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GENERALIZED SOBOLEV SPACES
OF EXPONENTIAL TYPE

Sungjin Lee

Abstract. We study the Sobolev spaces to the generalized Sobolev

spaces Hs
G of exponential type based on the Silva space G and inves-

tigate its properties such as imbedding theorem and structure the-
orem. In fact, the imbedding theorem says that for s > 0 u ∈ Hs

G
can be analytically continued to the set {z ∈ Cn| |Im z| < s}. Also,

the structure theorem means that for s > 0 u ∈ H−s
G is of the form

u =
∑
α

s|α|

α!
Dαgα

where gα’s are square integrable functions for α ∈ Nn
0 .

Moreover, we introduce a classes of symbols of exponential type

and its associated pseudo-differential operators of exponential type,
which naturally act on the generalized Sobolev spaces of exponential

type.

Finally, a generalized Bessel potential is defined and its proper-
ties are investigated.

1. Introduction

The Sobolev space Hs serves as a very useful tool in the theory of
partial differential equations, which is defined as follows.

Definition 1.1. A tempered distribution u ∈ S ′ belongs to the
Sobolev space Hs = Hs(Rn), s ∈ R if û(ξ) is a function and

(1.1)
∫
|û(ξ)|2(1 + |ξ|2)s dξ < ∞.

The Sobolev space Hs has been generalized to Bp,k by replacing
(1 + |ξ|2)s in (1.1) by a more general tempered weight function k(ξ)
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in Hörmander [H]. He develops a very similar theory parallel to the
Sobolev spaces. Here, a positive function k defined in Rn is called a
tempered weight function if there exist constants C and N such that
k(ξ + η) ≤ (1 + C|ξ|)nk(η), ξ, η ∈ Rn.

Also, the Sobolev space Hs has been generalized to Hs
w by Park and

Kang [PH] by using the weight function w instead of (1+ |ξ|2)s in (1.1)
satisfying the following conditions

(α) 0 = ω(0) ≤ ω(ξ + η) ≤ ω(ξ) + ω(η), (ξ, η ∈ Rn),
(β)

∫
ω(ξ)/(1 + |ξ|)n+1 dξ < ∞,

(γ) ω(ξ) ≥ a + b log(1 + |ξ|), ξ ∈ Rn for some real a and positive b,
(δ) ω(ξ) is radial. i.e., ω(ξ) = Ω(|ξ|) with Ω concave on [0,∞),

which appear in the ultradistribution theory of Beurling and Björck as
in [B3].

On the other hand, R.S. Pathak [P] has introduced generalized
Sobolev spaces Hs

{Mk} and Hs
(Mk) of Roumieu type and Beurling type

respectively by using the Lp norms related to estimates appearing in
the theory of ultradifferential functions of Roumieu and Beurling. Also,
he introduced natural classes of symbols related to the theory of ul-
tradistributions of Roumieu type, Beurling type and Beurling–Björck
type and shows that its associated pseudo-differential operators act
very nicely on his generalized Sobolev spaces.

In this paper we introduce generalized Sobolev spaces of exponential
type by replacing (1+ |ξ|2)s in (1.1) by an exponential weight function,
which is the limiting case of both generalizations by Pahk–Kang and
Pathak when w(ξ) = ξ in the case of Pahk–Kang and the associated
function, for the defining sequence Mp, M(ξ) = ξ in the case of Pathak.
More clearly, the generalized Sobolev space of exponential type Hs

G
consists of all u ∈ G′ such that û, the Fourier transform of u, is a
function and satisfies

||u||s =
[∫

e2s|ξ||û(ξ)|2dξ

]1/2

< ∞.

Also, we investigate their properties such as the imbedding theorem
and the structure theorem in Section 2. In fact, the imbedding theorem
means that for s > 0 u ∈ Hs

G can be analytically continued to the set
{z ∈ Cn| |Im z| < s} and the structure theorem means that for s > 0
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u ∈ H−s
G is of the form

u =
∑
α

s|α|

α!
Dαgα

where gα’s are square integrable functions for α ∈ Nn
0 .

