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REMARK ON A SEGAL-LANGEVIN TYPE
STOCHASTIC DIFFERENTIAL EQUATION ON

INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

Hong chul Chae

Abstract. Let S′ (R) be the dual of the Schwartz spaces S (R),

A be a self-adjoint operator in L2 (R) and Γ(A)∗ be the adjoint
operator of Γ(A) which is the second quantization operator of A. It

is proven that under a suitable condition on A there exists a nuclear

subspace S of a fundamental space SA of Hida’s type on S′ (R) such

that Γ (A)S ⊂ S and e−tΓ(A)S ⊂ S, which enables us to show that

a stochastic differential equation:

dX(t) = dW (t)− Γ(A)∗X(t)dt,

arising from the central limit theorem for spatially extended neurons

has an unique solution on the dual space S′ of S.

1. Introduction

Two types of fundamental spaces on infinite dimensional topological
vector spaces have been studied by [1, 2, 3, 4, 6, 8, 10] in connection
with infinite dimensional geometry and analysis. In general, the nucle-
arity of the fundamental spaces gives us various fruitful results[5]. Until
now, it has been known that the fundamental spaces in the Malliavin
calculus are not nuclear, while the original Hida space is nuclear.

Let SA be a fundamental space of Hida’s type and Γ (A) the second
quantization operator of A. Inspired by the works [8,9], we construct
a fundamental space which is invariant under the semi-group e−tΓ(A)

and is nuclear and smaller than SA even if SA is not nuclear. This
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enables us to obtain an unique strong solution of the stochastic differ-
ential equation

dX(t) = dW (t)− Γ(A)∗X(t)dt (1.1)

which is a special case of the types considered in [7].
First we begin by giving some notations and explanations. Let E

be a real locally convex topological vector space and E ′ the topological
dual space of E . We denote by <,> the pairing of E and E ′ , and by |·|E
the norm of E if E is a Hilbert space. Let H be a separable real Hilbert
space densely and continuously embedded in E . Then identifying H′

with H, we have
E
′
⊂ H ⊂ E .

Let µ be the countably additive Gaussian measure on E whose charac-
teristic functional is given by∫

E
exp [i < x, ξ >] dµ(x) = exp

[
−1

2
|ξ|2H

]
, ξ ∈ E

′
.

Let S ′
(R) be the dual of the Schwartz spaces S (R). If we replace E

by S ′
(R), (E , µ) is called the white noise space [8].

Let A be a self-adjoint operator in Hilbert space H and L2 (E , µ) be
the space of square integrable functions with respect to µ. Further we
denote by H⊗n the n-fold tensor product space of H, by SA the Hida
space determined by A and by Γ (A) the second quantization operator
of A, which will be precisely defined later. From now on we denote the
domain of a closed linear operator T densely defined in H by D (T) and
define C∞ (T) :=

⋂∞
n=1D (Tn). We always consider D (Tn) as a Hilbert

space equipped with the inner product (Tn·,Tn·)H. Given λ ∈ R , we
mean by A ≥ λ that (Af, f)H ≥ λ (f, f)H for all f ∈ D (A). Now we
state main result.

THEOREM. Suppose that A ≥ 1 + ε, for some ε > 0 and there
exists a self-adjoint operator B in H and natural numbers p and q,
satisfying the following conditions:

1) D (Bp) ⊂ D (A)
2) the identity map of D (Bq) into H is a Hilbert Schmidt operator,
3) AC∞ (B) ⊂ C∞ (B).
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Then SB is a nuclear subspace of L2 (E , µ) such that

Γ (A)SB ⊂ SB.

Further suppose that
4) for any nonnegative integers m and k , Am and Bk are commu-

tative. Then
e−tΓ(A)SB ⊂ SB.

2. Space of the White Noise

Before defining a fundamental space of Hida’s type, we introduce
the following notation. Let H be a separable Hilbert space. For fi ∈
H, i = 1, 2, · · · , n we denote the tensor product of them by

f1 ⊗ f2 ⊗ · · · ⊗ fn

and define the symmetric tensor product of them by

f1⊗̂f2⊗̂ · · · ⊗̂fn :=
1
n!

