ASSOCIATED PRIME IDEALS OF A PRINCIPAL IDEAL

GYU WHAN CHANG

Abstract. Let R be an integral domain with identity. We show that each associated prime ideal of a principal ideal in $R[X]$ has height one if and only if each associated prime ideal of a principal ideal in R has height one and R is an S-domain.

Krull’s principal ideal theorem [7, Theorem 142] states that for a nonunit element x of a Noetherian ring R, if P is a prime ideal of R which is minimal over xR, then the height of P is at most one. Thus if R is a Noetherian domain then each minimal prime ideal of a nonzero principal ideal has height one. In [2], Barucci-Anderson-Dobbs studied integral domains in which each prime ideal over a nonzero principal ideal has height one. As [2], we say that an integral domain R satisfies the principal ideal theorem (PIT) if each prime ideal over a nonzero principal ideal of R has height one.

Let R be an integral domain with identity. A prime ideal P of R is called an associated prime ideal of a principal ideal in R if there exist some elements $a, b \in R$ such that P is minimal over $aR + bR = \{x \in R | xb \in aR\}$. Consider an integral domain R with the following property:

APIT: each associated prime ideal of a principal ideal in R has height one.

One can easily show that R satisfies APIT if and only if $R = \bigcap_{P \in X^1(R)} R_P$ where $X^1(R)$ is the set of all height one prime ideals of R (cf. [6, Ex. 22, p.52]). The purpose of this paper is to show that $R[X]$ satisfies APIT if and only if R satisfies APIT and R is an S-domain. (Recall that an integral domain R is an S-domain if for each height one prime ideal P of R, the expansion $P[X]$ of P to $R[X]$ has again height one.) All rings considered in this paper are commutative integral domains with identity.

Received December 28, 1999.

1991 Mathematics Subject Classification: 13A15, 13G05.

Key words and phrases: Associated prime ideal, height one, principal ideal theorem, APIT.
If \(a \in R \), then \(aR = aR : R \) and so a minimal prime ideal of a nonzero principal ideal is an associated prime ideal of a principal ideal. Hence \(R \) satisfies APIT then \(R \) satisfies PIT. The following example shows that the converse does not hold.

Example 1. Let \(R \) be the field of real numbers and let \(R[[x, y]] = R + M \) be the power series ring over \(R \), where \(M = (x, y)R[[x, y]] \). Let \(\overline{Q} \) be the algebraic closure of the field \(Q \) of rational numbers in \(R \). Let \(D := \overline{Q} + M \), then (1) \(D \) is a 2-dimensional quasi-local Mori domain with maximal \(M \), (2) \(M \) is an associated prime ideal of a principal ideal in \(D \), and hence \(D \) does not satisfies APIT, and (3) \(D \) satisfies PIT. (see [4, Example 8]).

In [5, Theorem 4], Chang proved that if \(R \) is integrally closed, then \(R[X] \) satisfies PIT if and only if \(R \) satisfies PIT and \(R \) is an \(S \)-domain. The following theorem is an APIT-analog of that fact.

Theorem 2. \(R[X] \) satisfies APIT if and only if \(R \) satisfies APIT and \(R \) is an \(S \)-domain.

Proof. (\(\Rightarrow \)) Since \(R[X] \) satisfies APIT, \(R[X] \) satisfies PIT, and \(R \) is an \(S \)-domain [2, Proposition 6.1]. Let \(P \) be an associated prime ideal of a principal ideal in \(R \), i.e., \(P \) is minimal over \(aR : bR \) for some \(a, b \in R \). Then \(P[X] \) is minimal over \((aR : bR)R[X] \). Since \((aR : bR)R[X] = aR[X] : bR[X] \), \(P[X] \) is an associated prime ideal of a principal ideal in \(R[X] \). Hence \(\text{ht}(P[X]) = 1 \), and so \(\text{ht}P = 1 \).

(\(\Leftarrow \)) Let \(Q \) be an associated prime ideal of a principal ideal in \(R[X] \). If \(Q \cap R = 0 \), then \(\text{ht}Q = 1 \) [7, Theorem 36]. If \(Q \cap R(= P) \neq 0 \), then \(Q = P[X] \) and \(P \) is an associated prime ideal of a principal ideal in \(R \) [3, Corollary 8]. Hence \(\text{ht}Q = \text{ht}P = 1 \). \(\square \)

Since \(R[X] \) is an \(S \)-domain [1, Theorem 3.2], it follows directly from Theorem 2 that \(R[X_1, \ldots, X_n] \) satisfies APIT if and only if \(R[X_1] \) satisfies APIT, where \(\{X_1, \ldots, X_n\} \) is a finite set of indeterminates over \(R \). It is easy to show that for nonzero elements \(a, b \in R \), \(aR\{X_\alpha\} \cap R = aR \), \((aR : bR)R\{X_\alpha\} = aR\{X_\alpha\} : bR\{X_\alpha\} \) and \((aR\{X_\alpha\} : bR\{X_\alpha\}) \cap R = aR : bR \) where \(\{X_\alpha\} \) is a set of indeterminates over \(R \). Using this and the proof of [2, Proposition 6.4], we have

Corollary 3. \(R\{X_\alpha\} \) satisfies APIT if and only if \(R \) satisfies APIT and \(R \) is an \(S \)-domain.
Given a fractional ideal I of an integral domain R, we define $I_v = (I^{-1})^{-1}$ and $I_t = \cup\{J_v|J$ is a finitely generated subideal of $I\}$. An ideal A of R is said to be divisorial (resp. t-ideal) if $A_v = A$ (resp. $A_t = A$). Recall that an integral domain R is an H-domain if each maximal t-ideal P of R is divisorial. Examples of H-domains include discrete valuation domains, Mori domains, Krull domains and Noetherian domains. It is clear that each prime t-ideal of R has height one, then R satisfies APIT (in fact, R satisfies PIT). The following theorem shows that if R is an H-domain, the converse also holds.

Theorem 4. Let R be an H-domain. Then R satisfies APIT if and only if each prime t-ideal of R is a maximal t-ideal.

Proof. Suppose that R satisfies APIT. Let A be the set of associated prime ideals of principal ideals in R. Then $R = \cap_{P \in A} R_P$ [3, Proposition 4]. Let M be a maximal t-ideal of R. Since M is divisorial (note that R is an H-domain), $R \subset M^{-1}$. Hence $M \subseteq P$ for some $P \in A$ [8, Theorem 1]. Hence $M = P$, and each maximal t-ideal of R is an associated prime ideal of a principal ideal. Since R satisfies APIT, each prime t-ideal is a maximal t-ideal. The converse is clear. \[\square\]

Corollary 5. If R is a Noetherian ring, then R satisfies APIT if and only if each prime t-ideal of R is a maximal t-ideal.

References

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea