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FUZZY R-CLUSTER AND FUZZY R-LIMIT POINTS

Yong Chan Kim and Young Sun Kim

Abstract. In this paper, we introduce the notions of fuzzy r-

cluster and fuzzy r-limit points in smooth fuzzy topological spaces
and investigate some of their properties.

1. Introduction and preliminaries

A.P. Sostak [11] introduced the smooth fuzzy topology as an ex-
tension of Chang’s fuzzy topology [1]. It has been developed in many
directions [2,5,6]. Pu and Liu [10] introduced the notions of fuzzy nets
and Q-neighborhoods and established the convergence theory in fuzzy
topological spaces. In 1994, Chen and Cheng [3] introduced the con-
cepts of fuzzy cluster and fuzzy limit points in fuzzy topological spaces
with respect to R-neighborhood instead of Q-neighborhood.

In this paper, we introduce the concept of fuzzy r-cluster and fuzzy
r-limit points in a smooth fuzzy topological space as an extension of
[10] and investigate some of their properties and give an example of
those.

Throughout this paper, let X be a nonempty set, I = [0, 1] and
I0 = (0, 1]. A fuzzy point xt for t ∈ I0 is an element of IX such that,
for y ∈ X,

xt(y) =
{

t if y = x,

0 if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). Let xt ∈ Pt(X)
and λ, µ ∈ IX . xt ∈ λ iff t ≤ λ(x) for x ∈ X. λ is quasi-coincident with
µ, denoted by λ q µ, if there exists x ∈ X such that λ(x) + µ(x) > 1.
If λ is not quasi-coincident with µ, we denote λ q µ. All the other
notations and the other definitions are standard in fuzzy set theory.
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Definition 1.1 ([11]). A function T : IX → I is called a smooth
fuzzy topology on X if it satisfies the following conditions:

(O1) T (0̃) = T (1̃) = 1, where 0̃(x) = 0 and 1̃(x) = 1 for all x ∈ X.
(O2) T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2), for any µ1, µ2 ∈ IX .
(O3) T (

∨
i∈Γ µi) ≥

∧
i∈Γ T (µi), for any {µi}i∈Γ ⊂ IX .

The pair (X, T ) is called a smooth fuzzy topological space.

Theorem 1.2 ([2]). Let (X, T ) be a smooth fuzzy topological
space. For each r ∈ I0 and λ ∈ IX , we define a fuzzy closure op-
erator CT : IX × I0 → IX as follows:

CT (λ, r) =
∧
{ρ ∈ IX | λ ≤ ρ, T (1̃− ρ) ≥ r}.

For λ, µ ∈ IX and r, s ∈ I0, it satisfies the following properties:

(1) CT (0̃, r) = 0̃.
(2) λ ≤ CT (λ, r).
(3) CT (λ, r) ∨ CT (µ, r) = CT (λ ∨ µ, r).
(4) CT (λ, r) ≤ CT (λ, s), if r ≤ s.
(5) CT (CT (λ, r), r) = CT (λ, r).

Definition 1.3 ([7]). Let λ, µ ∈ IX . Define the fuzzy quasi-
difference of λ and µ, denoted by λ \ µ, as

(λ \ µ)(x) =


λ(x), if µ(x) = 0,

0, if λ(x) ≥ µ(x) > 0,

λ(x), if λ(x) < µ(x).

Notation 1.4. Let (X, T ) be a smooth fuzzy topological space,
µ ∈ IX , xt ∈ Pt(X) and r ∈ I0. We denote

N (xt, r) = {µ ∈ IX | xt q µ, T (µ) ≥ r}.

Definition 1.5 ([7]). Let (X, T ) be a smooth fuzzy topological
space, λ ∈ IX , xt ∈ Pt(X) and r ∈ I0.

(1) xt is called an fuzzy r-adherent point of λ if for every µ ∈
N (xt, r), we have µ q λ.
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(2) xt is called a fuzzy r-accumulation point of λ if for every µ ∈
N (xt, r), we have µ q (λ \ xt).

