FUZZY R-CLUSTER AND FUZZY R-LIMIT POINTS

YONG CHAN KIM AND YOUNG SUN KIM

ABSTRACT. In this paper, we introduce the notions of fuzzy rcluster and fuzzy r-limit points in smooth fuzzy topological spaces and investigate some of their properties.

1. Introduction and preliminaries

A.P. Sostak [11] introduced the smooth fuzzy topology as an extension of Chang's fuzzy topology [1]. It has been developed in many directions [2,5,6]. Pu and Liu [10] introduced the notions of fuzzy nets and Q-neighborhoods and established the convergence theory in fuzzy topological spaces. In 1994, Chen and Cheng [3] introduced the concepts of fuzzy cluster and fuzzy limit points in fuzzy topological spaces with respect to R-neighborhood instead of Q-neighborhood.

In this paper, we introduce the concept of fuzzy r-cluster and fuzzy r-limit points in a smooth fuzzy topological space as an extension of [10] and investigate some of their properties and give an example of those.

Throughout this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$. A fuzzy point x_t for $t \in I_0$ is an element of I^X such that, for $y \in X$,

$$x_t(y) = \begin{cases} t \text{ if } y = x, \\ 0 \text{ if } y \neq x. \end{cases}$$

The set of all fuzzy points in X is denoted by Pt(X). Let $x_t \in Pt(X)$ and $\lambda, \mu \in I^X$. $x_t \in \lambda$ iff $t \leq \lambda(x)$ for $x \in X$. λ is quasi-coincident with μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda \bar{q} \mu$. All the other notations and the other definitions are standard in fuzzy set theory.

Received December 7, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy r-cluster points, fuzzy r-limit points.

DEFINITION 1.1 ([11]). A function $\mathcal{T}: I^X \to I$ is called a *smooth* fuzzy topology on X if it satisfies the following conditions:

(O1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$, where $\tilde{0}(x) = 0$ and $\tilde{1}(x) = 1$ for all $x \in X$.

(O2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$.

(O3) $\mathcal{T}(\bigvee_{i\in\Gamma}\mu_i) \geq \bigwedge_{i\in\Gamma}\mathcal{T}(\mu_i)$, for any $\{\mu_i\}_{i\in\Gamma} \subset I^X$. The pair (X,\mathcal{T}) is called a *smooth fuzzy topological space*.

THEOREM 1.2 ([2]). Let (X, \mathcal{T}) be a smooth fuzzy topological space. For each $r \in I_0$ and $\lambda \in I^X$, we define a fuzzy closure operator $C_T : I^X \times I_0 \to I^X$ as follows:

$$C_{\mathcal{T}}(\lambda, r) = \bigwedge \{ \rho \in I^X \mid \lambda \le \rho, \ \mathcal{T}(\tilde{1} - \rho) \ge r \}.$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$, it satisfies the following properties:

(1) $C_{\mathcal{T}}(\tilde{0}, r) = \tilde{0}.$ (2) $\lambda \leq C_{\mathcal{T}}(\lambda, r).$ (3) $C_{\mathcal{T}}(\lambda, r) \lor C_{\mathcal{T}}(\mu, r) = C_{\mathcal{T}}(\lambda \lor \mu, r).$ (4) $C_{\mathcal{T}}(\lambda, r) \leq C_{\mathcal{T}}(\lambda, s)$, if $r \leq s$. (5) $C_{\mathcal{T}}(C_{\mathcal{T}}(\lambda, r), r) = C_{\mathcal{T}}(\lambda, r).$

DEFINITION 1.3 ([7]). Let $\lambda, \mu \in I^X$. Define the fuzzy quasidifference of λ and μ , denoted by $\lambda \setminus \mu$, as

$$(\lambda \setminus \mu)(x) = \begin{cases} \lambda(x), & \text{if } \mu(x) = 0, \\ 0, & \text{if } \lambda(x) \ge \mu(x) > 0, \\ \lambda(x), & \text{if } \lambda(x) < \mu(x). \end{cases}$$

NOTATION 1.4. Let (X, \mathcal{T}) be a smooth fuzzy topological space, $\mu \in I^X, x_t \in Pt(X)$ and $r \in I_0$. We denote

$$\mathcal{N}(x_t, r) = \{ \mu \in I^X \mid x_t \ q \ \mu, \ \mathcal{T}(\mu) \ge r \}.$$

DEFINITION 1.5 ([7]). Let (X, \mathcal{T}) be a smooth fuzzy topological space, $\lambda \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$.

