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FUZZY R-CLUSTER AND FUZZY R-LIMIT POINTS
YoNnG CHAN KiM AND YOUNG SUN KiMm

ABSTRACT. In this paper, we introduce the notions of fuzzy r-
cluster and fuzzy r-limit points in smooth fuzzy topological spaces
and investigate some of their properties.

1. Introduction and preliminaries

A.P. Sostak [11] introduced the smooth fuzzy topology as an ex-
tension of Chang’s fuzzy topology [1]. It has been developed in many
directions [2,5,6]. Pu and Liu [10] introduced the notions of fuzzy nets
and Q-neighborhoods and established the convergence theory in fuzzy
topological spaces. In 1994, Chen and Cheng [3] introduced the con-
cepts of fuzzy cluster and fuzzy limit points in fuzzy topological spaces
with respect to R-neighborhood instead of Q-neighborhood.

In this paper, we introduce the concept of fuzzy r-cluster and fuzzy
r-limit points in a smooth fuzzy topological space as an extension of
[10] and investigate some of their properties and give an example of
those.

Throughout this paper, let X be a nonempty set, I = [0,1] and
I = (0,1]. A fuzzy point x; for t € Iy is an element of X such that,

for y € X,
() = tify =z,
= 0if y # .

The set of all fuzzy points in X is denoted by Pt(X). Let x; € Pt(X)
and \,pu € I*. 2y € Nifft < \(z) for x € X. \is quasi-coincident with
, denoted by A g pu, if there exists € X such that A(z) + pu(x) > 1.
If A\ is not quasi-coincident with p, we denote A\ g p. All the other
notations and the other definitions are standard in fuzzy set theory.
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DEFINITION 1.1 ([11]). A function 7 : I*X — T is called a smooth
fuzzy topology on X if it satisfies the following conditions:
(01) T(0) =7 (1) = 1, where O(z) =0 and 1(z) = 1 for all x € X.
(02) T(p1 A pz) > T (1) AT (p2), for any py, po € I
(03) T(Vier #4) = Nier T (1a), for any {pi}ier C rx.
The pair (X,7) is called a smooth fuzzy topological space.

THEOREM 1.2 ([2]). Let (X,7) be a smooth fuzzy topological
space. For each r € Iy and A\ € IX, we define a fuzzy closure op-
erator Ct : IX x Iy — IX as follows:

Cr(\r) = Npel* | X<p, T(1—p) =71}

For \, i € IX and r,s € Iy, it satisfies the following properties:

DEFINITION 1.3 ([7]). Let A\, € IX. Define the fuzzy quasi-
difference of A and p, denoted by A\ p, as

A(z), if p(z)

0
A\ p)(x) =q 0,  ifAx) = p(z) >0,
AMz), if AMz) < p(x).

Y

NoTATION 1.4. Let (X,7) be a smooth fuzzy topological space,
p€IX, z, € Pt(X) and r € I,. We denote

N(w,r) ={peI* |z qu, T(u) >r}.

DEFINITION 1.5 ([7]). Let (X,7) be a smooth fuzzy topological
space, A € IX, x; € Pt(X) and r € I.

(1) ¢ is called an fuzzy r-adherent point of X\ if for every u €
N (z¢,7), we have p g .
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(2) ¢ is called a fuzzy r-accumulation point of X\ if for every p €
N (zy,7), we have p g (A \ z¢).
(3) Define the fuzzy r-derived set of A, denote by Dz (A,r), as

Dr(\r) = \/{xt € Pt(X) | x4 is a fuzzy r-accumulation point of A\}.

THEOREM 1.6 ([7]). Let (X,7) be a smooth fuzzy topological
space. For each \ € IX and r € I, we have

Cr(\r) = \/{xt € Pt(X) | z is a fuzzy r-adherent point of \}.

THEOREM 1.7 ([7]). Let (X,7) be a smooth fuzzy topological
space. For \, i € IX and r,s € Iy, the following properties hold:

(1) Dr(\,7r) < Cr(\ ).

(2) Cr(\,7m) = AV Dr (A 7).