(3) Define the fuzzy r-derived set of λ, denote by DT (λ, r), as

DT (λ, r) =
∨
{xt ∈ Pt(X) | xt is a fuzzy r-accumulation point of λ}.

Theorem 1.6 ([7]). Let (X, T ) be a smooth fuzzy topological
space. For each λ ∈ IX and r ∈ I0, we have

CT (λ, r) =
∨
{xt ∈ Pt(X) | xt is a fuzzy r-adherent point of λ}.

Theorem 1.7 ([7]). Let (X, T ) be a smooth fuzzy topological
space. For λ, µ ∈ IX and r, s ∈ I0, the following properties hold:

(1) DT (λ, r) ≤ CT (λ, r).
(2) CT (λ, r) = λ ∨DT (λ, r).
(3) CT (λ, r) = λ iff DT (λ, r) ≤ λ.
(4) If r ≤ s, then DT (λ, r) ≤ DT (λ, s).
(5) DT (λ ∨ µ, r) ≤ DT (λ, r) ∨DT (µ, r).

2. Fuzzy r-cluster points and r-limit points

Definition 2.1. Let D be a directed set. A function S : D →
Pt(X) is called a fuzzy net. Let λ ∈ IX . We say S is a fuzzy net in λ
if S(n) ∈ λ for every n ∈ D.

Using Notation 1.4 , we can define the followings:

Definition 2.2. Let (X, T ) be a smooth fuzzy topological space,
µ ∈ IX , xt ∈ Pt(X) and r ∈ I0.

(1) xt is called a fuzzy r-cluster point of S, denoted by S
r∞ xt, if

for every µ ∈ N (xt, r), S is frequently quasi-coincident with µ,
i.e, for each n ∈ D, there exists n0 ∈ D such that n0 ≥ n and
S(n0) q µ.

(2) xt is called a fuzzy r-limit point of S, denoted by S
r→ xt, if for

every µ ∈ N (xt, r), S is eventually quasi-coincident with µ, i.e,
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there exists n0 ∈ D such that for each n ∈ D with n ≥ n0, we
have S(n) q µ. We denote

cluT (S, r) =
∨
{xt ∈ Pt(X) | xt is a fuzzy r-cluster point of S},

limT (S, r) =
∨
{xt ∈ Pt(X) | xt is a fuzzy r-limit point of S}.

Definition 2.3. Let (X, T ) be a smooth fuzzy topological space.
Let S : D → Pt(X) and W : E → Pt(X) be two fuzzy nets. W is called
a subnet of S if there exists a function N : E → D, called by a cofinal
selection on S, such that

(1) W = S ◦N ;
(2) For every n0 ∈ D, there exists m0 ∈ E such that N(m) ≥ n0

for m ≥ m0.

Theorem 2.4. Let (X, T ) be a smooth fuzzy topological space.
Let S : D → Pt(X) fuzzy net and W : E → Pt(X) a subnet of S. For
r, s ∈ I0, the following properties hold:

(1) If S
r→ xt, then S

r∞ xt.
(2) limT (S, r) ≤ cluT (S, r).
(3) If S

r∞ xt and xt ≥ xs , then S
r∞ xs.

(4) If S
r→ xt and xt ≥ xs, then S

r→ xs.

(5) S
r∞ xt iff xt ∈ cluT (S, r).

(6) S
r→ xt iff xt ∈ limT (S, r).

(7) If S
r→ xt, then W

r→ xt.
(8) limT (S, r) ≤ limT (W, r).
(9) If W

r∞ xt, then S
r∞ xt.

(10) cluT (W, r) ≤ cluT (S, r).

Proof. (1)and (2) are clear.
(3) For every µ ∈ N (xs, r), since xs ≤ xt, then µ ∈ N (xt, r). Since

S
r∞ xt, for each n ∈ D, there exists n0 ∈ D such that n0 ≥ n and

S(n0) q µ. Hence S
r∞ xs.