(1) x_t is called an *fuzzy r-adherent point* of λ if for every $\mu \in$ $\mathcal{N}(x_t, r)$, we have $\mu q \lambda$.

- (2) x_t is called a *fuzzy r-accumulation point* of λ if for every $\mu \in \mathcal{N}(x_t, r)$, we have $\mu q \ (\lambda \setminus x_t)$.
- (3) Define the fuzzy r-derived set of λ , denote by $D_{\mathcal{T}}(\lambda, r)$, as

$$D_{\mathcal{T}}(\lambda, r) = \bigvee \{ x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-accumulation point of } \lambda \}.$$

THEOREM 1.6 ([7]). Let (X, \mathcal{T}) be a smooth fuzzy topological space. For each $\lambda \in I^X$ and $r \in I_0$, we have

$$C_{\mathcal{T}}(\lambda, r) = \bigvee \{ x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-adherent point of } \lambda \}.$$

THEOREM 1.7 ([7]). Let (X, \mathcal{T}) be a smooth fuzzy topological space. For $\lambda, \mu \in I^X$ and $r, s \in I_0$, the following properties hold:

(1) $D_{\mathcal{T}}(\lambda, r) \leq C_{\mathcal{T}}(\lambda, r).$ (2) $C_{\mathcal{T}}(\lambda, r) = \lambda \lor D_{\mathcal{T}}(\lambda, r).$ (3) $C_{\mathcal{T}}(\lambda, r) = \lambda$ iff $D_{\mathcal{T}}(\lambda, r) \leq \lambda.$ (4) If $r \leq s$, then $D_{\mathcal{T}}(\lambda, r) \leq D_{\mathcal{T}}(\lambda, s).$ (5) $D_{\mathcal{T}}(\lambda \lor \mu, r) \leq D_{\mathcal{T}}(\lambda, r) \lor D_{\mathcal{T}}(\mu, r).$

2. Fuzzy r-cluster points and r-limit points

DEFINITION 2.1. Let D be a directed set. A function $S : D \to Pt(X)$ is called a *fuzzy net*. Let $\lambda \in I^X$. We say S is a *fuzzy net in* λ if $S(n) \in \lambda$ for every $n \in D$.

Using Notation 1.4, we can define the followings:

DEFINITION 2.2. Let (X, \mathcal{T}) be a smooth fuzzy topological space, $\mu \in I^X, x_t \in Pt(X)$ and $r \in I_0$.

- (1) x_t is called a *fuzzy r-cluster point* of S, denoted by $S^{\tau}_{\infty} x_t$, if for every $\mu \in \mathcal{N}(x_t, r)$, S is frequently quasi-coincident with μ , i.e, for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \ge n$ and $S(n_0) \not q \mu$.
- (2) x_t is called a *fuzzy r-limit point* of *S*, denoted by $S \xrightarrow{r} x_t$, if for every $\mu \in \mathcal{N}(x_t, r)$, *S* is eventually quasi-coincident with μ , i.e.,

there exists $n_0 \in D$ such that for each $n \in D$ with $n \ge n_0$, we have $S(n) \not q \mu$. We denote

$$clu_{\mathcal{T}}(S,r) = \bigvee \{ x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-cluster point of } S \},$$

$$lim_{\mathcal{T}}(S,r) = \bigvee \{ x_t \in Pt(X) \mid x_t \text{ is a fuzzy r-limit point of } S \}.$$

DEFINITION 2.3. Let (X, \mathcal{T}) be a smooth fuzzy topological space. Let $S: D \to Pt(X)$ and $W: E \to Pt(X)$ be two fuzzy nets. W is called a *subnet* of S if there exists a function $N: E \to D$, called by a *cofinal selection* on S, such that

- (1) $W = S \circ N;$
- (2) For every $n_0 \in D$, there exists $m_0 \in E$ such that $N(m) \ge n_0$ for $m \ge m_0$.

