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CHARACTERIZATIONS OF

INFINITELY DIVISIBLE AND TYPE G PROCESSES

Kim Joo-Mok

Abstract. We generalize LePage-type representation of infinitely
divisible processes and survey type G processes. Finally, we get
integral representation and some inequality of processes of type G.

1. Introduction

Let {ξj}∞j=1 be a sequence of i.i.d. random vectors related to some
measure and let Γj be the j-th arrival time of unit rate Poisson process.
Consider the series representation

∞∑
j=1

R(Γj, ξj)f(ξj),

where, R is a function related to control measure and Borel measurable
function and f is a function belonging to Musielak-Orlicz space. Series
representations involving arrival times in a Poisson process have been
given by Ferguson and Klass [1], for real independent increment processes
without Gaussian components and with positive jumps. LePage series
representation is developed for infinitely divisible processes by Rajput
and Rosinski ([3],[4],[5],[7]) and tail behavior of subadditive functionals
of paths of infinitely divisible processes is obtained ([6]).

Chapter 2 is to review some basic definitions and some example. In
chapter 3, we generalize LePage-type representation of infinitely divisible
processes. In chapter 4, we survey a large class of infinitely divisible
processes, known as, type G processes and get integral representation
and some inequality of processes of type G.
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2. Preliminaries

We denote, by S, an arbitrary non-empty set and, by S, a δ-ring
of subsets of S. Let Λ = {Λ(A) : A ∈ S} be a real stochastic pro-
cess defined on some probability space (Ω,F , P ). We begin with some
definitions.

Definition 2.1. A random measure Λ is said to be an independently
scattered random measure if for every sequence {An} of disjoint sets in
S, the random variables Λ(An), n = 1, 2, · · · are independent and if
∪nAn belong to S then we also have Λ(∪nAn) =

∑
n Λ(An) a.s, where

the series is assumed to converge almost surely.

Definition 2.2. A random measure Λ is said to be an independently
scattered infinitely divisible random measure if for each A ∈ S, Λ(A)
is infinitely divisible random variable and Λ is independently scattered
random measure.

We know that characteristic function of infinitely divisible random
variable Λ(A) can be written in the Khintchin-Lévy form;

EeiuΛ(A)=exp{iuν0(A)− 1

2
u2ν1(A)+

∫
R

eiux− 1− iuxI|x|≤τ (x)FA(dx)}(2.1)

for some τ > 0, where −∞ < ν0(A) < ∞, 0 ≤ ν1(A) < ∞ and FA is a
Lévy measure on R.

Definition 2.3. A σ-finite measure ν on σ(S) is said to be a control
measure of the random measure Λ if Λ and ν have the same families of
zero sets.

Example 2.1. Let ν0, ν1 and F. be as in (2.1) and define

ν(A) := |ν0|(A) + ν1(A) +

∫
R

min{1, x2}FA(dx), A ∈ S,

Then ν : σ(S) → [0,∞] is a control measure of Λ, where σ(S) is the
smallest σ-field generated by S.

¿From [2], we adopt the following definition of a process of type G.

Definition 2.4. A process {Xt, t ∈ T} is of type G if there is a
function ψ : [0,∞) → R with completely monotone derivative on (0,∞),
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ψ(0) = 0, and a σ-finite measure λ on the cylindrical σ-field of RT such
that

E exp
n∑

j=1

θjXtj = exp{−
∫

RT

ψ(2−1|
n∑

j=1

θjs(tj)|2)λ(ds)}. (2.2)

3. Series representation

Let λ be an arbitrary but fixed control measure of Λ.

Lemma 3.1. Let F. be as in (2.1). Then there exists a unique σ-finite
measure F on σ(S)× B(R) such that

F (A×B) = FA(B), for all A ∈ S, B ∈ B(R). (3.1)

Moreover, there exists a function Q : S × B(R) → [0,∞] such that
(i) Q(s, ·) is a Borel measure on B(R) for every s ∈ S,

(ii) Q(·, B) is a Borel measurable function, for every B ∈ B(R),

(iii)
∫

S×R
h(s, x)F (ds, dx) =

∫
S

[∫
R
h(s, x)Q(s, dx)

]
λ(ds) for every

σ(S)× B(R)-measurable function h : S ×R→ [0,∞].

(iv)
∫

R
(1 ∧ x2)Q(s, dx) <∞, for every s ∈ S,

(v) ΦΛ(A)(u) = exp{
∫

A
K(u, s)λ(ds)}, where,

K(u, s) = iua(s)− 1

2
u2σ2(s) +

∫
R

(eiux − 1− iuxI{|x|≤τ}(x))Q(s, dx),

a(s) =
dν0

dλ
(s), σ2(s) =

dν1

dλ
(s).

