 $I_1 \cdots I_{i-1} I_{i+1} \cdots I_n$). It is also shown that if $I_1 I_2 \cdots I_n$ has a finite primary decomposition and each I_i is finitely generated, then $I_1 I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1} I_{i+1} \cdots I_n)$ if and only if there exists a multiplicatively closed subset S of R such that $I_1 R_S, I_2 R_S, \cdots, I_n R_S$ are pairwise comaximal and

$$S \cap Z(R/(I_1I_2\cdots I_n)) = \emptyset.$$

Finally, we show that if I_1, I_2, \dots, I_n are ideals in a Noetherian ring R, then each $P \in Ass_R(R/I_1I_2 \dots I_n)$ contains exactly one of the ideals I_1, I_2, \dots, I_n if and only if $(R/(I_1I_2 \dots I_n))_S \cong \prod_{j=1}^n (R/I_j)_{S_j}$, where

$$S = R \setminus \{ \} \{ P : P \in Ass_R(R/I_1I_2 \cdots I_n) \}$$

and

$$S_j = R \setminus \bigcup \{P : P \in Ass_R(R/I_1I_2 \cdots I_n) \text{ and } I_j \in P\}.$$

2. Main Results

We begin this section by listing some of known results that will be used in this paper.

LEMMA 2.1. Let R be a commutative ring with identity, $I_1, I_2, \dots, I_n, I, J$ and K ideals of R and S a multiplicatively closed subset of R. Then

- $(1) (IJ)R_S = IR_S JR_S.$
- $(2) (I \cap J)R_S = IR_S \cap JR_S.$
- (3) $(I :_R J)R_S \subseteq (IR_S :_{R_S} JR_S)$. If J is finitely generated then the equality holds.
- (4) $I \subseteq (IR_S) \cap R$. The equality holds if and only if $S \cap Z(R/I) = \emptyset$, where $Z(R/I) = \{ x \in R : (I :_R x) \neq I \}$.
- (5) If I has a finite primary decomposition then $Z(R/I) = \bigcup \{ P : P \in Ass_R(R/I) \}.$

(6)
$$(I_1 \cap I_2 \cap \dots \cap I_n :_R J) = \bigcap_{i=1}^n (I_i :_R J).$$

(7) $(J :_R I_1 + \dots + I_n) = \bigcap_{i=1}^n (J :_R I_i).$

(7)
$$(J :_R I_1 + \dots + I_n) = \bigcap_{i=1}^n (J :_R I_i).$$

- (8) If Q is a primary component of I then $I \subset (I :_R Q)$.
- (9) $(I :_R JK) = ((I :_R J) :_R K).$

Proof. This is straightforward.

The following results concerning pairwise comaximal ideals are well known.

LEMMA 2.2. Let R be a commutative ring with identity and let I_1, I_2, \cdots, I_n be pairwise comaximal ideals of R. Then

- (1) For each i, I_i and $(I_1 \cdots I_{i-1} I_{i+1} \cdots I_n)^m$ are comaximal, for all positive integer m.
- (2) For each i, $(I_i :_R (I_1 \cdots I_{i-1} I_{i+1} \cdots I_n)^m) = I_i$, for all positive
- (3) $I_1 I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i :_R (I_1 \cdots I_{i-1} I_{i+1} \cdots I_n)^m),$ for all positive integer m.

Proof. It is easy to see that if I and J are comaximal then $(I :_R)$ J) = I. Hence (2) follows from (1). To prove (1), it suffices to show that if I, J and K are pairwise comaximal ideals then I and JK are comaximal. Since $R = (I+J)(I+K) = I^2 + IJ + IK + JK \subseteq I + JK$, hence I and JK are comaximal. For (3), the last equality follows from (1). To show the first equality, it may be assumed that n=2. Let $x \in I_1 \cap I_2$. Since I_1 and I_2 are comaximal, there exist $a \in I_1$, $b \in I_2$ such that a + b = 1. $x = ax + bx \in I_1I_2$. Thus $I_1 \cap I_2 \subseteq I_1I_2$. The opposite inclusion is clear. Hence $I_1I_2 = I_1 \cap I_2$.

The following is the Chinese remainder theorem which is well known, so we omit the proof.