THEOREM 2.4. Let (X, \mathcal{T}) be a smooth fuzzy topological space. Let $S: D \to Pt(X)$ fuzzy net and $W: E \to Pt(X)$ a subnet of S. For $r, s \in I_0$, the following properties hold:

- (1) If $S \xrightarrow{r} x_t$, then $S \propto^r x_t$.
- (2) $lim_{\mathcal{T}}(S,r) \leq clu_{\mathcal{T}}(S,r).$
- (3) If $S_{\infty}^r x_t$ and $x_t \ge x_s$, then $S_{\infty}^r x_s$.
- (4) If $S \xrightarrow{r} x_t$ and $x_t \ge x_s$, then $S \xrightarrow{r} x_s$.
- (5) $S \overset{r}{\infty} x_t$ iff $x_t \in clu_{\mathcal{T}}(S, r)$.
- (6) $S \xrightarrow{r} x_t$ iff $x_t \in lim_{\mathcal{T}}(S, r)$.
- (7) If $S \xrightarrow{r} x_t$, then $W \xrightarrow{r} x_t$.
- (8) $lim_{\mathcal{T}}(S, r) \leq lim_{\mathcal{T}}(W, r).$
- (9) If $W \overset{r}{\infty} x_t$, then $S \overset{r}{\infty} x_t$.
- (10) $clu_{\mathcal{T}}(W, r) \leq clu_{\mathcal{T}}(S, r).$

Proof. (1) and (2) are clear.

(3) For every $\mu \in \mathcal{N}(x_s, r)$, since $x_s \leq x_t$, then $\mu \in \mathcal{N}(x_t, r)$. Since $S_{\infty}^r x_t$, for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $S(n_0) q \mu$. Hence $S_{\infty}^r x_s$.

- (4) It is similar to (3).
- (5) (\Rightarrow) It is clear.

 (\Leftarrow) Let $x_t \in clu_{\mathcal{T}}(S,r)$ and $\mu \in \mathcal{N}(x_t,r)$. Since $x_t q \mu$ and $clu_{\mathcal{T}}(S,r)(x) \geq t$, we have

$$\mu(x) + clu_{\mathcal{T}}(S, r)(x) \ge \mu(x) + t > 1.$$

From the definition of $clu_{\mathcal{T}}(S, r)$, there exists a fuzzy r-cluster point $x_s \in Pt(X)$ of S such that

$$\mu(x) + clu_{\mathcal{T}}(S, r)(x) \ge \mu(x) + s > 1.$$

Thus $\mu \in \mathcal{N}(x_s, r)$. Since x_s is a fuzzy r-cluster point of S, for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $S(n_0) \neq \mu$. Hence $S_{\infty}^r x_t$.

(6) It is similar to (5).

(7) For every $\mu \in \mathcal{N}(x_t, r)$, since $S \xrightarrow{r} x_t$, there exists $n_0 \in E$ such that for all $n \geq n_0$, $S(n) \neq \mu$. Let $N : E \to D$ be a cofinal selection on S. Then for $n_0 \in D$, there exists $m_0 \in E$ such that $N(m) \geq n_0$ for all $m \geq m_0$. Thus $W(m) = S(N(m)) \neq \mu$ for $m \geq m_0$. Therefore, $W \xrightarrow{r} x_t$.

(8) From (7), it is clear.