(3) Cr(A\,r) =X iff Dr(A\, 1) < A

(4) If r < s, then Dy (A, 1) < D7 (A, s).

(5) Dr(AV u, ) < D (A, r)V Dr(p,r).

2. Fuzzy r-cluster points and r-limit points

DEFINITION 2.1. Let D be a directed set. A function S : D —
Pt(X) is called a fuzzy net. Let A € IX. We say S is a fuzzy net in A
if S(n) € A for every n € D.

Using Notation 1.4 , we can define the followings:

DEFINITION 2.2. Let (X,7) be a smooth fuzzy topological space,
,MEIX, T EPt(X) and r € .

(1) ; is called a fuzzy r-cluster point of S, denoted by Sco xy, if
for every u € N(x¢,7), S is frequently quasi-coincident with g,
i.e, for each n € D, there exists ng € D such that ng > n and
S(no) q p-

(2) z; is called a fuzzy r-limit point of S, denoted by S x, if for
every i € N(x¢,r), S is eventually quasi-coincident with p, i.e,
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there exists ng € D such that for each n € D with n > ng, we
have S(n) g p. We denote

clur(S,r) \/{xt € Pt(X) | ¢ is a fuzzy r-cluster point of S},
limg (S, ) \/{xt € Pt(X) | z is a fuzzy r-limit point of S}.

DEFINITION 2.3. Let (X,7) be a smooth fuzzy topological space.
Let S: D — Pt(X)and W : E — Pt(X) be two fuzzy nets. W is called
a subnet of S if there exists a function N : F — D, called by a cofinal
selection on S, such that

(1) W=SoN;
(2) For every ng € D, there exists mo € E such that N(m) > ng
for m > my.

THEOREM 2.4. Let (X,7) be a smooth fuzzy topological space.
Let S: D — Pt(X) fuzzy net and W : E — Pt(X) a subnet of S. For
r,Ss € Io, the following properties hold:

If S5 z, then Soo Ty
lzmT(S r) < clur (S, 7).

If S5 x;, then W xy.
limg(S,r) < limg(W,r).
If Woo x¢, then Soo Ty
) clur (W, r) < clur(S,r).

Proof. (1)and (2) are clear.

(3) For every pu € N(zs,r), since 25 < x¢, then p € N (x4, 7). Since
Soco x4, for each n € D, there exists ng € D such that ng > n and
S(no) q . Hence Sco z,.

(4) Tt is similar to (3).

(5) (=) It is clear.



Fuzzy r-cluster and fuzzy r-limit points 67

(<) Let oy € clur(S,r) and p € N(x¢,7). Since x¢ ¢ p and
clur (S,r)(z) > t, we have

w(x) + cur (S, r)(x) > plx) +t > 1.

From the definition of cluz(S,r), there exists a fuzzy r-cluster point
xs € Pt(X) of S such that

w(x) + clur(S,r)(x) > p(x) + s > 1.

Thus p € N(xs, 7). Since x; is a fuzzy r-cluster point of S , for each
n € D, there exists ng € D such that ng > n and S(ng) q pu. Hence
Soo ;.

(6) It is similar to (5).

(7) For every p € N (zy,7), since S x, there exists ng € F such
that for all n > ng, S(n) ¢ pu. Let N : E — D be a cofinal selection
on S. Then for ng € D, there exists my € E such that N(m) > ng
for all m > mg. Thus W(m) = S(N(m)) q u for m > myg. Therefore,
WS .

(8) From (7), it is clear.

(9) Suppose that Woo 2 and n € D. If N: E — D is a cofinal
selection on S, then there exists m € F such that N(k) > n for k > m.
Since Woo xy, for every u € N(xy, ), there exists mg € E such that
mo > m and W(mg) q p. We let ng = N(myg). Then ng > n and since
S(ng) = W(myg), we have S(ng) q .

(10) From (9), it is clear. O

THEOREM 2.5. Let (X,7) be a smooth fuzzy topological space

and z;, € Pt(X) and r € Iy. For every fuzzy net S , S5 x; iff Woo x4,
for every fuzzy subnet W of S.

