ALMOST PERIODIC POINTS FOR MAPS OF THE CIRCLE

Sung Hoon Cho and Kyung Jin Min

Abstract

In this paper, we show that for any continuous map f of the circle S^{1} to itself, (1) if $x \in \Omega(f) \backslash \overline{R(f)}$, then x is not a turning point of f and (2) if $P(f)$ is non-empty, then $R(f)$ is closed if and only if $A P(f)$ is closed.

1. Introduction

Let X be a compact metric space, S^{1} the unit circle and I the unit closed interval. Suppose that f is a continuous map of X to itself. For any positive integer n, we define $f^{1}=f$ and $f^{n+1}=f \circ f^{n}$. Let f^{0} be the identity map of X. Let $A P(f), P(f), R(f), \Gamma(f), \Lambda(f)$ and $\Omega(f)$ denote the set of almost periodic points, periodic points, recurrent points, γ-limit points, ω-limit points and nonwandering points of f, respectively.

In 1980, Z. Nitecki [5] proved that for any piecewise monotone map f of the closed interval I to itself, if $x \in \Omega(f) \backslash \overline{R(f)}$, then $f^{n}(x)$ is not a turning point of f for any $n \geq 0$. And J.C. Xiong [4] proved that for any continuous map f of the closed interval I itself, $R(f)$ is closed if and only if $A P(f)$ is closed. L. Block, E. Coven, I. Mulvey and Z. Nitecki [7] proved that if f is a continuous map of the circle S^{1} to itself such that $P(f)$ is closed and non-empty, then $P(f)=\Omega(f)$. Also, J.S.Bae, S.H.Cho, K.J.Min and S.K. Yang[6] proved that for any continuous map f of the circle if $P(f)$ is empty, then $R(f)=\Omega(f)$.

In this paper, we show that for any continuous map f of the circle S^{1} to itself, (1) if $x \in \Omega(f) \backslash \overline{R(f)}$, then x is not a turning point of f and (2) if $P(f)$ is non-empty, then $R(f)$ is closed if and only if $A P(f)$ is closed.

Received September 9, 1999.
1991 Mathematics Subject Classification: Primary 58F13, 58F22.
Key words and phrases: almost periodic points, turning points, ω-limit points, α-limit points.

2. Preliminaries and Definitions

Suppose that f is a continuous map of the circle S^{1} to itself. Let \mathbb{R} be the set of real number and \mathbb{Z} be the set of integer. Formally, we think of the circle S^{1} as $\mathbb{R} \backslash \mathbb{Z}$. Let $\pi: \mathbb{R} \rightarrow \mathbb{R} \backslash \mathbb{Z}$ be the canonical projection. In fact, the map $\pi: \mathbb{R} \rightarrow S^{1}$ is a covering map. We say that a continuous map F from R into itself is a lifting of f if $f \circ \pi=\pi \circ F$. We use the following notations in this paper. Let $a, b \in S^{1}$ with $a \neq b$, and let $A \in \pi^{-1}(a), B \in \pi^{-1}(b)$ with $|A-B|<1$ and $A<B$. Then we write $\pi((A, B)), \pi([A, B]), \pi([A, B))$ and $\pi((A, B])$ to denote the open, closed and half-open arcs from a counterclockwise to b, respectively, and we denote it by $(a, b),[a, b],[a, b)$ and $(a, b]$. For $x, y \in[a, b]$ with $a \neq b$. let $X \in \pi^{-1}(x), Y \in \pi^{-1}(y)$ with $X, Y \in[A, B]$, then we define $x>y$ if and only if $X>Y$. In particular, for $a, b, c \in S^{1}, a<$ $b<c$ means that $b \in(a, c)$. Define a metric d on the circle S^{1} by $d(\pi(X), \pi(Y))=|X-Y|$, where $X, Y \in \mathbb{R}$ and $|X-Y|<\frac{1}{2}$. Then d is a well-defined metric on S^{1} which is equivalent to the original one. For the convenience, we use this metric d on S^{1}.