(9) Suppose that $W_{\infty}^r x_t$ and $n \in D$. If $N : E \to D$ is a cofinal selection on S, then there exists $m \in E$ such that $N(k) \ge n$ for $k \ge m$. Since $W_{\infty}^r x_t$, for every $\mu \in \mathcal{N}(x_t, r)$, there exists $m_0 \in E$ such that $m_0 \ge m$ and $W(m_0) q \mu$. We let $n_0 = N(m_0)$. Then $n_0 \ge n$ and since $S(n_0) = W(m_0)$, we have $S(n_0) q \mu$.

(10) From (9), it is clear.

THEOREM 2.5. Let (X, \mathcal{T}) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. For every fuzzy net S, $S \xrightarrow{r} x_t$ iff $W \propto x_t$, for every fuzzy subnet W of S.

Proof. (\Rightarrow) From Theorem 2.4(7), $S \xrightarrow{r} x_t$ implies $W \xrightarrow{r} x_t$. From Theorem 2.4 (9), $W \xrightarrow{r} x_t$ implies $W \xrightarrow{r} x_t$.

(\Leftarrow) Suppose x_t is not a fuzzy r-limit point x_t of S. Then there exists $\mu \in \mathcal{N}(x_t, r)$ satisfying the followings: for each $n \in D$, there exists $N(n) \in D$ such that $N(n) \ge n$ and $S(N(n)) \overline{q} \mu$. We can define $N: D \to D$. For each $m \ge n$, we have $N(m) \ge m \ge n$. Hence N is a

cofinal selection on S. So, $W = S \circ N$ is a fuzzy subnet of S. Since for $\mu \in \mathcal{N}(x_t, r)$ and for each $n \in D$, $W(n) = S(N(n))\overline{q} \mu$, x_t is not fuzzy r-cluster point of W.

THEOREM 2.6. Let (X, \mathcal{T}) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. For every fuzzy net $S : D \to Pt(X)$, we have $S \overset{r}{\propto} x_t$ iff S has a fuzzy subnet W such that $W \overset{r}{\to} x_t$.

Proof. (\Rightarrow) Let $E = D \times \mathcal{N}(x_t, r) = \{(m, \lambda) \mid m \in D, \lambda \in \mathcal{N}(x_t, r)\}$. Define a relation on E by

$$\forall (m,\lambda), (n,\mu) \in E, \ (m,\lambda) \leq (n,\mu) \Leftrightarrow \ m \leq n, \lambda \geq \mu.$$

For each $(m, \lambda), (n, \mu) \in E$, we have $\lambda, \mu \in \mathcal{N}(x_t, r) \Rightarrow \lambda \land \mu \in \mathcal{N}(x_t, r)$ and there exists $k \in D$ such that $m \leq k$ and $n \leq k$. Hence there exists $(k, \lambda \land \mu) \in E$ such that $(m, \lambda) \leq (k, \lambda \land \mu)$ and $(n, \mu) \leq (k, \lambda \land \mu)$. So, E is a directed set. For each $(n, \mu) \in E$, since $S_{\infty}^r x_t$, there exists $N(n, \mu) \in D$ such that $N(n, \mu) \geq n$ and $S(N(n, \mu)) q \mu$. So, we can define $N : E \to D$. For each $n_0 \in D$, since $S_{\infty}^r x_t$, for $\mu_0 \in \mathcal{N}(x_t, r)$, there exists $(n_0, \mu_0) \in E$ such that $N(n_0, \mu_0) \geq n_0$. Hence for every $(n, \mu) \geq (n_0, \mu_0)$, since $n \geq n_0$, we have $N(n, \mu) \geq n \geq n_0$. Therefore N is a cofinal selection on S. So, $W = S \circ N$ is a fuzzy subnet of S. Now we show that $W \xrightarrow{r} x_t$. For each $\mu_0 \in \mathcal{N}(x_t, r)$, since $S_{\infty}^r x_t$, for $n_0 \in D$, there exists $N(n_0, \mu_0) \in D$ such that $S(N(n_0, \mu_0)) q \mu_0$. Hence for every $(n, \mu) \geq (n_0, \mu_0), S(N(n, \mu)) q \mu$ implies $S(N(n, \mu)) q \mu_0$ because $\mu \leq \mu_0$. So, $W \xrightarrow{r} x_t$.