In section 3 we introduce certain classes of symbols of exponential
type whose symbols have suitable growth condition and its associated
pseudo-differential operators of exponential type. We show that these
pseudo-dif- ferential operators naturally act on the generalized Sobolev
spaces of exponential type. In other words, for r, l ∈ R with l > 0
the space Sr,l

exp of symbols is defined so that its associated pseudo-
differential operators map Hs

G to Hr+s
G . As an example, we give a

differential operator of infinite order with variable coefficients of this
class.

Finally, in section 4 a generalized Bessel potential is defined and its
properties are investigated. The theory developed in this paper can
be applied to the study of differential operators of infinite order with
variable coefficients.

2. Generalized Sobolev spaces of exponential type

We first briefly introduce the space Gof test functions for Fourier
ultrahyperfunctions which we need in this paper, which is introduced
by di Silva.

Definition 2.1. We denote by G the set of all φ ∈ C∞(Rn) such
that for any h, k > 0

|φ|h,k = sup
x∈Rn

α∈Nn
0

|∂αφ(x)| exp k|x|
hαα!

< ∞

where N0 is the set of nonnegative integers. The topology in G is
defined by the above seminorms. And we denoted by G′ the strong
dual of the space G and call its elements Fourier ultrahyperfunctions.
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Theorem 2.2 ([CK]). The Fourier transformation on G is a topo-
logical isomorphism. Also, the Fourier transform on G′ is a topological
isomorphism.

If we substitute the weight function w(ξ) in the distribution space of
Beurling type to |ξ| (although we cannot do this), the space G′ is just
one of the Beurling’s generalized distribution space. Thus it is natural
to define the generalized Sobolev space of exponential type as follows:

Definition 2.3. For s ∈ R, we denote by Hs
G the set of all gen-

eralized Fourier ultrahyperfunction u ∈ G′ such that û is a function
and

||u||s =
[∫

e2s|ξ||û(ξ)|2dξ

]1/2

< ∞.

We call Hs
G the generalized Sobolev space of exponential type of order

s.

From the above definition we can easily see that G is contained in
Hs
G for all s ∈ R; H0

G = L2(Rn). Also, we have Hs ⊂ Hs
G for s < 0

and Hs ⊃ Hs
G for s > 0. Immediately it is easy to see that Hs

G has a
Hilbert space structure.

Theorem 2.4. Hs
G is a Hilbert space with inner product given by

(2.1) (u, v)s =
∫

e2s|ξ|û(ξ)v̂(ξ)dξ.

Proof. It is clearly an inner product. Since L2(Rn, e2|ξ|dξ) is com-
plete and the Fourier transform is an automorphism of G′, Hs

G is a
Banach space. �

Remark. Unfortunately G is not dense in Hs
G .

The inclusion map and differential operators with constant coeffi-
cients are continuous.

Corollary 2.5. Ht
G ⊂ Hs

G for t > s, the inclusion is continuous.

Corollary 2.6. If P is a linear partial differential operator with
constant coefficients, and u ∈ Hs

G , then Pu ∈ Ht
G for all t < s, and the

map P : Hs
G → Ht

G is continuous.
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Remark. Every differential operator P with constant coefficients
as in Corollary 2.6 maps Hs to Hs−m if the degree of the polynomial
P (ξ) is m.

Corollary 2.7. Let P (D) =
∑

α∈Nn
0

aαDα be a differential oper-

ator of infinite order such that there are constants C > 0 and h > 0
satisfying

(2.2) |aα| ≤ C(h/
√

n)|α|/α! for all α.

If u ∈ Hs
G then Pu ∈ Hs−h

G . Also, the map P : Hs
G → Hs−h

G is
continuous.

Proof. It is easily shown that the necessary and sufficient condition
of (2.2) is that

|P (ξ)| ≤ C exp(h|ξ|)

for all ξ in some tubular neighborhood of Rn of Cn. Hence the result
is immediate. �

As an example we give a differential operator of infinite order be-
tween generalized Sobolev spaces of exponential type, which is an iso-
morphism.

Example. The operator exp(
√

1−∆) : Hs
G → Hs−1

G is an isomor-
phism where exp(

√
1−∆) is defined by

exp(
√

1−∆)u =
∫

eixξ exp(
√

1 + |ξ|2)|û(ξ)|dξ.

