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PROPERTIES OF FUZZY TOPOLOGICAL
GROUPS AND SEMIGROUPS

Inheung Chon

Abstract. We characterize some basic properties of fuzzy topolog-

ical groups and semigroups and show that under some conditions

in a fuzzy topological group G, x ∈ A iff x ∈ ∩AU for any fuzzy
subset A of G and the system {U} of all fuzzy open neighborhoods

of the identity e such that U(e) = 1.

1. Fuzzy Topological Spaces, Fuzzy Groups, and Fuzzy
Semigroups

Definition 1.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ X, B(x) is
called a membership grade of x in B. The set {x ∈ X : B(x) > 0} is
called the support of B and is denoted by supp(B).

Definition 1.2. A fuzzy topology is a family T of fuzzy sets in X
which satisfies the following conditions:

(1) ∅, X ∈ T ,
(2) If A,B ∈ T , then A ∩B ∈ T ,
(3) If Ai ∈ T for each i ∈ I, then ∪i∈IAi ∈ T .

T is called a fuzzy topology for X, and the pair (X, T ) is called a fuzzy
topological space and is denoted by FTS for short. Every member of T
is called T -open fuzzy set. A fuzzy set is T -closed iff its complement
is T -open.
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Definition 1.3. Let A be a fuzzy set in a FTS (X, T ). The closure
of A, denoted by A, is the intersection of all closed fuzzy sets containing
A. That is,

A = ∩{F : A ⊆ F and F c ∈ T }.

By definition ([9]), x ∈ A iff A(x) 6= 0. The symbol ∅ will be used to
denote an empty set, that is, ∅(x) = 0 for all x ∈ X. For X, we have
by definition, X(x) = 1 for all x ∈ X.

Definition 1.4. Let f be a mapping from a set X to a set Y . Let
A be a fuzzy set in X. Then the image of A, written f(A), is the fuzzy
set in Y with membership function defined by

f(A)(y) =

{ sup
z∈f−1(y)

A(z), if f−1(y) is nonempty

0, otherwise,

for all y ∈ Y . Let B be a fuzzy set in Y . Then the inverse image of
B, written by f−1(B), is the fuzzy set in X with membership function
defined by

f−1(B)(x) = B(f(x)) for all x ∈ X.

Definition 1.5. Let (A, TA), (B,UB) be fuzzy subspaces of FTS’s
(X, T ), (Y,U), respectively. Then a map f : (A, TA) → (B,UB) is
relatively fuzzy continuous iff for each open fuzzy set V ∈ UB , f−1(V )∩
A ∈ TA. f : (A, TA) → (B,UB) is relatively fuzzy open iff for each open
fuzzy set W ∈ TA, f(W ) ∈ UB . A bijective map f : (X, T ) → (Y,U)
is a fuzzy homeomorphism iff it is fuzzy continuous and fuzzy open. A
bijective map f : (A, TA) → (B,UB) is relatively fuzzy homeomorphism
iff f(A) = B and f is relatively fuzzy continuous and relatively fuzzy
open.

Definition 1.6. Let X be a group and let A and B be fuzzy sub-
sets of X. A fuzzy set A is called a fuzzy group in X if A(xy) ≥
min(A(x), A(y)) for all x, y ∈ X and A(x−1) ≥ A(x) for all x ∈ X. A
fuzzy set B is called a fuzzy semigroup inX if B(xy) ≥ min(B(x), B(y))
for all x, y ∈ X.

It is easy to see that if A is a fuzzy group in a group X and e is the
identity of X, then A(e) ≥ A(x) for all x ∈ X.
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Proposition 1.7. If A is a fuzzy group in a group G, then xA = A
if A(x) = 1. If S is a fuzzy subset in a group G, then for every
x, y, g ∈ G,

(1) (xS)(g) = S(x−1g)
(2) (Sx)(g) = S(gx−1)
(3) (xy)S = x(yS)
(4) S(xy) = (Sx)(y).