(\Leftarrow) From Theorem 2.4(1), $W \xrightarrow{r} x_t$ implies $W \xrightarrow{r} x_t$. From Theorem 2.4(9), $W \xrightarrow{r} x_t$ implies $S \xrightarrow{r} x_t$.

THEOREM 2.7. Let (X, \mathcal{T}) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. Then the following statements are equivalent. (1) $x_t \in C_{\mathcal{T}}(\lambda, r)$

(2) There exists a fuzzy net S in λ such that $S \propto^r x_t$.

(3) There exists a fuzzy net S in λ such that $S \xrightarrow{r} x_t$.

Proof. (1) \Rightarrow (2) Define a relation on $\mathcal{N}(x_t, r)$ by,

$$\nu \leq \omega$$
 iff $\omega \leq \nu, \forall \nu, \omega \in \mathcal{N}(x_t, r).$

Then $(\mathcal{N}(x_t, r), \preceq)$ is a directed set.

For each $\mu \in \mathcal{N}(x_t, r)$, since $x_t \in C_{\mathcal{T}}(\lambda, r)$, we have

$$C_{\mathcal{T}}(\lambda, r)(x) + \mu(x) \ge t + \mu(x) > 1.$$

From Theorem 1.6, there exists fuzzy r-adherent point x_s of λ such that

$$C_{\mathcal{T}}(\lambda, r)(x) + \mu(x) \ge s + \mu(x) > 1.$$

Since x_s is a fuzzy r-adherent point of λ and $\mu \in \mathcal{N}(x_s, r)$, we have $\lambda q \mu$. Then there exist $y \in X$ and $m \in I_0$ such that

$$\lambda(y) + \mu(y) \ge m + \mu(y) > 1.$$

Hence $y_m \in \lambda$ and $\mu \in \mathcal{N}(y_m, r)$. Define a directed set $(\mathcal{N}(x_t, r), \preceq)$ by

$$\nu \preceq \mu$$
 iff $\mu \leq \nu$.

For each $\mu \in \mathcal{N}(x_t, r)$, we can define a fuzzy net $S : \mathcal{N}(x_t, r) \to Pt(X)$ by $S(\mu) = y_m$. Then $S(\mu) \neq \mu$ and $S(\mu) \in \lambda$.

Now we will show that $S_{\infty}^r x_t$. Let $\mu \in \mathcal{N}(x_t, r)$. Then for every $\nu \in \mathcal{N}(x_t, r)$, we have $\mu \wedge \nu \in \mathcal{N}(x_t, r)$ and $S(\mu \wedge \nu) q (\mu \wedge \nu)$. Thus $\nu \leq \mu \wedge \nu$ and $S(\mu \wedge \nu) q \mu$.

(2) \Rightarrow (1) If there exists a fuzzy net S in λ such that $S_{\infty}^{\tau} x_t$, for each $\mu \in \mathcal{N}(x_t, r)$ and for each $n \in D$, there exists $n_0 \in D$ such that $n_0 \geq n$ and $S(n_0) \neq \mu$. Since $S(n_0) \in \lambda$, $S(n_0) \neq \mu$ implies $\lambda \neq \mu$. Hence x_t is fuzzy r-adherent point of λ , that is, $x_t \in C_{\mathcal{T}}(\lambda, r)$.

 $(2) \Rightarrow (3)$ It is easily proved from Theorem 2.6.

 $(3) \Rightarrow (2)$ It is easily proved from Theorem 2.4(1).

THEOREM 2.8. Let (X, \mathcal{T}) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. Then the following statements are equivalent. (1) $C_{\mathcal{T}}(\lambda, r) = \lambda$.