(vi) λ{s ∈ S : a(s) = σ2(s) = Q(s, R) = 0} = 0.

Proof. By [3, Lemma 2.3], there exists a unique σ-finite measure F on
σ(S)×B(R) satisfying (3.1) and we can find a function ρ : S ×B(R) →
[0,∞] such that ρ(s, ·) is a Lévy measure on B(R) for every s ∈ S ,
ρ(·, B) is a Borel measurable function for every B ∈ B(R) and∫

S×R

h(s, x)F (ds, dx) =

∫
S

∫
R

h(s, x)ρ(s, dx)λ(ds)

for every σ(S)× B(R)-measurable function h : S ×R→ [0,∞].



36 Kim Joo-Mok

Since λ and ν are equivalent σ-finite measures on σ(S), there exists
a strictly positive and finite version ψ of the Radon-Nikodym derivative
dν/dλ. Put

Q(s, dx) = ψ(s)ρ(s, dx).

Then (i), (ii) and (iii) and (v) follow because

FA(B) = F (A×B) =

∫
A

∫
R

IB(x)Q(s, dx)λ(ds).

Since ρ(s, ·) is a Lévy measure, (iv) is satisfied. Finally, note that A0 =
{s : a(s) = σ2(s) = Q(s, R) = 0} is a Λ-zero set, so that λ(A0) = 0.

Let q be a non-negative number such that

E|Λ(A)|q <∞ for all A ∈ S.
Define

U(u, s) = ua(s) +

∫
R

(uxI{|ux|≤1}(x)− uxI{|x|≤1}(x))Q(s, dx)

and for 0 ≤ p ≤ q, u ∈ R and s ∈ S,

Φp(u, s) = U∗(u, s) + u2σ2(s) + Vp(u, s),

where
U∗(u, s) = sup

|c|≤1

|U(cu, s)|,

Vp(u, s) =

∫ ∞

−∞
{|ux|pI{|ux|>1} + |ux|2I{|ux|≤1}}Q(s, dx).

We define the so-called Musielak-Orlicz space

LΦp(S, λ) = {f ∈ L0(S, λ) :

∫
S

Φp(|f(s)|, s)λ(ds) <∞}.

The space LΦp(S, λ) is complete linear metric space with norm defined
by

||f ||Φp = inf{c > 0 :

∫
S

Φp(c
−1|f(s)|, s)λ(ds) ≤ 1}.

Let λ(1) be an arbitrary probability measure on (S, σ(S)) equivalent
to λ. Set

R(r, s) := I(r
dλ(1)

dλ
(s), s), r > 0, s ∈ S,

where,
I(r, s) = inf{x > 0 : Q(s, [−x, x]c) ≤ r}, r > 0.
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Define

Ff (A) =

∫ ∞

0

∫
S

IA\{0}(R(r, s)f(s))λ(1)(ds)dr.

Theorem 3.1. Suppose f ∈ LΦ0 . Then Ff (A) is a Lévy measure.

Proof. Since, for every x ≥ 0 and s ∈ S,

Leb{r > 0 : R(r, s) > x} =
dλ

dλ(1)
(s)Q(s, [−x, x]c),

we know

Ff (A) =

∫
S

∫ ∞

0

IA\{0}(xf(s))Q(s, dx)λ(ds).

By [3, Proposition 2.6],

exp{iuaf,τ +

∫
R

(eiux − 1− iuxI{|x|≤τ})Ff (dx)

is a characteristic function of
∫

S
f(s)Λ(ds), where,

af,τ =

∫
S

f(s)a(s)λ(ds) +

∫
S

∫
R

(f(s)xI{|f(s)x|≤τ}−

f(s)xI{|x|≤τ})Q(s, dx)λ(ds),

and we get∫
{|x|≤1}

x2Ff (ds) =

∫
S

∫
{|f(s)x|≤1}

|f(s)x|2Q(sdx)λ(ds)

≤
∫

S

|Φ0(|f(s)|, s)λ(ds) <∞,

∫
{|x|>1}

Ff (ds) =

∫
S

∫
{|f(s)x|>1}

Q(sdx)λ(ds)

≤
∫

S

|Φ0(|f(s)|, s)λ(ds) <∞.

Therefore, we conclude that Ff is a Lévy measure.

Let {ξj}∞j=1 be a sequence of i.i.d. random vectors taking values in

(S,S) with L(ξj) = λ(1) and let Γj be the j-th arrival time of unit rate
Poisson process. Then the following theorem holds.
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Theorem 3.2. Suppose that f ∈ LΦp for some p ≥ 1. Then

Mn(f) :=
n∑

j=1

R(Γj, ξj)f(ξj)− Cf (Γn)

converges to M∞(f) a.s. and in Lp as n→∞, where,

Cf (t) =

∫ t

0

∫
S

R(r, s)f(s)λ(1)(ds)dr.