(4) It is similar to (3).
(5) (⇒) It is clear.
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(⇐) Let xt ∈ cluT (S, r) and µ ∈ N (xt, r). Since xt q µ and
cluT (S, r)(x) ≥ t, we have

µ(x) + cluT (S, r)(x) ≥ µ(x) + t > 1.

From the definition of cluT (S, r), there exists a fuzzy r-cluster point
xs ∈ Pt(X) of S such that

µ(x) + cluT (S, r)(x) ≥ µ(x) + s > 1.

Thus µ ∈ N (xs, r). Since xs is a fuzzy r-cluster point of S , for each
n ∈ D, there exists n0 ∈ D such that n0 ≥ n and S(n0) q µ. Hence
S

r∞ xt.
(6) It is similar to (5).
(7) For every µ ∈ N (xt, r), since S

r→ xt, there exists n0 ∈ E such
that for all n ≥ n0, S(n) q µ. Let N : E → D be a cofinal selection
on S. Then for n0 ∈ D, there exists m0 ∈ E such that N(m) ≥ n0

for all m ≥ m0. Thus W (m) = S(N(m)) q µ for m ≥ m0. Therefore,
W

r→ xt.
(8) From (7), it is clear.
(9) Suppose that W

r∞ xt and n ∈ D. If N : E → D is a cofinal
selection on S, then there exists m ∈ E such that N(k) ≥ n for k ≥ m.
Since W

r∞ xt, for every µ ∈ N (xt, r), there exists m0 ∈ E such that
m0 ≥ m and W (m0) q µ. We let n0 = N(m0). Then n0 ≥ n and since
S(n0) = W (m0), we have S(n0) q µ.

(10) From (9), it is clear. �

Theorem 2.5. Let (X, T ) be a smooth fuzzy topological space

and xt ∈ Pt(X) and r ∈ I0. For every fuzzy net S , S
r→ xt iff W

r∞ xt,
for every fuzzy subnet W of S.

Proof. (⇒) From Theorem 2.4(7), S
r→ xt implies W

r→ xt. From
Theorem 2.4 (9), W

r→ xt implies W
r∞ xt.

(⇐) Suppose xt is not a fuzzy r-limit point xt of S. Then there
exists µ ∈ N (xt, r) satisfying the followings: for each n ∈ D, there
exists N(n) ∈ D such that N(n) ≥ n and S(N(n)) q µ. We can define
N : D → D. For each m ≥ n, we have N(m) ≥ m ≥ n. Hence N is a
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cofinal selection on S. So, W = S ◦N is a fuzzy subnet of S. Since for
µ ∈ N (xt, r) and for each n ∈ D, W (n) = S(N(n))q µ, xt is not fuzzy
r-cluster point of W . �

Theorem 2.6. Let (X, T ) be a smooth fuzzy topological space
and xt ∈ Pt(X) and r ∈ I0. For every fuzzy net S : D → Pt(X) , we

have S
r∞ xt iff S has a fuzzy subnet W such that W

r→ xt.

Proof. (⇒) Let E = D×N (xt, r) = {(m,λ) | m ∈ D,λ ∈ N (xt, r)}.
Define a relation on E by

∀(m,λ), (n, µ) ∈ E, (m,λ) ≤ (n, µ) ⇔ m ≤ n, λ ≥ µ.

For each (m,λ), (n, µ) ∈ E, we have λ, µ ∈ N (xt, r) ⇒ λ ∧ µ ∈
N (xt, r) and there exists k ∈ D such that m ≤ k and n ≤ k. Hence
there exists (k, λ ∧ µ) ∈ E such that (m,λ) ≤ (k, λ ∧ µ) and (n, µ) ≤
(k, λ ∧ µ). So, E is a directed set. For each (n, µ) ∈ E, since S

r∞ xt,
there exists N(n, µ) ∈ D such that N(n, µ) ≥ n and S(N(n, µ)) q µ.
So, we can define N : E → D. For each n0 ∈ D, since S