∑
σ∈Ξn

fσ(1) ⊗ fσ(2) ⊗ · · · ⊗ fσ(n), (2.1)

where Ξn is the symmetric group of degree n.
Let H⊗n and H⊗̂n be the n-fold tensor product space and the n-fold

symmetric tensor product space of H, respectively. For fi, gi ∈ H, i =
1, 2, · · · , n, the inner product (·, ·)H⊗n is given by(

f1⊗̂f2⊗̂ · · · ⊗̂fn, g1⊗̂g2⊗̂ · · · ⊗̂gn

)
H⊗̂n

=
(

1
n!

)2 ∑
σ,τ∈Ξn

(
fσ(1), gτ(1)

)
H

(
fσ(2), gτ(2)

)
H · · ·

(
fσ(n), gτ(n)

)
H ,

Clearly
H⊗̂n ⊂ H⊗n, (2.2)

and (
f1⊗̂f2⊗̂ · · · ⊗̂fn, g1⊗̂g2⊗̂ · · · ⊗̂gn

)
H⊗n

=
(
f1⊗̂f2⊗̂ · · · ⊗̂fn, g1⊗̂g2⊗̂ · · · ⊗̂gn

)
H⊗̂n .

(2.3)
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We review the relation between the wick ordering : x⊗n : for x ∈ E
used in [4,8] and the wick product [9]. Wick product :< x, ξ1 ><
x, ξ2 > · · · < x, ξn >: of random variables < x, ξk >, x ∈ E , ξk ∈
E ′ , k = 1, 2, · · · , n, with respect to µ is defined by the following recur-
sion relation [9]:

:< x, ξ1 >:=< x, ξ1 >,

:< x, ξ1 >< x, ξ2 > · · · < x, ξn >:=< x, ξ1 >:< x, ξ2 > · · · < x, ξn >:

−
n∑

k=2

∫
E
< x, ξ1 >< x, ξk > dµ(x) :< x, ξ2 > · · · ˇ< x, ξk > · · · < x, ξn >:,

where ˇ< x, ξk > means the term < x, ξk > is deleted in the product.
Then we have

<: x⊗n :, ξ1⊗̂ξ2⊗̂ · · · ⊗̂ξn >:=:< x, ξ1 >< x, ξ2 > · · · < x, ξn >: .
(2.4)

It is well known by Wiener-Ito theorem that the space L2 (E , µ) has
the following orthogonal decomposition

L2 (E , µ) =
∞⊕

n=0

Kn, (2.5)

where Kn consists of n-homogeneous chaos, i.e. each ϕ in Kn has the
formal expression

ϕ(x) =<: x⊗n :, f̂n >, f̂n ∈ H⊗̂n. (2.6)

Thus each ψ ∈ L2 (E , µ) can be represented uniquely in the following
form :

ψ(x) =
∞∑

n=0

<: x⊗n :, f̂n >, µ− a.e. x ∈ E . (2.7)

Moreover, we have

|ψ|2L2(E,µ) =
∞∑

n=0

n!
∣∣∣f̂n

∣∣∣2
H⊗̂n

, [4, 8]. (2.8)
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Let A be a positive self-adjoint operator in H. Then there exists an
unique positive self-adjoint operator Γ(A) in L2 (E , µ) such that

Γ(A)1 = 1

and for ξi ∈ D(A), i = 1, 2, · · · , n,

Γ(A) :< x, ξ1 > · · · < x, ξn >:

=:< x,Aξ1 > · · · < x,Aξn >:

=<: x⊗n :, (A⊗ · · · ⊗A)(ξ1⊗̂ · · · ⊗̂ξn) > .