Proof. xA(z) = sup
z=w1w2

min(x(w1), A(w2)) = min(x(x), A(x−1z)) =

A(x−1z) ≥ min(A(x−1), A(z)) = A(z) for all z ∈ G. Also A(z) =
A(xx−1z) ≥ min(A(x), A(x−1z)) = A(x−1z) = xA(z) for all z ∈ G.
The remaining thing of the proof is straightforward. �

2. Fuzzy Topological Groups and Semigroups

The following definition is due to Warren ([10]).

Definition 2.1. Let (X, T ) be a FTS. A fuzzy set N in (X, T ) is a
neighborhood of a point x ∈ X iff there exists U ∈ T such that U ⊆ N
and U(x) = N(x) > 0.

Definition 2.2. Let (X, T ) be a fuzzy topological space. A family
A of fuzzy sets is a cover of a fuzzy set B iff B ⊆ ∪A∈AA. It is an
open cover iff each member of A is an open fuzzy set. A fuzzy subset
V is fuzzy compact iff every open cover has a finite subcover.

It is easy to see from Definition 2.2 that the continuous image of
fuzzy compact set is fuzzy compact (see [2]).

Definition 2.3. Let X be a group and T a fuzzy topology on X.
Let U , V be two fuzzy sets in X. We define UV and V −1 by the
respective formula UV (x) = sup

x=x1x2

min(U(x1), V (x2)) and V −1(x) =

V (x−1) for x ∈ X. Let G be a fuzzy group in X and let G be endowed
with the induced fuzzy topology TG. ThenG is a fuzzy topological group
in X, denoted by FTG for short, iff the map α : (G, TG) × (G, TG) →
(G, TG) defined by α(x, y) = xy is relatively fuzzy continuous and
the map β : (G, TG) → (G, TG) defined by β(x) = x−1 is relatively
fuzzy continuous. Let S be a fuzzy semigroup in X with induced
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topology TS . Then S is a fuzzy topological semigroup in X iff the map
φ : (S, TS) × (S, TS) → (S, TS) defined by φ(x, y) = xy is relatively
fuzzy continuous in both variables together.

Proposition 2.4. Let A and B be fuzzy subsets of a fuzzy topo-
logical semigroup S in a group X and let C be fuzzy subset of a fuzzy
topological group G in X.

(1) If A and B are fuzzy compact, then AB is fuzzy compact.
(2) If C is fuzzy compact, then C−1 is fuzzy compact.

Proof. (1) Let φ : S × S → S be a map defined by φ(x, y) = xy.
Then φ is fuzzy continuous. By Theorem 3.4 in [11], A×B is compact.
Since the fuzzy continuous image of fuzzy compact set is fuzzy compact,
φ(A,B) = φ(A×B) = AB is fuzzy compact.
(2) Let φ : S → S be a map defined by φ(x) = x−1. Since φ is fuzzy
continuous and the fuzzy continuous image of fuzzy compact set is
fuzzy compact, φ(C) = C−1 is fuzzy compact. �

The following definition is due to Warren ([10]).

Definition 2.5. A point x ∈ X is called a fuzzy limit point of
A iff whenever A(x) = 1, for each neighborhood U of x, there exists
y ∈ X −{x} such that (U ∩A)(y) 6= 0; or whenever A(x) 6= 1, for each
open neighborhood U of x satisfying 1 − U(x) = A(x), there exists
y ∈ X − {x} such that (U ∩ A)(y) 6= 0. A derived fuzzy set of A,
denoted by A′, is defined by

A′(x) =
{
A(x), if x is a fuzzy limit point of A
0, otherwise.

Theorem 2.6. Let A and B be fuzzy subsets of X. If (x, y) is not
a fuzzy limit point of A×B, then (A×B)(x, y) ≤ (A×B)(x, y).