r∞ xt, for
µ0 ∈ N (xt, r), there exists (n0, µ0) ∈ E such that N(n0, µ0) ≥ n0.
Hence for every (n, µ) ≥ (n0, µ0), since n ≥ n0, we have N(n, µ) ≥
n ≥ n0. Therefore N is a cofinal selection on S. So, W = S ◦ N

is a fuzzy subnet of S. Now we show that W
r→ xt. For each µ0 ∈

N (xt, r), since S
r∞ xt, for n0 ∈ D, there exists N(n0, µ0) ∈ D such that

S(N(n0, µ0)) q µ0. Hence for every (n, µ) ≥ (n0, µ0), S(N(n, µ)) q µ

implies S(N(n, µ)) q µ0 because µ ≤ µ0. So, W
r→ xt.

(⇐) From Theorem 2.4(1), W
r→ xt implies W

r∞ xt. From Theorem
2.4(9), W

r∞ xt implies S
r∞ xt. �

Theorem 2.7. Let (X, T ) be a smooth fuzzy topological space and
xt ∈ Pt(X) and r ∈ I0. Then the following statements are equivalent.

(1) xt ∈ CT (λ, r)
(2) There exists a fuzzy net S in λ such that S

r∞ xt.

(3) There exists a fuzzy net S in λ such that S
r→ xt.

Proof. (1)⇒(2) Define a relation on N (xt, r) by,

ν � ω iff ω ≤ ν, ∀ν, ω ∈ N (xt, r).
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Then (N (xt, r),�) is a directed set.
For each µ ∈ N (xt, r), since xt ∈ CT (λ, r), we have

CT (λ, r)(x) + µ(x) ≥ t + µ(x) > 1.

From Theorem 1.6, there exists fuzzy r-adherent point xs of λ such
that

CT (λ, r)(x) + µ(x) ≥ s + µ(x) > 1.

Since xs is a fuzzy r-adherent point of λ and µ ∈ N (xs, r), we have
λ q µ. Then there exist y ∈ X and m ∈ I0 such that

λ(y) + µ(y) ≥ m + µ(y) > 1.

Hence ym ∈ λ and µ ∈ N (ym, r). Define a directed set (N (xt, r),�)
by

ν � µ iff µ ≤ ν.

For each µ ∈ N (xt, r), we can define a fuzzy net S : N (xt, r) → Pt(X)
by S(µ) = ym. Then S(µ) q µ and S(µ) ∈ λ.

Now we will show that S
r∞ xt. Let µ ∈ N (xt, r). Then for every

ν ∈ N (xt, r), we have µ ∧ ν ∈ N (xt, r) and S(µ ∧ ν) q (µ ∧ ν). Thus
ν � µ ∧ ν and S(µ ∧ ν) q µ.

(2) ⇒ (1) If there exists a fuzzy net S in λ such that S
r∞ xt, for

each µ ∈ N (xt, r) and for each n ∈ D, there exists n0 ∈ D such that
n0 ≥ n and S(n0) q µ. Since S(n0) ∈ λ, S(n0) q µ implies λ q µ.
Hence xt is fuzzy r-adherent point of λ, that is, xt ∈ CT (λ, r).

(2)⇒(3) It is easily proved from Theorem 2.6.
(3)⇒(2) It is easily proved from Theorem 2.4(1). �

Theorem 2.8. Let (X, T ) be a smooth fuzzy topological space and
xt ∈ Pt(X) and r ∈ I0. Then the following statements are equivalent.

(1) CT (λ, r) = λ.

(2) For every fuzzy net S in λ and xt ∈ Pt(x), if S
r∞ xt, then xt ∈ λ.

(3) For every fuzzy net S in λ and xt ∈ Pt(x), if S
r→ xt, then xt ∈ λ.
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Proof. (1)⇒(2) Suppose that there exists a fuzzy net S in λ such
that S

r∞ xt but xt 6∈ λ. From Theorem 2.7, xt ∈ CT (λ, r). Hence
CT (λ, r)(x) ≥ t > λ(x). Thus CT (λ, r) 6= λ.