We denote by PA the collection of all polynomials of the form

ω(x) = P (< x, ξ1 > · · · < x, ξm >), ξi ∈ C∞(A),

where P (t1, · · · , tm) is a polynomial of (t1, · · · , tm). For each p ∈ R we
define a semi-norm A‖ · ‖2,p by

A‖ω‖
2
2,p :=

∫
E
|Γ(A)pω(x)|2 dµ(x). (2.9)

It is not difficult to see that Γ(A)p = Γ(Ap). By (2.4), each ω in PA
has the following expression:

ω(x) =
∞∑

n=0

<: x⊗n :, ĝn >, ĝn ∈ C∞(A)⊗̂n,

where C∞(A)⊗̂n =

n−times︷ ︸︸ ︷
C∞(A)⊗̂ · · · ⊗̂C∞(A) is the set of finite linear com-

binations of the form ξ1⊗̂ · · · ⊗̂ξn with ξi ∈ C∞(A), i = 1, 2, · · ·n. In
fact we note that there exists a natural number k(ω) such that ĝn = 0
for n ≥ k(ω). Since

ĝn =
m(n)∑
i=1

ai(n)ξi1⊗̂ · · · ⊗̂ξin
, ξik

∈ C∞(A), k = 1, 2, · · ·n,

by (2.8), A‖ · ‖
2
2,p can be also represented as
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A‖ω‖
2
2,p =

∞∑
n=0

n!
∣∣∣(Ap)⊗n

ĝn

∣∣∣2
H⊗̂n

, (2.10)

where
(Ap)⊗n = Ap ⊗ · · · ⊗Ap.

For p ≥ 0,
(
SA
)
p

is the completion of PA with respect to the semi-
norm A‖ · ‖2,p. We define the fundamental space SA of the Hida
distributions on E by

SA :=
⋂
p≥0

(
SA
)
p
. (2.11)

If we take E = S ′
(R) and A = −

(
d
dx

)2
+ x2 + 1, then SA becomes a

nuclear space and originally it is called the fundamental space of the
Hida distributions.

3. Proof of Theorem

Let N0 = {0, 1, 2, · · · } and let In be the set of all naturally ordered
n-tuples in Nn

0 . For α = (α1, · · ·αn) ∈ In, define nk (α) , 0 ≤ k < ∞,
and n (α)! as followings:

nk (α) := ]{αj : αj = k}, n (α)! :=
∞∏

k=0

nk (α)!

Let ek, k ≥ 0 be the Hermite functions. For each α ∈ In, we define

Hα(x) = (n(α)!)−
1
2

∞∏
k=0

:< x, ek >
nk(α): .

It is a fact that the collection {Hα : α ∈ In, n ≥ 0} forms an or-
thonormal basis for the space L2 (E , µ)[8]. Since operator A and B are
commutative, A has only discrete spectrums; i.e.

Aek = νkek, k = 1, 2, · · · ,

where {νk} is the eigenvalues of A and {ek} forms a complete orthonor-
mal basis of H. Let {λk} be the eigenvalues of B with respect to {ek}.
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Consider the fundamental space SB of the Hida distributions on E
determined by B. Then the condition (2) of Theorem yields that SB
becomes a nuclear space[2]. Take any ω(x) ∈ PB then the following
expression holds:

ω(x) =
∑
α

CαHα(x)

=
∑
α

Cα (n(α)!)−
1
2

∞∏
k=0

:< x, ek >
nk(α): .

(3.1)

Therefore, we get

B‖Γ(A)ω(x)‖2
2,p = |Γ(Bp)Γ(A)ω(x)|2L2(E,µ)

=

∣∣∣∣∣∑
α

Cα (n(α)!)−
1
2 <: x×n(α) :,

∞⊗
k=1

BpAenk(α)
k >

∣∣∣∣∣
2

L2(E,µ)

=

∣∣∣∣∣∣
∑
α

Cα (n(α)!)−
1
2

∞∏
i=1

λ
pni(α)
i

∞∏
j=1

ν
nj(α)
j

∞∏
k=1

:< x, ek >
nk(α):

∣∣∣∣∣∣
2

L2(E,µ)