Proof. If A×B(x, y) = 0, then A×B(x, y) ≤ (A × B)(x, y). If
A×B(x, y) > 0 and (A × B)(x, y) = 1, then A×B(x, y) ≤ (A ×
B)(x, y). Suppose that A×B(x, y) > 0 and (A × B)(x, y) 6= 1. Since
(x, y) is not fuzzy limit point of A × B, there exists open fuzzy set
N , by Definition 2.5, such that 1 − N(x, y) = (A × B)(x, y) and if
(c, d) ∈ X × X − {(x, y)}, min(N(c, d), (A × B)(c, d)) = 0. Thus for
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(c, d) 6= (x, y), 1 − N(c, d) ≥ (A × B)(c, d). Since 1 − N is closed
and 1 − N ≥ A × B on X × X, 1 − N ≥ A×B on X × X. Thus
A×B(x, y) ≤ 1−N(x, y) = (A×B)(x, y) ≤ (A×B)(x, y). �

Foster ([3]) showed that if G is a fuzzy topological group in a group
X, the right translation ra : G → G defined by ra(x) = xa and the
left translation la : G → G defined by la(x) = ax are fuzzy homeo-
morphisms. We review their proof and extend their results in Lemma
2.7.

Lemma 2.7. Let X be a group and T a fuzzy topology on X. Let
G be a fuzzy topological group in X. Then the inversion map f : G→
G defined by f(x) = x−1 and the inner automorphism h : G → G
defined by h(g) = aga−1 are all relative fuzzy homeomorphisms, where
a ∈ {x : G(x) = G(e)}.

Proof. Clearly f is one-to-one. Since

f(G)(y) = sup
z∈f−1(y)

G(z) = G(y−1) = G(y)

for all y ∈ G, f(G) = G. Since f−1(x) = x−1 is relatively fuzzy contin-
uous, f is relatively fuzzy open. Thus f is a relative fuzzy homeomor-
phism. Let ra : G → G be a right translation defined by ra(x) = xa
and la : G→ G be a left translation defined by la(x) = ax. Then

(ra(G))(x) = sup
z∈r−1

a (x)

G(z) = G(xa−1)

≥ min(G(x), G(a−1)) = min(G(x), G(e)) = G(x) = G(xa−1a)

≥ min(G(xa−1), G(a)) = G(xa−1) = (ra(G))(x).

Thus ra(G) = G. Let φ : G→ G×G be a map defined by φ(x) = (x, a)
and ψ : G×G→ G be a map defined by ψ(x, y) = xy. Then ra = ψ◦φ.
Since φ and ψ are fuzzy continuous, ra is fuzzy continuous. Since
r−1
a = ra−1 , ra is a fuzzy homeomorphism. Similarly la is a fuzzy

homeomorphism. Since h is a composition of ra−1 and la, h is a relative
fuzzy homeomorphism. �
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Corollary 2.8. Let F be a fuzzy closed subset, U an fuzzy open
subset, and A any fuzzy subset of a FTG G. Suppose a ∈ {x : G(x) =
G(e)}. Then aU , Ua, U−1, AU , UA are relatively open and aF , Fa,
F−1 are relatively closed.

Proof. Let f : G→ G be a map defined by f(x) = ax. Since f is a
relative homeomorphism, f(U) = aU is relatively open. Similarly we
may prove the remaining parts of the corollary. �

Proposition 2.9. Let G be a FTG in a group X and e be an
identity of G. If a ∈ {x : G(x) = G(e)} and W is a neighborhood
of e such that W (e) = 1, then aW is a neighborhood of a such that
aW (a) = 1.

