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CHARACTERIZATIONS OF
INFINITELY DIVISIBLE AND TYPE G PROCESSES

Kim Joo-Mok

ABSTRACT. We generalize LePage-type representation of infinitely
divisible processes and survey type G processes. Finally, we get
integral representation and some inequality of processes of type G.

1. Introduction

Let {&;}52, be a sequence of i.i.d. random vectors related to some
measure and let I'; be the j-th arrival time of unit rate Poisson process.
Consider the series representation

ZR(Fjafj)f(fj),

where, R is a function related to control measure and Borel measurable
function and f is a function belonging to Musielak-Orlicz space. Series
representations involving arrival times in a Poisson process have been
given by Ferguson and Klass [1], for real independent increment processes
without Gaussian components and with positive jumps. LePage series
representation is developed for infinitely divisible processes by Rajput
and Rosinski ([3],[4],[5],]7]) and tail behavior of subadditive functionals
of paths of infinitely divisible processes is obtained ([6]).

Chapter 2 is to review some basic definitions and some example. In
chapter 3, we generalize LePage-type representation of infinitely divisible
processes. In chapter 4, we survey a large class of infinitely divisible
processes, known as, type G processes and get integral representation
and some inequality of processes of type G.
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2. Preliminaries

We denote, by S, an arbitrary non-empty set and, by S, a d-ring
of subsets of S. Let A = {A(A) : A € 8} be a real stochastic pro-
cess defined on some probability space (€2, F, P). We begin with some
definitions.

DEFINITION 2.1. A random measure A is said to be an independently
scattered random measure if for every sequence {A,} of disjoint sets in
S, the random variables A(A,), n = 1,2,--- are independent and if
U, A, belong to S then we also have A(U,A,) = > A(A,) a.s, where
the series is assumed to converge almost surely.

DEFINITION 2.2. A random measure A is said to be an independently
scattered infinitely divisible random measure if for each A € S, A(A)
is infinitely divisible random variable and A is independently scattered
random measure.

We know that characteristic function of infinitely divisible random
variable A(A) can be written in the Khintchin-Lévy form;

Ee™M ) =exp{iuvy(A) — %UQIA(A)"'/emx_ 1 — iualjp)<- () Fa(dz) }(2.1)
R

for some 7 > 0, where —oo < 15(A) < 00,0 < 11(A) < 00 and Fjy is a
Lévy measure on R.

DEFINITION 2.3. A o-finite measure v on o(S) is said to be a control
measure of the random measure A if A and v have the same families of
zero sets.

EXAMPLE 2.1. Let vy,v4 and F be as in (2.1) and define
v(A) = w|(A) + 11 (A) + / min{l, 2*}F,(dz), A€S,
R

Then v : 0(S) — [0,00] is a control measure of A, where o(S) is the
smallest o-field generated by S.
¢ From [2], we adopt the following definition of a process of type G.

DEFINITION 2.4. A process {X;,t € T} is of type G if there is a
function ¢ : [0,00) — R with completely monotone derivative on (0, c0),
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¥(0) = 0, and a o-finite measure X on the cylindrical o-field of RT such
that

Pesp 0%, = epl= [ (0PN} (2)

3. Series representation

Let A be an arbitrary but fixed control measure of A.

LEMMA 3.1. Let F be as in (2.1). Then there exists a unique o-finite
measure F' on o(S) x B(R) such that

F(AX B)=Fa(B), for all A€S,B € B(R). (3.1)
Moreover, there exists a function @ : S x B(R) — [0, 00] such that
(i) Q(s,-) is a Borel measure on B(R) for every s € S,
(ii) Q(-, B) is a Borel measurable function, for every B € B(R),

(i) [4 ph(s,x)F(ds,dx) = [i[[,h(s (s,dz)] A(ds) for every
o(S) x B(R)-measurable funcmon h:S x R — [O o).

(iv) [H(LA xQ)Q(s dz) < oo, for every s € S,
(V) @aqay(u) = exp{ [, K A(ds)}, where,

K(u,s) = iua(s) — ;UQUZ(S) + /R(ei“x — 1 —duxl{y<y(2))Q(s, dz),

dl/o dl/l

ol9) = 220, o(s) = P(s).
(vi) Ms € S 1 a(s) = d%(s) = Q(s, R) =0} = 0.