(2) For every fuzzy net S in λ and $x_t \in Pt(x)$, if $S_{\infty}' x_t$, then $x_t \in \lambda$.

(3) For every fuzzy net S in λ and $x_t \in Pt(x)$, if $S \xrightarrow{r} x_t$, then $x_t \in \lambda$.

Proof. (1) \Rightarrow (2) Suppose that there exists a fuzzy net S in λ such that $S_{\infty}^{r} x_{t}$ but $x_{t} \notin \lambda$. From Theorem 2.7, $x_{t} \in C_{\mathcal{T}}(\lambda, r)$. Hence $C_{\mathcal{T}}(\lambda, r)(x) \geq t > \lambda(x)$. Thus $C_{\mathcal{T}}(\lambda, r) \neq \lambda$.

(2) \Rightarrow (1) If $x_t \in C_{\mathcal{T}}(\lambda, r)$, by Theorem 2.7, there exists a fuzzy net S in λ such that $S \propto x_t$. Hence $x_t \in \lambda$ from (2). Thus $C_{\mathcal{T}}(\lambda, r) \leq \lambda$. From Theorem 1.2(2), we have $C_{\mathcal{T}}(\lambda, r) = \lambda$.

 $(1) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ are similarly proved.

Using Definition 1.5 and Theorem 2.7, we can easily prove the following corollary.

COROLLARY 2.9. Let (X, \mathcal{T}) be a smooth fuzzy topological space and $x_t \in Pt(X)$ and $r \in I_0$. Then the following statements are equivalent.

(1) $x_t \in D_T(\lambda, r)$

(2) There exists a fuzzy net S in $\lambda \setminus x_t$ such that $S \propto^r x_t$.

(3) There exists a fuzzy net S in $\lambda \setminus x_t$ such that $S \xrightarrow{r} x_t$.

EXAMPLE 2.10. Let $X = \{x, y\}$ be set. Define $\mu \in I^X$ as follows:

$$\mu(x) = 0.3, \ \mu(y) = 0.4.$$

We define a smooth fuzzy topology $\mathcal{T}: I^X \to I$ as follows:

$$\mathcal{T}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2}, & \text{if } \lambda = \mu, \\ 0, & \text{otherwise.} \end{cases}$$

Let N be a natural number set. Define a fuzzy net $S: N \to Pt(X)$ by

$$S(n) = x_{a_n}, \ a_n = 0.6 + (-1)^n 0.2 + \frac{0.2}{n}.$$

We can show $clu_{\mathcal{T}}(S, \frac{1}{2}) = \tilde{1}$ from (1) to (4)

(1) x_t for $t \leq 0.7$ is a fuzzy $\frac{1}{2}$ -cluster point of S, for $\tilde{1} \in \mathcal{N}(x_t, \frac{1}{2})$ and for all $n \in N$, we have $S(n) q \tilde{1}$.

(2) x_t for 0.7 < t is a fuzzy $\frac{1}{2}$ -cluster point of S, for $\tilde{1}, \mu \in \mathcal{N}(x_t, \frac{1}{2})$ and for all $n \in N$, there exists $2n \in N$ such that $2n \ge n$, $S(2n) = x_{0.8+\frac{0.2}{n}} q \mu$ and $S(2n) = x_{0.8+\frac{0.2}{n}} q \tilde{1}$.

70

(3) y_s for $s \leq 0.6$ is a fuzzy $\frac{1}{2}$ -cluster point of S, for $\tilde{1} \in \mathcal{N}(y_s, \frac{1}{2})$ and for all $n \in N$, we have $S(n) \neq \tilde{1}$.

(4) y_s for 0.6 < s is a fuzzy $\frac{1}{2}$ -cluster point of S, for $\tilde{1}, \mu \in \mathcal{N}(y_s, \frac{1}{2})$ and for all $n \in N$, there exists $2n \in N$ such that $2n \ge n$, $S(2n) = x_{0.8+\frac{0.2}{n}} q \tilde{1}$ and $S(2n) = x_{0.8+\frac{0.2}{n}} q \mu$.