Theorem 2.3. Let R be a commutative ring with identity and let I_1, I_2, \dots, I_n be pairwise comaximal ideals of R. If b_1, b_2, \dots, b_n are elements of R, then there exists $b \in R$ such that $b \equiv b_i \pmod{I_i}$, for $i = 1, 2, \cdots, n.$

LEMMA 2.4. Let R be a commutative ring with identity and let $I_1,\ I_2,\cdots,I_n$ be pairwise comaximal ideals of R. Then A map f: $R\longrightarrow \prod_{j=1}^n R/I_j$ defined by $f(r)=(r+I_1,\ r+I_2,\ \cdots,\ r+I_n)$ is an epimorphism of rings if and only if I_1,I_2,\cdots,I_n are pairwise comaximal. In this case, $R/(I_1I_2\cdots I_n)\cong \prod_{j=1}^n R/I_j$.

Proof. Let the map $f:R\longrightarrow \prod_{j=1}^n R/I_j$ defined by $f(r)=(r+I_1,\ r+I_2,\ \cdots,\ r+I_n)$ be an epimorphism of rings. For any $i\in\{1,\ 2,\ \cdots,\ n\}$, by resubscripting, if necessary, we may assume that i=1. Since f is onto, there exists $r\in R$ such that $f(r)=(1+I_1,\ I_2,\ \cdots,\ I_n)$. Thus $r-1\in I_1$ and $r\in I_2\cap I_3\cap \cdots\cap I_n$. This implies that there exists $a\in I_1$ such that r-1=a. Thus $1=r-a\in I_1+I_j$, for $j=2,\ 3,\ \cdots,\ n$. Hence I_1,I_2,\cdots,I_n are pairwise comaximal. The converse follows from the Chinese remainder theorem.

Theorem(2.5) is one of our main theorems in this paper.

THEOREM 2.5. Let R be a commutative ring with identity and let I_1, I_2, \dots, I_n be ideals of R. If there exists a multiplicatively closed subset S of R such that $S \cap Z(R/(I_1I_2 \cdots I_n)) = \emptyset$ and $I_1R_S, I_2R_S, \dots, I_nR_S$ are pairwise comaximal, then $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \dots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1}I_{i+1} \cdots I_n)$.

Proof. Let S be a multiplicatively closed subset of R such that $S \cap Z(R/(I_1I_2\cdots I_n)) = \emptyset$ and $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal. By lemma(2.1)(4), $(I_1I_2\cdots I_n)R_S \cap R = I_1I_2\cdots I_n$. Since $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal,

$$I_1 R_S I_2 R_S \cdots I_n R_S = I_1 R_S \cap I_2 R_S \cap \cdots \cap I_n R_S$$
$$= \bigcap_{i=1}^n (I_i R_S :_{R_S} I_1 R_S \cdots I_{i-1} R_S I_{i+1} R_S \cdots I_n R_S).$$

By contracting these ideals to R, we get

$$I_1I_2\cdots I_n\subseteq I_1\cap I_2\cap\cdots\cap I_n\subseteq (I_1R_S\cap I_2R_S\cap\cdots\cap I_nR_S)\cap R$$

$$= (I_1R_SI_2R_S\cdots I_nR_S)\cap R = (I_1I_2\cdots I_n)R_S\cap R = I_1I_2\cdots I_n$$
 and
$$I_1I_2\cdots I_n\subseteq I_1\cap I_2\cap\cdots\cap I_n$$

$$\subseteq \bigcap_{i=1}^n (I_i:_R I_1\cdots I_{i-1}I_{i+1}\cdots I_n)$$

$$\subseteq ((\bigcap_{i=1}^n (I_i:_R I_1\cdots I_{i-1}I_{i+1}\cdots I_n))R_S)\cap R$$

$$= (\bigcap_{i=1}^n ((I_i:_R I_1\cdots I_{i-1}I_{i+1}\cdots I_n)R_S))\cap R$$

$$\subseteq (\bigcap_{i=1}^n (I_iR_S:_{R_S} I_1R_S\cdots I_{i-1}R_SI_{i+1}R_S\cdots I_nR_S))\cap R$$

$$= (I_1R_S\cap I_2R_S\cap\cdots\cap I_nR_S)\cap R = I_1I_2\cdots I_n.$$
 Thus
$$I_1I_2\cdots I_n = I_1\cap I_2\cap\cdots\cap I_n = \bigcap_{i=1}^n (I_i:_R I_1\cdots I_{i-1}I_{i+1}\cdots I_n).\square$$

As an application of the result in [3], Ratliff proved the following theorem. This gives an example of ideals for which the conditions in theorem(2.5) are satisfied. We refer the reader to [3, theorem(2.7)] for a proof.