Proof. By [3, Lemma 2.3|, there exists a unique o-finite measure F' on
0(S) x B(R) satisfying (3.1) and we can find a function p : S x B(R) —
[0, 00] such that p(s,-) is a Lévy measure on B(R) for every s € S |
p(-, B) is a Borel measurable function for every B € B(R) and

/SXRh(S,x)F(ds,dx):[q/}%h(s’x)p(s7dx)A(ds)

for every o(S) x B(R)-measurable function h : S x R — [0, 0o].
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Since A and v are equivalent o-finite measures on o(S), there exists
a strictly positive and finite version v of the Radon-Nikodym derivative
dv/d\. Put

Q(s, dx) = (s)p(s, dz).
Then (i), (ii) and (iii) and (v) follow because

FA(B) = F(A x B) //IB Q(s, dz)\(ds).

Since p(s,-) is a Lévy measure, (iv) is satisfied. Finally, note that Ag =
{s:a(s) =0%(s) =Q(s,R) = 0} is a A-zero set, so that A(4p) =0. O

Let ¢ be a non-negative number such that
EIA(A)|" < oo forall AeS.
Define

Ul(u,s) = ua(s) + /(ux[{|ux|§1}(x) — uxlfjg<1y(2))Q(s, dx)
R
and for 0 <p<g,ue€ Rand s € S,
@, (u, s) = U*(u, s) + u?a?(s) + Vp(u, s),

where

U*(u, s) = sup [U(cu, s)|,

le|<1

Vp(u,s)z/ {lua P Ijuzis1y + [uz* jue <1y YQ(s, da).

We define the so-called Musielak-Orlicz space
Lo,(8.0) = { € La(S.2) ¢ [ @,(1£(5)L )Ads) < o}

The space Lg, (S, ) is complete linear metric space with norm defined

by
||f||¢p:mf{c>o:/ (U f ()], s)A(ds) < 1.
S

Let AN be an arbitrary probability measure on (S, ¢ (S)) equivalent
to A. Set
A\

R(r,s) = I(r )

(s),s), r>0, s€S,

where,

I(r,s) =inf{x > 0:Q(s, [—x,z]°) <r},r>0.
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:/OOO/SIA\{O}(R(T,S)f(S)))\(l)(dS)dT.

THEOREM 3.1. Suppose f € Lg,. Then Ff(A) is a Lévy measure.

Define

Proof. Since, for every x > 0 and s € .S,

d\
Leb{r >0: R(r,s) >z} = O]

A(D (S)Q<37 [—:L’, ‘ﬂc)a

we know
// Ingoy(zf(s))Q(s, dx)A(ds).
By [3, Proposition 2.6],

exp{ivays, + /R(ei” — 1 —iuzlyy<y) Fr(do)

is a characteristic function of [, f(s)A(ds), where,

/f A(ds) + // $)xL{|f(s)zj<ry—

f(8>xj{\z|§7'}>Q(Sa dl‘))\(dé’),
and we get

/{'”'Sl}x}_f(ds) B /S/{f(s)xﬁl}‘f(s)x‘ Q(sdz)A(ds)
< [ 12l s <

/{|I>1} Frtds) = /S/{f(s):e>1} Qlsdr)M(ds)
< [l s <

Therefore, we conclude that Fy is a Lévy measure. [

Let {&;}32, be a sequence of i.i.d. random vectors taking values in

(S,8) with £(&;) = A and let T'; be the j-th arrival time of unit rate
Poisson process. Then the following theorem holds.
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THEOREM 3.2. Suppose that f € Lg, for some p > 1. Then
My(f) = R(T;, ) f(&) — Cs(Tn)
j=1

converges to My (f) a.s. and in LP as n — oo, where,

C(t) :/0 /SR(T’, ) f(s)AH (ds)dr.

Proof. We know that F; is a Lévy measure by Theorem 3.1. Since

|l = [ [ P dos)
{lz|>1} 5 J{If(s)z|>1}
< [ ol < o
Therefore, it follows from [5, Theorem 3.1]. ]

COROLLARY 3.1. The characteristic function of M (f) is

exp{iuas + / (e — 1 — jux)Fs(dz)},

R

where, ay = [ f(s)a(s)\(ds).

4. Type G Process

We consider a large class of symmetric infinitely divisible processes,
known as processes of type G, whose marginal distributions are variance
mixtures of the normal distribution. The function v in definition 2.4
can be written as

bly) = /R (1— e )o(dt), y>0,

where o is a symmetric Lévy measure on R (i.e. satisfies [,(1At*)o(dt) <
00 ).

LEMMA 4.1. ([2]) Define

p(B) = \/% /OO o(u 'B)e 2" du, B € B(R\ {0}).
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Then p is a symmetric Lévy measure and
P(2710%) = /(1 — cos(0t))p(dt), 6 € R. (4.1)
R

Let S = RT and S be a sylindrical o-field of RT with finite measure
A. Define

Fa(B) = MA)p(B),
Fy(B) = F{(s,z) € R" x R: f(s)x € B\ {0}}.