=
∑
α

( ∞∏
i=1

λ
pni(α)
i Cα

)2
 ∞∏

j=1

ν
nj(α)
j

2

‖Hα‖2
L2(E,µ)

=
∑
α

 ∞∏
j=1

ν
nj(α)
j

2( ∞∏
i=1

λ
pni(α)
i Cα

)2

=
∑[∏∞

j=1 ν
nj(α)
j∏∞

i=1 λ
δni(α)
i

]2( ∞∏
i=1

λ
(p+δ)ni(α)
i Cα

)2

≤

∑[∏∞
j=1 ν

nj(α)
j∏∞

i=1 λ
δni(α)
i

]2t


1
t
( ∞∏

i=1

λ
(p+δ)ni(α)
i Cα

)2s
 1

s

≤MC2(1− 1
s )

B‖ω(x)‖2
2,q

(3.2)
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where 1
t + 1

s = 1, s > 1, δ > 0 and q = s(p + s). Since λi > νi, i =
1, 2, · · · , we know that

M =

∑[∏∞
j=1 ν

nj(α)
j∏∞

i=1 λ
δni(α)
i

]2t


1
t

is finite.
The last inequality of (3.2) holds, because let C = supα |Cα| < ∞,
then C2s

α ≤ C2
αC

2(s−1).
Therefore we have Γ (A)SB ⊂ SB. Thus the proof of the first half

of Theorem is completed. By the manner similar to that in the first
half, the second half of the Theorem is proved.

4. Strong Solution for a Segal-Langevin Type Equation

In [7], they discussed a fluctuation phenomena for interacting, spa-
tially extended neurons and as a limit equation, they found a suitable
fundamental space DE of functionals on E and studied Segal-Langevin
type stochastic differential equations:

dXF (t) = dWF (t)−X−Γ(A)F (t)dt, F ∈ DE , (4.1)

including a class of the weak version of (1.1). A stochastic process
XF (t) indexed by elements in DE is called a continuous L (DE)-process
if for any fixed F ∈ DE , XF (t) is a real continuous process and

XαF+βG(t) = αXF (t) + βXG(t)

almost surely for real numbers α, β and elements F,G ∈ DE and further
E
[
XF (t)2

]
is continuous on DE . WF (t) is an L (DE)-Wiener process

such that for any fixed F ∈ DE , WF (t) is a real Wiener process.
Although the above DE is not nuclear, appealing to the results in

[7], we get an unique continuous L (DE)-process satisfying (4.1).
We consider the case where for the operator A in (4.1), there exists a

self-adjoint operator B satisfying all the conditions of Theorem 1.1. In
this case, by Theorem 1.1, there is a nuclear space S invariant under
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both Γ (A) and a strong continuous semigroup T (t) = e−tΓ(A). If
we replace DE by S in (4.1), then by the regularization theorem [5]
there exists an S ′

-valued Winer process W (t) such that < W (t), F >=
WF (t) almost surely and the strong form of the equation with DE
replaced by S in (4.1) is the following stochastic differential equation
on S ′

:
dX(t) = dW (t)− Γ(A)∗X(t)dt.

Let T (t)∗ be the adjoint operator of T (t). Since S is nuclear, again by
the regularization theorem, the stochastic integral

∫ t

0
T (t − s)∗dW (s)

is well defined from the weak form such that〈∫ t

0

T (t− s)∗dW (s), F
〉

=
∫ t

0

〈dW (s), T (t− s)F 〉 .

Since T (t− s)F = F +
∫ t

s
T (τ − s)(−Γ(A))Fdτ , we get∫ t

0

T (t− s)∗dW (s) = W (t) +
∫ t

0

(−Γ(A)∗)
(∫ τ

0

T (τ − s)∗dW (s)
)
dτ.

Noticing that∫ t

0

(−Γ(A)∗)T (τ)∗X(0)dτ = T (t)∗X(0)−X(0),

we get that

X(t) = T (t)∗X(0) +
∫ t

0

T (t− s)∗dW (s)

is an unique strong solution of (1.1) on S ′
.
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