Proof. (=) From Theorem 2.4(7), S* x; implies W= z;. From
Theorem 2.4 (9), W z; implies Woo ;.

(<) Suppose z; is not a fuzzy r-limit point z; of S. Then there
exists u € N(wy,r) satisfying the followings: for each n € D, there
exists N(n) € D such that N(n) > n and S(N(n)) g u. We can define
N : D — D. For each m > n, we have N(m) > m > n. Hence N is a
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cofinal selection on S. So, W = So N is a fuzzy subnet of S. Since for
p € N(zy,r) and for each n € D, W(n) = S(N(n))q p, z¢ is not fuzzy
r-cluster point of W. 0

THEOREM 2.6. Let (X,7) be a smooth fuzzy topological space
and xy € Pt(X) and r € Iy. For every fuzzy net S : D — Pt(X) , we

have Sco z; iff S has a fuzzy subnet W such that W= .

Proof. (=) Let E = DxN (z¢,7) ={(m,\) | m € D,\ € N(xz,7)}.
Define a relation on E by

V(im,A), (n,pu) € E, (mA) <(n,u) <& m<n,A>p.

For each (m,\),(n,p) € E, we have \,u € N(z,r) = AApu €
N(x¢,7) and there exists k € D such that m < k and n < k. Hence
there exists (k, A A u) € E such that (m,\) < (k,A A p) and (n,p) <
(k, A A ). So, E is a directed set. For each (n,u) € E, since Soo x4,
there exists N(n,u) € D such that N(n,u) > n and S(N(n,u)) q p.
So, we can define N : E — D. For each ng € D, since Soo xy, for
po € N(xz¢,r), there exists (ng, o) € E such that N(ng,u) > no.
Hence for every (n,u) > (ng, po), since n > ng, we have N(n,u) >
n > ng. Therefore N is a cofinal selection on S. So, W = So N
is a fuzzy subnet of S. Now we show that W z,. For each uo €
N (zy, 1), since Soo x4, for ng € D, there exists N (ng, i10) € D such that
S(N (0, 10)) ¢ ro- Hence for every (n, 1) > (no, o), S(N(n, ) g s
implies S(N(n, i) q po because u < po. So, W x4

(<) From Theorem 2.4(1), W= x; implies Wco . From Theorem
2.4(9), Wdo z, implies Sco ;. O

THEOREM 2.7. Let (X,7T) be a smooth fuzzy topological space and
x¢ € Pt(X) and r € Iy. Then the following statements are equivalent.

(1) z € Cr (A1)

(2) There exists a fuzzy net S in A such that Soo ;.

(3) There exists a fuzzy net S in A such that S x;.

Proof. (1)=(2) Define a relation on N (x4, r) by,

v=2w iff w <y, Yr,we N(z,r).
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Then (N (x4, 7), <) is a directed set.
For each p € N (x¢,r), since x; € Cr (A, r), we have

Cr(A\r)(x) + p(x) > t+ p(z) > 1.

From Theorem 1.6, there exists fuzzy r-adherent point zs of A such
that

Cr(A\r)(x) + p(x) > s+ p(z) > 1.

Since xg is a fuzzy r-adherent point of A and pu € N (x4, 1), we have
A q . Then there exist y € X and m € Iy such that

AMy) +ply) =m+ p(y) > 1.

Hence vy, € X\ and u € N (ym,r). Define a directed set (N (x¢,7), X)
by

v=3p iff pu<w.

For each 1 € N(x¢,7), we can define a fuzzy net S : N (z¢,r) — Pt(X)
by S(¢t) = ym. Then S(u) g p and S(p) € .

Now we will show that Sco z;. Let u € N(x, 7). Then for every
v € N(xg,r), we have u Av € N(zy,r) and S(uAv) g (uAv). Thus
v uAvand S(pAv)qp.

(2) = (1) If there exists a fuzzy net S in X such that Sco x, for
each u € N(z¢,r) and for each n € D, there exists ng € D such that
nog > n and S(ng) ¢ p. Since S(ng) € A, S(ng) ¢ p implies A q p.
Hence x; is fuzzy r-adherent point of A, that is, z; € Cr (A, 7).