Proof. For u ∈ Hs
G we have

||e
√

1−∆u||s−1 =
(∫

e2(s−1)|ξ|+2
√

1+|ξ|2 |û(ξ)|2dξ

) 1
2

≤ (sup
ξ

e2
√

1+|ξ|2−2|ξ|)
1
2

(∫
e2s|ξ||û(ξ)|2dξ

) 1
2

= e
1
2 ||u||s.
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Also, for u ∈ Hs−1
G the operator exp(

√
1−∆) maps the inverse Fourier

transform of exp(−
√

1 + |ξ|2)û to u. Thus we obtain(∫
e2s|ξ|−2

√
1+|ξ|2 |û(ξ)|2dξ

) 1
2

≤ (sup
ξ

e2|ξ|−2
√

1+|ξ|2)
1
2

(∫
e2(s−1)|ξ||û(ξ)|2dξ

) 1
2

= ||u||s−1.

Hence the operator is an isomorphism. �

To find the relation between Hs
G and H−s

G , we define the pairing

(2.3) 〈u, v〉 =
∫

û(ξ)¯̂v(ξ)dξ,

for u ∈ Hs
G and v ∈ H−s

G . Then we can easily obtain the following.

|〈u, v〉| ≤
(∫

e2s|ξ||û(ξ)|2dξ

)1/2 (∫
e−2s|ξ||¯̂v(ξ)|2dξ

)1/2

= ||u||s||v||−s.

Thus 〈u, v〉 is a continuous bilinear form on Hs
G ×H−s

G .

Theorem 2.8. The pairing (2.3) gives a canonical isometric iso-
morphism of H−s

G and (Hs
G)′, which is the dual of Hs

G .

Proof. It follows from (2.3) that for fixed u ∈ H−s
G , v 7→ 〈u, v〉 is

continuous linear form on Hs
G , whose norm does not exceed ||u||−s.

Taking v0 = (e−2s|ξ|û(ξ))ˆ ∈ Hs
G one can obtain that 〈u, v0〉 = ||u||−s.

Hence the norm of v → 〈u, v〉 is equal to ||u||−s, and we thus have an
isometry H−s

G → (Hs
G)′.

To prove that this isometry is surjective hence an isomorphism, let
u∗ ∈ (Hs

G)′. By the Riesz representation theorem and (2.1) there exists
w ∈ Hs

G such that

u∗(v) = (w, v)s =
∫

e2s|ξ|ŵ(ξ)¯̂v(ξ)dξ for all v ∈ Hs
G .
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If we set u = ((2π)nw̄(ξ)e2s|ξ|)ˆ then u ∈ H−s
G and u∗(v) = 〈u, v〉 for

all v ∈ Hs
G , which completes the proof. �

We are now in a position to state and prove the imbedding theorem
and the structure theorem.

Theorem 2.9. Every u ∈ Hs
G is a holomorphic function in an infi-

nite strip {z ∈ Cn| |Imz| < s} if s > 0.

Proof. Let u(z) = (2π)−n
∫

eiz·ξû(ξ)dξ with z = x + iy. Then for
each α ∈ Nn

0 we have

(2π)−n

∫
|ξα|e−yξ−s|ξ||es|ξ|û(ξ)|dξ

≤ ||u||s
(∫

|ξα|e−2yξ−2s|ξ|dξ

)1/2

.

Since the integral in the last part of the above inequality is integrable
if |y| < s, the result follows. �

Theorem 2.10. Let s > 0. Then every u ∈ H−s
G can be represented

as an infinite sum of derivatives of square integrable functions gα, in
other words,

u =
∑

α∈Nn
0

s|α|

α!
Dαgα.

Proof. If u ∈ H−s
G then by definition

exp(−s|ξ|)û(ξ) ∈ L2(Rn),

which implies that

ĝ(ξ) =
û(ξ)∑

α
s|α|

α! |ξα|
∈ L2(Rn).
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Hence, we have

û(ξ) =
∑
α

s|α|

α!
|ξα|ĝ

=
∑
α

s|α|

α!
ξα

(
|ξα|
ξα

ĝ

)
=

∑
α

s|α|

α!
ξαĝα

where ĝα(ξ) = (|ξα|/ξα)ĝ(ξ) ∈ L2(Rn). This completes the proof. �

3. Pseudo-differential operators of exponential type

The pseudo-differential operator A(x,D) associated with the symbol
a(x,ξ) is defined by