Let f be a continuous map of the circle S^{1} to itself. A point $x \in S^{1}$ is a periodic point of f provided that for some positive integer $n, f^{n}(x)=$ x. The period of x is the least such integer n. We denote the set of periodic point of f by $P(f)$.

A point $x \in S^{1}$ is a recurrent point of f provided that there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow x$. We denote the set of recurrent points of f by $R(f)$.

A point $x \in S^{1}$ is called a nonwandering point of f provided that for every neighborhood U of x, there exists a positive integer m such that $f^{m}(U) \bigcap U \neq \emptyset$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $y \in S^{1}$ is called an ω-limit point of $x \in S^{1}$ provided that there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$. We denote the set of ω-limit points of x by $\omega(x, f)$. We define $\Lambda(f)=\bigcup_{x \in S^{1}} \omega(x, f)$ and $\Lambda(A)=\bigcup_{x \in A} \omega(x, f)$ for any subset $A \subset S^{1}$. Note that $\Lambda(A) \subset \Lambda(B)$ for subsets A, B of S^{1} with $A \subset B$.

A point $y \in S^{1}$ is called an α-limit point of $x \in S^{1}$ if there exist a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ and a sequence $\left\{y_{i}\right\}$ of points in S^{1} with $y_{i} \rightarrow y$ such that $f^{n_{i}}\left(y_{i}\right)=x$ for all $i \geq 1$. We denote the set of α-limit points of x by $\alpha(x, f)$.

A point $y \in S^{1}$ is called an γ-limit point of $x \in S^{1}$ provided that $y \in \omega(x, f) \bigcap \alpha(x, f)$. We denote the set of α-limit points of x by $\gamma(x, f)$ and $\Gamma(f)=\bigcup_{x \in S^{1}} \gamma(x, f)$.

Now, we define $\alpha_{+}(x, f)$ and $\alpha_{-}(x, f)$ as follows : $y \in \alpha_{+}(x, f)$ (resp., $y \in \alpha_{-}(x, f)$) provided that there exist a sequence $\left\{n_{i}\right\}$ of positive integer with $n_{i} \rightarrow \infty$ and a sequence $\left\{y_{i}\right\}$ of points in S^{1} with $y_{i} \rightarrow y$ such that $f^{n_{i}}\left(y_{i}\right)=x$ for all $i \geq 1$ and $y<\cdots<y_{i+1}<y_{i}<$ $\cdots<y_{2}<y_{1}$ (resp., $y_{1}<y_{2}<\cdots<y_{i}<y_{i+1}<y$). It is easy to show that if $x \notin P(f)$, then $\alpha(x, f)=\alpha_{+}(x, f) \bigcup \alpha_{-}(x, f)$.

A point $x \in S^{1}$ is called a turning point of f if f is not local homeomorphism at x.

A point x is almostic periodic point of f provided that for any $\epsilon>0$ one can find an integer $n>0$ with the following property that for any integer $q>0$ there exists an integer r with $q \leq r<q+n$ such that $d\left(f^{r}(x), x\right)<\epsilon$, where d is the metric of S^{1}.

3. Main Results

The following lemmas appear in [1].
Lemma 1. [1] Suppose that f is a continuous map of the circle S^{1} to itself. Then

$$
P(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)
$$

Lemma 2. [1] Let $f \in C^{0}\left(S^{1}, S^{1}\right)$ and $J=[a, b]$ be an arc for some $a, b \in S^{1}$ with $a \neq b$, and let $J \cap P(f)=\emptyset$.
(a) Suppose that there exists $x \in J$ such that $f(x) \in J$ and $x<f(x)$. Then
(1) if $y \in J, x<y$ and $f(y) \notin[y, b]$, then $[x, y] f$-covers $[f(x), b]$,
(2) if $y \in J, x>y$ and $f(y) \notin[y, b]$, then $[y, x] f$-covers $[f(x), b]$.
(b) Suppose that there exists $x \in J$ such that $f(x) \in J$ and $x>f(x)$. Then
(1) if $y \in J, x<y$ and $f(y) \notin[a, y]$, then $[x, y] f$-covers $[a, f(x)]$,
(2) if $y \in J, y<x$ and $f(y) \notin[a, y]$, then $[y, x] f$-covers $[a, f(x)]$.