Proof. We know that Ff is a Lévy measure by Theorem 3.1. Since∫
{|x|>1}

|x|pFf (dx) =

∫
S

∫
{|f(s)x|>1}

|xf(s)|pQ(s, dx)λ(ds)

≤
∫

S

Φp(|f(s)|, s)λ(ds) <∞.

Therefore, it follows from [5, Theorem 3.1].

Corollary 3.1. The characteristic function of M∞(f) is

exp{iuaf +

∫
R

(eiux − 1− iux)Ff (dx)},

where, af =
∫
f(s)a(s)λ(ds).

4. Type G Process

We consider a large class of symmetric infinitely divisible processes,
known as processes of type G, whose marginal distributions are variance
mixtures of the normal distribution. The function ψ in definition 2.4
can be written as

ψ(y) =

∫
R

(1− e−yt2)σ(dt), y ≥ 0,

where σ is a symmetric Lévy measure on R (i.e. satisfies
∫

R
(1∧t2)σ(dt) <

∞ ).

Lemma 4.1. ([2]) Define

ρ(B) =
1√
2π

∫ ∞

−∞
σ(u−1B)e−

1
2
u2

du, B ∈ B(R \ {0}).
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Then ρ is a symmetric Lévy measure and

ψ(2−1θ2) =

∫
R

(1− cos(θt))ρ(dt), θ ∈ R. (4.1)

Let S = RT and S be a sylindrical σ-field of RT with finite measure
λ. Define

FA(B) = λ(A)ρ(B),

Ff (B) = F{(s, x) ∈ RT ×R : f(s)x ∈ B \ {0}}.

Lemma 4.2. ([2, Theorem 2.1]) Suppose that {Xt, t ∈ T} is a process
of type G without the Gaussian component whose f.d.d.’s are determined
by (2.2). Then there is an independently scattered random measure Λ
on S with characteristic function

E exp iθΛ(A) = exp{−
∫

A

ψ(2−1θ2)λ(ds)}, A ∈ S

such that

{Xt, t ∈ T}
d
= {
∫

RT

s(t)Λ(ds), t ∈ T},

in the sense of the equality of the f.d.d.’s. Moreover, for any Λ-integrable
f ,

E exp i

∫
RT

fdΛ = exp{−
∫

RT

ψ(2−1f 2(s))λ(ds)}.

Theorem 4.1. (i) For any Λ-integrable f : RT → R,

E exp i

∫
RT

fdΛ = exp{−
∫

R

(1− cosx)Ff (dx)}.

(ii) f : RT → R is Λ-integrable if and only if
∫

R
(1 ∧ x2)Ff (dx) <∞.

Proof. (i) By Lemma 4.2, (4.1) and property of Ff ,

E exp i

∫
RT

fdΛ = exp{−
∫

RT

ψ(2−1f 2(s))λ(ds)}

= exp{−
∫

RT

∫
R

(1− cos(xf(s)))ρ(dx)λ(ds)}

= exp{−
∫

R

(1− cosx)Ff (dx)}.
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(ii)

f is Λ− integrable ⇔
∫

RT

ψ(2−1f 2(s))λ(ds) <∞

⇔
∫

RT

∫
R

(1 ∧ x2f 2(s))ρ(dx)λ(ds) <∞

⇔
∫

R

(1 ∧ x2)Ff (dx) <∞.

Define

R(r) = inf{x > 0 : ρ([−x, x]c) ≤ r}.
Let λ(1) probability measure on RT such that λX � λ(1) and let h =
dλ

dλ(1)
.

A process {Xt, t ∈ T} is of type G if and only if {Xt, t ∈ T} admits the
series representation

{Xt, t ∈ T}
d
= {

∞∑
j=1

ζX
j RX

(
ΓX

j

hX(Vj,X)

)
Vj,X(t), t ∈ T} (4.2)

in the sense of equality of f.d.d.’s. In (4.2), the Γj’s are the arrival
times of a unit rate Poisson process, the ζj’s are i.i.d. N(0, 1), the
process {Vj(t), t ∈ T} are i.i.d. with the common distribution related
to the measure λ. Moreover, the sequences {Γj}, {ζj}, {Vj(t), t ∈ T} are
independent.

Let ∆Xtk1
,Xtk2

(tk1 < tk2) be

∞∑
j=1

R2

(
Γj

hj,X(Vj,X)

)
(Vj,X(tk1)− Vj,X(tk2))

2

and consider ∆Xt1 ,Xt2 ,··· ,Xtd
whose (tk1 , tt2)-component is ∆Xtk1

,Xtk2
and

represent

ρ∆Xt1
,Xt2

,··· ,Xtd
: (R

d(d−1)/2
+ , σ(R

d(d−1)/2
+ )) → R

as a Lévy measure of ∆Xt1 ,Xt2 ,··· ,Xtd
.