Proof. Since W is a neighborhood of e such that W (e) = 1, there
exists a fuzzy open set U such that U ⊆W and U(e) = W (e) = 1. Let
la : G→ G be a left translation defined by la(g) = ag. By Lemma 2.7,
la is a fuzzy homeomorphism. Thus aU is a fuzzy open set. aU(a) =
U(a−1a) = U(e) = 1. aW (x) = W (a−1x) ≥ U(a−1x) = aU(x) for all
x ∈ X. aW (a) = W (a−1a) = W (e) = 1. Thus there exists an fuzzy
open set aU such that aU ⊆ aW and aU(a) = aW (a) = 1. �

Theorem 2.10. Let G be a FTG in a group X and let {U} be the
system of all fuzzy open neighborhoods of e in a FTG G such that
U(e) = 1, where e is the identity of X. Then for any fuzzy subset A
of G, x ∈ A iff x ∈ ∩AU , where x ∈ {w : G(w) = G(e)}.

Proof. Let x ∈ A and U ∈ {U}. Then A(x) > 0. By Theorem 2.15
of [10], A = A ∪A′. If A(x) > 0, then

AU(x) = sup
x=x1x2

min(A(x1), U(x2)) ≥ min(A(x), U(e)) = A(x) > 0,

and hence x ∈ AU for each U ∈ {U}, that is, x ∈ ∩AU . Suppose
that A(x) = 0 and A′(x) > 0. By Theorem 2.14 of [10], x is a fuzzy
limit point of A. xU−1(x) = U−1(x−1x) = U−1(e) = U(e) = 1. Hence
xU−1(x) ≥ x(x) = 1 for all x ∈ X. Since the map f : G → G
defined by f(x) = x−1 is a fuzzy homeomorphism by Lemma 2.7, U−1

is fuzzy open. Since x ∈ {w : G(w) = G(e)}, the map lx : G → G
defined by lx(g) = xg is a fuzzy homeomorphism by Lemma 2.7. Hence
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xU−1 is fuzzy open. 1 − xU−1(x) = 1 − 1 = 0 = A(x). Hence xU−1

is a fuzzy open neighborhood of x such that 1 − xU−1(x) = A(x).
Since x is a fuzzy limit point of A, there exists y ∈ X − {x} such
that (xU−1 ∩ A)(y) 6= 0. Since xU−1(y) = U−1(x−1y) = U(y−1x),
(xU−1 ∩ A)(y) = min(xU−1(y), A(y)) = min(U(y−1x), A(y)). Thus
min(U(y−1x), A(y)) 6= 0. Hence AU(x) = sup

x=x1x2

min(A(x1), U(x2)) ≥

min(A(y), U(y−1x)) 6= 0. That is, x ∈ AU for each U ∈ {U}, and
hence x ∈ ∩AU .

Let x ∈ ∩AU . Then x ∈ AU for each U in {U}. If A(x) > 0, then
A(x) > 0, and hence x ∈ A. Suppose that A(x) = 0. Let N be an
arbitrary fuzzy open neighborhood of x such that 1−N(x) = A(x) = 0.
Then N(x) = 1. N−1x(e) = N−1(ex−1) = N−1(x−1) = N(x) =
1. By Corollary 2.8, N−1x is fuzzy open. Hence N−1x is a fuzzy
open neighborhood of e. Since N−1x ∈ {U}, x ∈ AN−1x. From
AN−1x(x) = AN−1(xx−1) = AN−1(e) and x ∈ AN−1x, AN−1(e) >
0. Suppose that (A∩N)(z) = 0 for all z ∈ X−{x}. Since (A∩N)(x) =
0, (A ∩N)(z) = 0 for all z ∈ X. Then

AN−1(e) = sup
e=x1x2

min(A(x1), N−1(x2)) = sup
x

min(A(x), N−1(x−1))

= sup
x

min(A(x), N(x)) = sup
x

(A ∩N)(x) = 0.

This contradicts AN−1(e) > 0. Thus there exists y ∈ X − {x} such
that (A∩N)(y) 6= 0. Hence x is a fuzzy limit point of A. By Theorem
2.14 of [10], A′(x) > 0. Thus A(x) ≥ A′(x) > 0, that is, x ∈ A. �
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