(3.1) (A(x,D)u)(x) = (2π)−n/2

∫
eixξa(x, ξ)û(ξ)dξ, u ∈ G

where a(x, ξ) belongs to the class Sr
exp, r ≥ 0, defined below:

Definition 3.1. The function a(x, ξ) is said to be in Sr
exp if and

only if a(x, ξ) ∈ C∞(Rn × Rn) and for each compact set K ⊂ Rn and
each α, β ∈ Nn

0 , there exists a constant CK = Cα,β,K such that the
estimate

|Dα
ξ Dβ

xa(x, ξ)| ≤ CK exp(r|ξ|), for all (x, ξ) ∈ K × Rn

holds true.

Theorem 3.2. If a(x, ξ) ∈ Sr
exp then the operator A(x, D) in (3.1)

is a well-defined mapping of G into C∞(Rn).

Proof. For any compact set K ⊂ Rn,

a(x, ξ) ≤ CK exp(r|ξ|), for all (x, ξ) ∈ K × Rn.
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Also since u ∈ G we have

∫
|eixξa(x, ξ)û(ξ)|dξ ≤ CK ||u||λ

(∫
e−2(λ−r)|ξ|dξ

) 1
2

is integrable for λ > r. This demonstrates the existence of (A(x, D)u)(x)
for all x ∈ Rn and also its continuity in Rn. The result now follows by
using Leibniz formula. �

Now we consider the symbol which belongs to the class Sr,l
exp defined

below:

Definition 3.3. Let r, l ∈ R be numbers with l > 0. The function
a(x, ξ) : Rn×Rn → C belongs to Sr,l

exp if and only if a(x, ξ) ∈ C∞(Rn×
Rn) and for each L > 0, α, β ∈ Nn

0 there is positive constant C = Cr,l,α

such that

|Dα
ξ Dβ

xa(x, ξ)| ≤ CL|β||β|! exp(r|ξ| − l|x|).

To obtain some deep and interesting results we need the following
alternative form of A(x,D).

Theorem 3.4. For any symbol a(x, ξ) ∈ Sr,l
exp, the pseudo differen-

tial operator A(x,D) admits of the representation:

(A(x, D)u)(x) = (2π)−n

∫
eixξ

∫
â(ξ − η, η)û(η)dηdξ

for all u ∈ G where all the involved integrals are absolutely convergent.

Proof. For τ > 0 we have

exp(τ |y|) ≤
∑

k

(τk/k!)
∑
|β|=k

(k!/β!)|yβ |.
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So that

exp(τ |y|)|â(y, ξ)| ≤
∑

k

(τk/k!)
∑
|β|=k

(k!/β!)|yβ â(y, ξ)|

=
∑

k

(τk/k!)
∑
|β|=k

(k!/β!)|(Dβ
xa(x, ξ))ˆ|

=
∑

k

(τk/k!)
∑
|β|=k

(k!/β!)(2π)−n/2

∫
|Dβ

xa(x, ξ)|dx

≤ Cr(2π)−n/2
∑

k

(τk/k!)
∑
|β|=k

(k!/β!)L|β|(|β|!)

exp(r|ξ|)
∫

exp(−l|x|)dx

≤ C ′
r

∞∑
k=0

(τLn)k exp(r|ξ|)

≤ C exp(r|ξ|)

choosing τ < (Ln)−1 where C is a constant depending on r, l, n, L.
Therefore

(3.2) |â(y, ξ)| ≤ C exp(r|ξ| − τ |y|), τ > 0.

Now since u ∈ G, |û(η)| ≤ C ′ exp(−λ|η|) for all λ > 0. Then

|â(ξ − η, η)û(η)| ≤ C ′′ exp[−(λ− r)|η| − τ |ξ − η|] ∈  L1(Rn)

for λ > r, τ > 0. So that∫
|â(ξ − η, η)û(η)|dη ≤ C ′′

∫
exp[−(λ− r)|η| − τ |ξ − η|]dη.