LEMMA 4.2. ([2, Theorem 2.1]) Suppose that { X;,t € T'} is a process
of type G without the Gaussian component whose f.d.d.’s are determined
by (2.2). Then there is an independently scattered random measure A
on 8 with characteristic function

EexpifA(A) = exp{—/Aw(Q_lQQ))\(ds)}, AeS

such that
(XnteTy 2y / S(DA(ds), t € T},
RT

in the sense of the equality of the f.d.d.’s. Moreover, for any A-integrable
f

Eexpi fdA = exp{— Y271 f2(s5))\(ds)}.

THEOREM 4.1. (i) For any A-integrable f : RT — R,
Eexpi/ fdA = exp{— / (1 — cosx)Fy(dx)}.
RT R

(i) f: R" — R is A-integrable if and only if [,(1 A\ x*)Fs(dz) < oo.
Proof. (i) By Lemma 4.2, (4.1) and property of F7,

Eexpi / Fan = epl= [ v @)
— expl— /R ) /R (1 - cos(zf(s)))p(dz) A(ds))
= exp{—/R(l—cosx)}"f(dx)}.
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(i)
f is A —integrable < . V(27 f2(s))\(ds) < o0
o /RT/R(l/\ﬁfQ(s))p(dx))\(ds) < o0
o /R(1Ax2)ff(dx) < . -

Define
R(r) =inf{x > 0: p([—x,z]°) < r}.
Let AV probability measure on RT such that Ax < A and let h =
d\
A\’
A process {X;,t € T} is of type G if and only if {X;,¢t € T} admits the
series representation

X

(X, teT)< {;CJXRX (%m) Vix(t), te T} (4.2)

in the sense of equality of f.d.d.’s. In (4.2), the I';’s are the arrival
times of a unit rate Poisson process, the (;’s are iid. N(0,1), the
process {V;(t),t € T'} are i.i.d. with the common distribution related
to the measure A. Moreover, the sequences {I';}, {(;},{V;(t),t € T'} are
independent.

Let Ath17th2 (tk:1 < tk2) be

iR (i) W) = V()

and consider Ay, x,, .. x,, whose (t,, ti,)-component is A Xuy, Koy, and
represent

d(d—1)/2 d(d—1)/2
Py oy | (BT o(RUD) R

d

as a Lévy measure of Ax, x, .. x,,-

THEOREM 4.2. Let {X;,t € T} and {Y;,t € T'} be type G processes
with Lévy measure px, py and parameters ¢x, ¥y and \x, Ay, respec-
tively. Assume E|X;| < oo and E|Y;| < co. For any d, for any increasing
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(RETD)

Borel set A in o and for any ti,ty,--- ,tg €T,

pAth,XtQ,m,Xt (A) Z pAYt Yio, Y3 (A)7

d 1’720 Tty
then
Esup X(t) > Esup Y (t).

teT teT
Proof. Define
Rx(r) =inf{x > 0: px([—x,x]° < r},
Ry (r) = inf{z > 0: py([-z, 2] <r}.
Let /\gp and )\g/l) be probability measure on RT such that Ax < )\g? and

d)\x d\
Ay K )\g,l) and let hxy = O and hy = Y
dAY AP

Then X; and Y; have the following series representation

d = X PJ
(X;,teT} = {; Ry (W) Vix(t), teT},  (43)

in the sense of equality of f.d.d.’s. Using a similar notation,

X

Y

(Y, teT}< {;g}’}zx (%‘J/Jy)) Viy(t), teT}.  (4.4)

Let Fx and Fy be the o-fields generated on the corresponding sample
spaces by {FX} 2, and {V}X( ) f’il and by {F;} 2, and {V}Y( )}_] 1
respectively. Let X, and Y; denote the right-hand sides of (4.3) and
(4.4), respectively. Moreover, denoting by Er, ( Ex, ) the conditional
expectation given Fx (Fy), we obtain

- FX
Efx (X (tkl) tkz Z RX <hX

)> (Vix (try) = Vix (thy))?,

Er, (Y (tr,) = Y (t,)) Z Ry, (hY )> (Viy (th) = Viy (tr))?,

for any tr, < ty,. By [T, Theorem 3.1], we know that for any A €

U(Ri(dflw) and for any tq,tg,--- ,t4 €T,

pAth Ky Xy (A) > pAYtl,YtQ,m Vi, (A)

which implies Ax, x,, .. x,, dominates stochastically Ay, v, .. v; -
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Thus,
EsupX(t) > E X(t)=E X(t;
WpX(H) 2 B max X(t) =B max X(t)
> F max Y(4)=FE max Y(t),
i=1,2, ,d =12, ,d
for any t1,tq, - ,tqg € T. —~
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