THEOREM 2.6. Let R be a Noetherian ring and a_1, a_2, \cdots and a_n nonunit elements on R. Let each permutation of a_1, a_2, \cdots and a_n be an R-sequence. If I_1, I_2, \cdots and I_m are ideals generated by disjoint subset of a_1, a_2, \cdots and a_n , then $I_1^{k_1} I_2^{k_2} \cdots I_m^{k_m} = I_1^{k_1} \cap I_2^{k_2} \cap \cdots I_m^{k_m} = \bigcap_{j=1}^m (I_j^{k_j} :_R (I_1 \cdots I_{j-1} I_{j+1} \cdots I_m)^t)$, for all positive integer k_1, \cdots, k_m and t.

Theorem(2.7) is another main theorem in this paper.

THEOREM 2.7. Let R be a commutative ring with identity and let I_1, I_2, \dots, I_n be finitely generated ideals in R. Let $I_1I_2 \dots I_n$ have a finite primary decomposition. Then $I_1I_2 \dots I_n = I_1 \cap I_2 \cap \dots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \dots I_{i-1}I_{i+1} \dots I_n)$ if and only if there exists a multiplicatively closed subset S of R such that $I_1R_S, I_2R_S, \dots, I_nR_S$ are pairwise comaximal and $S \cap Z(R/(I_1I_2 \dots I_n)) = \emptyset$.

Proof. Assume that

$$I_1 I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n$$
$$= \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1} I_{i+1} \cdots I_n).$$

Let $S = R \setminus Z(R/(I_1I_2\cdots I_n))$. Then S is a multiplicatively closed subset of R such that $S \cap Z(R/(I_1I_2\cdots I_n)) = \emptyset$. Since $I_1I_2\cdots I_n$ has a finite primary decomposition, it follows from lemma(2.4)(5) that $Z(R/(I_1I_2\cdots I_n)) = \bigcup \{P : Ass_R(R/(I_1I_2\cdots I_n))\}$. Thus, to show that $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal, it suffices to show that no $P \in Ass_R(R/I_1I_2\cdots I_n)$ contains more than one of the I_j . For any $i \neq k \in \{1, 2, \cdots, n\}$, by resubscripting, if necessary, we may assume that i = 1, k = 2. Then we have

$$I_{1} \cap I_{2} \cap \dots \cap I_{n} \subseteq (I_{1} \cap I_{2} \cap \dots \cap I_{n} :_{R} I_{1} + I_{2}) = \bigcap_{i=1}^{n} (I_{i} :_{R} I_{1} + I_{2})$$

$$= (I_{1} :_{R} I_{2}) \cap (I_{2} :_{R} I_{1}) \cap (I_{3} :_{R} I_{1} + I_{2}) \cap \dots \cap (I_{n} :_{R} I_{1} + I_{2})$$

$$\subseteq (I_{1} :_{R} I_{2}) \cap (I_{2} :_{R} I_{1}) \cap (I_{3} :_{R} I_{1}I_{2}) \cap \dots \cap (I_{n} :_{R} I_{1}I_{2})$$

$$\subseteq \bigcap_{i=1}^{n} (I_{i} :_{R} I_{1} \dots I_{i-1}I_{i+1} \dots I_{n})$$

$$= I_{1} \cap I_{2} \cap \dots \cap I_{n}.$$

This show that, for all $i \neq k \in \{1, 2, \dots, n\}$,

$$I_1 \cap I_2 \cap \cdots \cap I_n = (I_1 \cap I_2 \cap \cdots \cap I_n :_R I_i + I_k).$$

By hypothesis, for all $i \neq k \in \{1, 2, \dots, n\}$,

$$I_1 I_2 \cdots I_n = (I_1 I_2 \cdots I_n :_R I_i + I_k).$$

Hence $I_1I_2\cdots I_n=(I_1I_2\cdots I_n:_R (I_i+I_k)^m)$, for all $m\geq 1$ and for all $i\neq k\in\{1,\ 2,\ \cdots,\ n\}$. If $P\in Ass_R(R/I_1I_2\cdots I_n)$ such that $I_i+I_k\subseteq P$, then $(I_i+I_k)^m$ is contained in a P-primary component Q of $I_1I_2\cdots I_n$, for large m. This implies that

$$I_1I_2\cdots I_n\subset (I_1I_2\cdots I_n:_RQ)$$

$$\subseteq (I_1 I_2 \cdots I_n :_R (I_i + I_k)^m) = I_1 I_2 \cdots I_n,$$

which is a contradiction. Hence $I_1R_S, I_2R_S, \dots, I_nR_S$ are pairwise comaximal. The converse follows from theorem (2.7).