The following lemma appears in [4].

Lemma 3. [4] Suppose that f is a continuous map of the circle S^{1} to itself. Then $x \in A P(f)$ if and only if $x \in \omega(x, y)$ and $\omega(x, f)$ is minimal.

Proposition 4. Suppose that f is a continuous map of the circle S^{1} to itself. Then

$$
P(f) \subset A P(f) \subset R(f)
$$

Proof. By Lemma 3, $A P(f) \subset R(f)$. If $P(f)=\emptyset$, then obviously, $P(f) \subset A P(f)$. Suppose that $P(f) \neq \emptyset$. Let $x \in P(f)$ and n be the period of x. Then $x \in \omega(x, f)$ and $f^{n}(x)=x$. Let y be any point in $\omega(x, f)$. Then there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$. Since $f^{n}\left(f^{n_{i}}(x)\right)=$ $f^{n+n_{i}}(x)=f^{n_{i}+n}(x)=f^{n_{i}}\left(f^{n}(x)\right)=f^{n_{i}}(x)$ for all positive integers $i, f^{n_{i}}(x) \rightarrow f^{n}(y)$. Therefore $y \in P(f)$ and $y \in R(f)$ by Lemma 1. Hence $y \in \omega(y, f)$. Therefore $\omega(x, f) \subset \omega(y, f)$. We show that $\omega(y, f) \subset \omega(x, f)$. Let $z \in \omega(y, f)$. Then there exists a sequence $\left\{m_{i}\right\}$ of positive integer with $m_{i} \rightarrow \infty$ such that $f^{m_{i}} \rightarrow z$. Since $y \in \omega(x, f)$ and $f^{n_{i}}(x) \rightarrow y, f^{m_{i}+n_{i}}(x) \rightarrow z$. Hence $z \in \omega(x, f)$. Thus $\omega(y, f) \subset \omega(x, f)$. Therefore $\omega(x, f)$ is a minimal set. Hence we have $x \in A P(f)$ by Lemma 3. The proof is completed.

By combining Lemma 1 and Proposition 4, we have the following proposition.

Proposition 5. Suppose that f is a continuous map of the circle S^{1} to itself. Then $P(f) \subset A P(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)$.

Lemma 6. [1] Suppose that f is a continuous map of the circle S^{1} to itself. Then $x \in \Omega(f)$ if and only if $x \in \alpha(x, f)$.

Theorem 7. Let f be a continuous map of the circle S^{1} to itself. If $x \in \Omega(f) \backslash \overline{R(f)}$, then x is a not turning point of f.

Proof. Suppose x is a turning point of f. Let C be a connected component of $S^{1} \backslash \overline{R(f)}$ containing x. Then there exist $a, b \in C$ with $a \neq b$ such that $x \in(a, b),(a, b) \bigcap P(f)=\emptyset$ and $f^{n} \notin(a, b)$ for all $n \geq 1$. Since $x \in \Omega(f), x \in \alpha(x, f)$ by Lemma 6 . Without loss of generality, we may assume that $x \in \alpha_{+}(x, f)$. Then there exist a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ and a sequence $\left\{x_{i}\right\}$
of points in S^{1} with $x_{i} \rightarrow x$ such that $f^{n_{i}}\left(x_{i}\right)=x$ for all $i \geq 1$ and $a<x<\cdots<x_{i}<b$. Since x is a turning point of f, there exists a point $z \in(a, x)$ such that $f(z)=f\left(x_{i}\right)$ for sufficiently large i. Hence $x=f^{n_{i}}\left(x_{i}\right)=f^{n_{i}}(z)>z$. By Lemma 4,

$$
\left[x, x_{i}\right] f^{n_{i}-} \text { covers } \quad[a, x]
$$

and

$$
[z, x] \quad f^{n_{i}-} \text { covers } \quad[x, b] .
$$

In particular, $\left[x, x_{i}\right] f^{n_{i_{-}}}$covers $[z, x]$ and $[z, x] f^{n_{i}}$ covers $\left[x, x_{i}\right]$. Therefore $\left[x, x_{i}\right] f^{n_{i}}$-covers itself. Hence f has a periodic point in (a, b), a contradiction. The proof is completed.