We can show $\lim_{\mathcal{T}} (S, \frac{1}{2}) = \tilde{1} - \mu$ from (5) to (8).

(5) x_t for $t \leq 0.7$ is a fuzzy $\frac{1}{2}$ -limit point of S, for $\tilde{1} \in \mathcal{N}(x_t, \frac{1}{2})$ and for all $n \in N$, we have $S(n) \neq \tilde{1}$.

(6) x_t for 0.7 < t is not a fuzzy $\frac{1}{2}$ -limit point of S, there exists $\mu \in \mathcal{N}(x_t, \frac{1}{2})$ such that for all $n \in N$, there exists $2n + 1 \in N$ such that $2n + 1 \ge n$ and $S(2n + 1) = x_{0.4 + \frac{0.2}{2n+1}} \overline{q} \mu$.

(7) y_s for $s \leq 0.6$ is a fuzzy $\frac{1}{2}$ -limit point of S, for $\tilde{1} \in \mathcal{N}(y_s, \frac{1}{2})$ and for all $n \in N$, we have $S(n) \neq \tilde{1}$.

(8) y_s for 0.6 < s is not a fuzzy $\frac{1}{2}$ -limit point of S, there exists $\mu \in \mathcal{N}(x_t, \frac{1}{2})$ such that for all $n \in N$, there exists $2n+1 \in N$ such that $2n+1 \geq n$ and $S(2n+1) = x_{0.4+\frac{0.2}{2n+1}} \overline{q} \mu$. Hence $\lim_{\mathcal{T}} (S, \frac{1}{2}) = \tilde{1} - \mu$.

Define $\Psi: N \to N$ by $\Psi(n) = 2n+1$. Then Ψ is a cofinal selection on S. W is a subnet of S. Since $W(n) = S \circ \Psi(n) = S(2n+1) = x_{0.4+\frac{0.2}{2n+1}}$, as the above methods, we can obtain $clu_{\mathcal{T}}(W, \frac{1}{2}) = \tilde{1} - \mu$. \Box

References

- 1. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- K.C. Chattopadhyay and S.K. Samanta, *Fuzzy topology*, Fuzzy sets and Systems 54 (1993), 207–212.
- S.L. Chen and J.S.Cheng, On convergence of nets of L-fuzzy sets, J. Fuzzy Math. 2 (1994), 517-524.
- S.L. Chen and J.S.Cheng, θ-Convergence of nets of L-fuzzy sets and its applications, Fuzzy sets and Systems 86 (1997), 235-240.
- M. Demirci, Neighborhood structures in smooth topological spaces, Fuzzy sets and Systems 92 (1997), 123-128.
- R.N. Hazra, S.K. Samanta and K.C. Chattopadhyay, Gradation of openness: Fuzzy topology, Fuzzy sets and Systems 49(2) (1992), 237–242.
- Y.C. Kim and Y.S. Kim, Fuzzy r-derived sets in fuzzy topological spaces, J. Fuzzy Logic and Intelligent Systems 9(6) (1999), 644–649.
- 8. K. Kuratowski, Topology, Academic Press Inc., New York, 1966.
- Liu Ying-Ming and Luo Mao-Kang, *Fuzzy topology*, World Scientific Publishing Co., Singapore, 1997.

Yong Chan Kim and Young Sun Kim

- Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology I; Neighborhood structure of a fuzzy point and Moore-Smith convergence, J.Math.Anal. Appl. 76 (1980), 571-599.
- 11. A.P. Sostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser.II **11** (1985), 89-103.
- 12. Wang Guo-Jun, *Pointwise topology on completely distributive lattices*, Fuzzy sets and Systems **30** (1989), 53–62.

Department of Mathematics Kangnung National University Kangnung, Kangwondo 210-702, Korea

Department of Applied Mathematics Pai Chai University Taejon 302-735, Korea

72