If R is a Noetherian ring then each ideal has a finite primary decomposition. Hence we have the following corollary.

COROLLARY 2.8. Let R be a Noetherian ring and let I_1, I_2, \dots, I_n be ideals in R. Then $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1}I_{i+1} \cdots I_n)$ if and only if there exists a multiplicatively closed subset S of R such that $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal and $S \cap Z(R/(I_1I_2 \cdots I_n)) = \emptyset$.

Proof. This immediately follows from theorem (2.7).

The following theorem is proved by Ratliff in [3].

THEOREM 2.9. Let R be a Noetherian ring and let I_1, I_2, \dots, I_n be ideals in R. Then $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n = \bigcap_{i=1}^n (I_i :_R I_1 \cdots I_{i-1}I_{i+1} \cdots I_n)$ if and only if each $P \in Ass_R(R/I_1I_2 \cdots I_n)$ contains exactly one of the ideals I_1, I_2, \cdots, I_n

COROLLARY 2.10. Let R be a Noetherian ring and let I_1, I_2, \dots, I_n be ideals in R. Then there exists a multiplicatively closed subset S of R such that $S \cap Z(R/(I_1I_2 \cdots I_n)) = \emptyset$ and $I_1R_S, I_2R_S, \dots, I_nR_S$ are pairwise comaximal if and only if each $P \in Ass_R(R/I_1I_2 \cdots I_n)$ contains exactly one of the ideals I_1, I_2, \dots, I_n

Proof. This follows from corollary (2.8) and theorem (2.9).

The following corollary is analogous to lemma (2.4).

COROLLARY 2.11. Let R be a Noetherian ring and let I_1, I_2, \dots, I_n be ideals in R. Then each $P \in Ass_R(R/I_1I_2 \dots I_n)$ contains exactly one of the ideals I_1, I_2, \dots, I_n if and only if $(R/(I_1I_2 \dots I_n))_S \cong \prod_{j=1}^n (R/I_j)_{S_j}$, where

$$S = R \setminus \{ J\{P : P \in Ass_R(R/I_1I_2 \cdots I_n) \}$$

and

$$S_j = R \setminus \bigcup \{P : P \in Ass_R(R/I_1I_2 \cdots I_n) \text{ and } I_j \in P\}.$$

Proof. By corollary(2.10), each $P \in Ass_R(R/I_1I_2\cdots I_n)$ contains exactly one of the ideals I_1, I_2, \cdots, I_n if and only if $I_1R_S, I_2R_S, \cdots, I_nR_S$ are pairwise comaximal. Thus, by lemma(2.4),

$$R_S/((I_1I_2\cdots I_n)R_S)\cong\prod_{j=1}^nR_S/(I_jR_S)$$

It is easy to see that $R_S/(I_jR_S) \cong R_{S_j}/(I_jR_{S_j})$ and $(R/I)_T \cong R_T/(IR_T)$ for all ideals I and for all multiplicatively closed subset T of R. This completes the proof.

References

- 1. H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
- 2. M. Nagata, Local Rings, Interscience Tracts 13, Interscience, New York, 1961.
- 3. L.J.Ratliff,Jr., Certain Ideals For Which $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n$, J. of Pure And Applied Algebra **66** (1990), 43–54.
- 4. L.J.Ratliff, Jr., Asymptotic Prime Divisors, Pacific J. Math. 111 (1984), no. 2, 395–413.
- 5. L.J.Ratliff, Jr., Asymptotic Sequences, J. of Algebra 85 (1983), 337–360.
- D.Rees, Rings Associated with ideals and analytic spread, Math. Proc. Cambridge Phil. Soc. 89 (1981), 423–432.

Department of Mathematics Dongguk University Seoul 100–715, Korea