Proposition 8. Suppose that f is a continuous map of the circle S^{1} to itself. Then $\Lambda(\overline{R(f)}) \subset \Lambda(\Omega(f)) \subset \Gamma(f)$.

Proposition 9. Let f be a continuous map of the circle S^{1} to itself. If $R(f)$ is closed, then $R(f)=A P(f)$. Thus $A P(f)=R(f)=\Gamma(f)=$ $\overline{R(f)}$.

Proof. We know that $A P(f) \subset R(f)$ by Proposition 5. Hence we show that $R(f) \subset A P(f)$. Let $x \in R(f)$. Then $x \in \omega(x, f)$. We show that $\omega(x, f)$ is minimal. Let y be arbitrary point in $\omega(x, f)$. Then there exists a sequence $\left\{n_{i}\right\}$ of positive integers with $n_{i} \rightarrow \infty$ such that $f^{n_{i}}(x) \rightarrow y$. Suppose that z is any point in $\omega(x, f)$. Then there exists a sequence $\left\{m_{i}\right\}$ of positive integers with $m_{i} \rightarrow \infty$ such that $f^{m_{i}}(y) \rightarrow z$. Therefore $f^{m_{i}+n_{i}}(x) \rightarrow z$. Hence $z \in \omega(x, f)$. Thus $\omega(x, f) \supset \omega(y, f)$. Since y is arbitrary point in $\omega(x, f)$, it suffices to show that $y \in \omega(y, f)$. Since $x \in R(f), y \in \omega(x, f) \subset \Lambda(R(f)) \subset \overline{R(f)})$. By Proposition 8, $y \in \Gamma(f)$. Since $R(f)$ is closed, $y \in R(f)$. Therefore $y \in \omega(y, f)$. Hence $\omega(x, f) \subset \omega(y, f)$. Therefore $\omega(x, f)$ is minimal. By Lemma 3, $x \in A P(f)$. Therefore $R(f) \subset A P(f)$. The proof is completed.

Lemma 10. [2] Suppose that f is a continuous map of the circle S^{1} to itself, and $P(f) \neq \emptyset$. Then $\overline{P(f)}=\overline{R(f)}$.

Theorem 11. Suppose that f is a continuous map of the circle S^{1} to itself and $P(f) \neq \emptyset$. Then $R(f)$ is closed if and only if $A P(f)$ is closed.

Proof. Suppose that $A P(f)$ is closed. Then we know $A P(f)=$ $\overline{P(f)}$. By Lemma 10, we have $A P(f)=\overline{R(f)}$. Also by Proposition 5, $A P(f)=R(f)=\overline{R(f)}$. Therefore $R(f)$ is closed. Assume that $R(f)$ is closed. Then $R(f)=A P(f)$ by Proposition 9. Therefore $A P(f)$ is closed. The proof is completed.

References

1. J.S.Bae, S.H.Cho and S.K.Yang, Relations between nonwandering points and turning points on the circle, Bull. Korean Math. Soc. 32 (1995), 57-66.
2. J.S.Bae and S.K.Yang, $\bar{P}=\bar{R}$ for maps of the circle, Bull. Korean. Math. Soc. 24 (1988), 151-157.
3. J.S.Bae, S.H.Cho, K.J.Min and S.K.Yang, Attracting centre of a map on the circle, preprint.
4. J.C. Xiong, Sets of almostic periodic points of continuous self-maps of the interval, preprint.
5. Z. Nitecki, Periodic and limit orbits and the depth of the center for a piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), 511-514.
6. J.S.Bae, S.H.Cho, K.J. min and S.K.Yang, Non-wandering points of a map on the circle, J.Korean. Math. Soc. 33 (1996), 1115-1121.
7. L. Block, E. Coven, I. Mulver and Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Ergodic Theory \& Dynamical Systems 3 (1983), 521-532.

Department of Mathematics
Hanseo University
Chungnam, 356-820,KOREA
Department of Mathematics
Myongji University
Yongin, 449-728, KOREA