The right-hand side is a convolution of two integrable functions and
hence is an integrable function on Rn. Therefore the function

∫
â(ξ −

η)û(η)dη is in L1(Rn). Applying inverse Fourier transform we get the
result. �

Now we prove the fundamental result:
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Theorem 3.5. Let a(x, ξ) ∈ Sr,l
exp and let A(x,D) be the associated

pseudo-differential operator. Then for all u ∈ G and all s ∈ R

(3.3) ||A(x, D)u||s ≤ Cs||u||r+s.

Proof. Consider the function

Us(ξ) = (2π)−n/2es|ξ|
∫

â(ξ − η)û(η)dη, s ∈ R.

Then

|Us(ξ)| ≤ (2π)−n/2C1

∫
|es|ξ−η|â(ξ − η, η)| |es|η|û(η)|dη

Now, invoking inequality (3.2) we have
(3.4)

|Us(ξ)| ≤ (2π)−n/2C1

∫
exp((s− τ)|ξ − η|) exp((r + s)|η|)|û(η)|dη.

The integral of (3.4) can be considered as a convolution between f(ξ) =
exp((s − τ)|ξ|) and g(ξ) = exp((r + s)|ξ|)û(ξ). Clearly f, g ∈ L2(Rn)
for τ > s since û ∈ G. Then f ∗ g ∈ L2(Rn) and

||f ∗ g||L2 ≤ ||f ||L2 ||g||L2 .

This proves (3.3). �

Some differential operator of infinite order with variable coefficients
has its symbol in Sr,l

exp:

Corollary 3.6. If P (x, D) =
∑

α∈Nn
0

aα(x)Dα where aα(x) satis-

fies that for each k and α, β ∈ Nn
0 there exist constants l > 0, h > 0

and C = Ck,l,α > 0 such that

(3.5) sup |Dβaα(x)| < C(h/
√

n)|α|k|β||β!| exp(−l|x|)/α!,

then for u ∈ G and s ∈ R there exists a constant Cs > 0 such that

||P (x,D)u||s ≤ Cs||u||h+s.
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Proof. The condition (3.5) implies that

|DβDαP (x, ξ)| = |
∑
γ>α

Dβaα(x)γ!ξγ−α/(γ − α)!|

≤ Ck|β||β!| exp(−l|x|)(h/
√

n)|α|
∑

γ

(h/
√

n)γξγ/γ!

≤ C ′k|β||β!| exp(h|ξ| − l|x|).

This completes the proof. �

4. Generalized Bessel potential of exponential type

Let a(x) 6= 0 be a multiplier in G such that F−1(a−m)(ξ) ∈ L1(Rn)
for m = 0, 1, . . . where F−1 is the Fourier inverse transform. Then for
f ∈ G′, we can define the products fam ∈ G′ by means of the following
two relation

〈fam, φ〉 = 〈f, amφ〉, φ ∈ G

and
〈fa−m, amφ〉 = 〈f, φ〉, φ ∈ G

respectively, where m is a nonnegative integer. Therefore, fam ∈ G′
for all m ∈ Z.

Since the Fourier transform F is a continuous linear map of G′ onto
G′, the same being true for F−1 also, we conclude that for m ∈ Z, the
generalized Bessel potential Jm defined by

Jm = F−1a−mFu, u ∈ G′

is a continuous linear map of G′ onto G′. Clearly Jm is a pseudo-
differential operator with symbol a−m.

The following properties of Jm can be easily be established.

Lemma 4.1. Let u ∈ G′. Then for m, l ∈ Z
(i) JmJlu = Jm+lu
(ii) J0u = u
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For m ∈ Z and 1 ≤ p ≤ ∞, define Hm,p
G to be the set of all Fourier

ultrahyperfunctions u for which Jmu ∈ Lp(Rn). We equip this space
with the norm

(7.1) ||u||m,p = ||J−mu||Lp , u ∈ Hm,p
G .

Theorem 4.2. Hm,p
G is a Banach space with respect to the norm

(4.1).

Theorem 4.3. Jl is an isometry of Hm,p
G onto Hm+l,p

G and we have

||Jlu||m+l,p = ||u||m,p, u ∈ Hm,p
G .

An analog of Sobolev imbedding theorem is the following:

Theorem 4.4. Let 1 < p < ∞ and m ≤ l. Then H l,p
G ⊂ Hm,p

G , and

||u||m,p ≤ Cm,l||u||l,p, u ∈ H l,p
G .
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