(2) ⇒ (1) If xt ∈ CT (λ, r), by Theorem 2.7, there exists a fuzzy net
S in λ such that S

r∞ xt. Hence xt ∈ λ from (2). Thus CT (λ, r) ≤ λ.
From Theorem 1.2(2), we have CT (λ, r) = λ.

(1)⇒(3) and (3)⇒(1) are similarly proved. �

Using Definition 1.5 and Theorem 2.7, we can easily prove the fol-
lowing corollary.

Corollary 2.9. Let (X, T ) be a smooth fuzzy topological space
and xt ∈ Pt(X) and r ∈ I0. Then the following statements are equiv-
alent.

(1) xt ∈ DT (λ, r)
(2) There exists a fuzzy net S in λ \ xt such that S

r∞ xt.

(3) There exists a fuzzy net S in λ \ xt such that S
r→ xt.

Example 2.10. Let X = {x, y} be set. Define µ ∈ IX as follows:

µ(x) = 0.3, µ(y) = 0.4.

We define a smooth fuzzy topology T : IX → I as follows:

T (λ) =


1, if λ = 0̃ or 1̃,
1
2 , if λ = µ,

0, otherwise.

Let N be a natural number set. Define a fuzzy net S : N → Pt(X) by

S(n) = xan , an = 0.6 + (−1)n0.2 +
0.2
n

.

We can show cluT (S, 1
2 ) = 1̃ from (1) to (4)

(1) xt for t ≤ 0.7 is a fuzzy 1
2 -cluster point of S, for 1̃ ∈ N (xt,

1
2 )

and for all n ∈ N ,we have S(n) q 1̃.
(2) xt for 0.7 < t is a fuzzy 1

2 -cluster point of S, for 1̃, µ ∈ N (xt,
1
2 )

and for all n ∈ N , there exists 2n ∈ N such that 2n ≥ n, S(2n) =
x0.8+ 0.2

n
q µ and S(2n) = x0.8+ 0.2

n
q 1̃.
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(3) ys for s ≤ 0.6 is a fuzzy 1
2 -cluster point of S, for 1̃ ∈ N (ys,

1
2 )

and for all n ∈ N ,we have S(n) q 1̃.
(4) ys for 0.6 < s is a fuzzy 1

2 -cluster point of S, for 1̃, µ ∈ N (ys,
1
2 )

and for all n ∈ N , there exists 2n ∈ N such that 2n ≥ n, S(2n) =
x0.8+ 0.2

n
q 1̃ and S(2n) = x0.8+ 0.2

n
q µ.

We can show limT (S, 1
2 ) = 1̃− µ from (5) to (8).

(5) xt for t ≤ 0.7 is a fuzzy 1
2 -limit point of S, for 1̃ ∈ N (xt,

1
2 ) and

for all n ∈ N ,we have S(n) q 1̃.
(6) xt for 0.7 < t is not a fuzzy 1

2 -limit point of S, there exists
µ ∈ N (xt,

1
2 ) such that for all n ∈ N , there exists 2n + 1 ∈ N such

that 2n + 1 ≥ n and S(2n + 1) = x0.4+ 0.2
2n+1

q µ.

(7) ys for s ≤ 0.6 is a fuzzy 1
2 -limit point of S, for 1̃ ∈ N (ys,

1
2 ) and

for all n ∈ N ,we have S(n) q 1̃.
(8) ys for 0.6 < s is not a fuzzy 1

2 -limit point of S, there exists
µ ∈ N (xt,

1
2 ) such that for all n ∈ N , there exists 2n+1 ∈ N such that

2n + 1 ≥ n and S(2n + 1) = x0.4+ 0.2
2n+1

q µ. Hence limT (S, 1
2 ) = 1̃− µ.

Define Ψ : N → N by Ψ(n) = 2n+1. Then Ψ is a cofinal selection on
S. W is a subnet of S. Since W (n) = S◦Ψ(n) = S(2n+1) = x0.4+ 0.2

2n+1
,

as the above methods, we can obtain cluT (W, 1
2 ) = 1̃− µ. �
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