Theorem 4.2. Let {Xt, t ∈ T} and {Yt, t ∈ T} be type G processes
with Lévy measure ρX , ρY and parameters ψX , ψY and λX , λY , respec-
tively. Assume E|Xt| <∞ and E|Yt| <∞. For any d, for any increasing
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Borel set A in σ(R
d(d−1)/2
+ ) and for any t1, t2, · · · , td ∈ T ,

ρ∆Xt1
,Xt2

,··· ,Xtd
(A) ≥ ρ∆Yt1

,Yt2
,··· ,Ytd

(A),

then
E sup

t∈T
X(t) ≥ E sup

t∈T
Y (t).

Proof. Define

RX(r) = inf{x > 0 : ρX([−x, x]c ≤ r},
RY (r) = inf{x > 0 : ρY ([−x, x]c ≤ r}.

Let λ
(1)
X and λ

(1)
Y be probability measure on RT such that λX � λ

(1)
X and

λY � λ
(1)
Y and let hX =

dλX

dλ
(1)
X

and hY =
dλY

dλ
(1)
Y

.

Then Xt and Yt have the following series representation

{Xt, t ∈ T}
d
= {

∞∑
j=1

ζX
j RX

(
ΓX

j

hX(Vj,X)

)
Vj,X(t), t ∈ T}, (4.3)

in the sense of equality of f.d.d.’s. Using a similar notation,

{Yt, t ∈ T}
d
= {

∞∑
j=1

ζY
j RX

(
ΓY

j

hY (Vj,Y )

)
Vj,Y (t), t ∈ T}. (4.4)

Let FX and FY be the σ-fields generated on the corresponding sample
spaces by {ΓX

j }∞j=1 and {Vj,X(t)}∞j=1 and by {ΓY
j }∞j=1 and {Vj,Y (t)}∞j=1,

respectively. Let X̃t and Ỹt denote the right-hand sides of (4.3) and
(4.4), respectively. Moreover, denoting by EFX

( EFY
) the conditional

expectation given FX (FY ), we obtain

EFX
(X̃(tk1)− X̃(tk2))

2 =
∞∑

j=1

R2
X

(
ΓX

j

hX(Vj,X)

)
(Vj,X(tk1)− Vj,X(tk2))

2,

EFY
(Ỹ (tk1)− Ỹ (tk2))

2 =
∞∑

j=1

R2
Y

(
ΓY

j

hY (Vj,Y )

)
(Vj,Y (tk1)− Vj,Y (tk2))

2,

for any tk1 < tk2 . By [7, Theorem 3.1], we know that for any A ∈
σ(R

d(d−1)/2
+ ) and for any t1, t2, · · · , td ∈ T ,

ρ∆Xt1
,Xt2

,··· ,Xtd
(A) ≥ ρ∆Yt1

,Yt2
,··· ,Ytd

(A)

which implies ∆Xt1 ,Xt2 ,··· ,Xtd
dominates stochastically ∆Yt1 ,Yt2 ,··· ,Ytd

.
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Thus,

E sup
t∈T

X(t) ≥ E max
i=1,2,··· ,d

X(ti) = E max
i=1,2,··· ,d

X̃(ti)

≥ E max
i=1,2,··· ,d

Ỹ (ti) = E max
i=1,2,··· ,d

Y (ti),

for any t1, t2, · · · , td ∈ T.

References

[1] T.S. Furguson and M.J. Klass, A representation of independent increment pro-
cesses without Gaussian components, ann. Math. Statist. 43 (1972), 1634-1643.

[2] P.S. Kokoszka and M.S. Taqqu, A characterization of mixing processes of type
G, J. Theoretical Probab. 9 (1996), 3-17.

[3] B.S. Rajput and J. Rosinski, Spectral representations of infinitely divisible pro-
cesses, Prob. Th. Rel. fields 82 (1989), 451-487.

[4] J. Robinski, On path properties of certain infinitely divisible processes, Sto- ch.
Proc.Appl. 33 (1989), 73-87.

[5] J. Robinski, On series representations of infinitely divisible random vectors, Ann.
Prob. 18, 1 (1990), 405-430.

[6] J. Robinski and G. Samorodnitsky, Distributions of subadditive functionals of
sample paths of infinitely divisible processes, Ann. Prob. 21, 2 (1993), 996-1014.

[7] G. Samorodnitsky and M.S. Taqqu, Stochastic monotonicity and slepian type
inequalities for infinitely divisible and stable random vectors, Ann. Prob. 21, 1
(1993), 143-160.

Department of Computational Applied Mathematics
Semyung University
Jecheon 390-230, Korea
E-mail : jmkim@venus.semyung.ac.kr