(2)=(3) It is easily proved from Theorem 2.6.

(3)=(2) Tt is easily proved from Theorem 2.4(1). O

THEOREM 2.8. Let (X,7T) be a smooth fuzzy topological space and
x¢ € Pt(X) and r € Iy. Then the following statements are equivalent.

(1) Cr(A\r) =\

(2) For every fuzzy net S in X and z, € Pt(z), if Soo 2, then z; € A.

(3) For every fuzzy net S in A and z;, € Pt(x), if S x;, then x;, € \.
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Proof. (1)=(2) Suppose that there exists a fuzzy net S in A\ such
that Sco x; but x; ¢ A\. From Theorem 2.7, z; € Cr(\,r). Hence
Cr(A\,7r)(x) >t > ANax). Thus Cr(\,r) # A

(2) = (1) If z; € Cr (A, 1), by Theorem 2.7, there exists a fuzzy net
S in A such that Sco x;. Hence z; € A from (2). Thus Cr (A7) < A.
From Theorem 1.2(2), we have Cr(A,r) = A.

(1)=-(3) and (3)=-(1) are similarly proved. O

Using Definition 1.5 and Theorem 2.7, we can easily prove the fol-
lowing corollary.

COROLLARY 2.9. Let (X,7) be a smooth fuzzy topological space
and z; € Pt(X) and r € Iy. Then the following statements are equiv-
alent.

(1) zr € D (A7)

(2) There exists a fuzzy net S in X\ z; such that Sco z.

(3) There exists a fuzzy net S in A\ z; such that S x;.

EXAMPLE 2.10. Let X = {z,y} be set. Define p € IX as follows:

wu(x) =0.3, pu(y) =0.4.

We define a smooth fuzzy topology 7 : I — I as follows:

1, ifx=0orl,
TN =3 3, ifA=p,
0, otherwise.

Let N be a natural number set. Define a fuzzy net S : N — Pt(X) by

0.2
S(n) =xq,, a, = 0.6+ (—1)"0.2 + —

We can show cluz (S, 3) =1 from (1) to (4)

(1) @ for t < 0.7 is a fuzzy i-cluster point of S, for 1 € N (x4, 2)
and for all n € N,we have S(n) ¢ 1.

(2) z¢ for 0.7 < t is a fuzzy 2-cluster point of S, for 1, u € N(z¢, 3)
and for all n € N, there exists 2n € N such that 2n > n, S(2n) =
Togsoz g pand S(2n) = ggrez g 1.
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(3) ys for s < 0.6 is a fuzzy %—f:luster point of S, for 1 € N (ys, %)
and for all n € N,we have S(n) q 1.

(4) ys for 0.6 < s is a fuzzy i-cluster point of S, for 1, u € N(ys, 3)
and for all n € N, there exists 2n € N such that 2n > n, S(2n) =
Lo.g+02 g 1 and S(2n) = Lo.8+22 q [t

We can show lim7 (S, 3) =1 — p from (5) to (8).

(5) z¢ for t < 0.7 is a fuzzy 3-limit point of S, for 1 € N(z¢, 3) and
for all n € N,we have S(n) ¢ 1.

(6) @ for 0.7 < t is not a fuzzy i-limit point of S, there exists
p € N(xy, %) such that for all n € N, there exists 2n + 1 € N such
that 2n +1>n and S2n+1) =244, 02 G p.

on+1
(7) ys for s < 0.6 is a fuzzy 2-limit point of S, for 1 € N (ys, 3) and
for all n € N,we have S(n) q 1.
(8) ys for 0.6 < s is not a fuzzy %-limit point of S, there exists
p € N(zy, %) such that for all n € N, there exists 2n+1 € N such that
2n+1>nand S2n+1) =254, o0z g p. Hence limg(S,3)=1—p.

2n+41

Define ¥ : N — N by ¥(n) = 2n+1. Then U is a cofinal selection on
S. Wisasubnet of S. Since W(n) = So¥(n) = S(2n+1) = 44 02,

~ 2n+
as the above methods, we can obtain cluz (W, 3) =1 — p. O
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