ASYMPTOTIC PROPERTIES OF NONEXPANSIVE SEQUENCES IN BANACH SPACES

JONG AN PARK AND YANG SEOB PARK

Abstract. B. Djafari Rouhani and W. A. Kirk [3] proved the following theorem:
Let X be a reflexive Banach space and $(x_n)_{n\geq 0}$ be a nonexpansive (resp., firmly nonexpansive) sequence in X. Then the set of weak ω-limit points of the sequence $(\frac{x_n}{n})_{n\geq 1}$ (resp., $(x_n - x_{n+1})_{n\geq 0}$) always lies on a convex subset of a sphere centered at the origin of radius $d = \lim_{n\to\infty} \|x_n\|$.
In this paper we show that the above theorem for nonexpansive (resp., firmly nonexpansive) sequences holds in a general Banach space (resp., a strictly convex dual X^*).

1. Introduction

Let X be a real Banach space; the norm of both X and its dual X^* are denoted by $\|\|$; we denote strong convergence and weak convergence in X respectively by \to and \rightharpoonup. The duality map J from X into the family of nonempty closed convex subsets of X^* is defined by $J(x) = \{x^* \in X^* : (x, x^*) = \|x\|^2 = \|x^*\|^2\}$. We say that a sequence $(x_n)_{n\geq 0}$ is nonexpansive (resp., firmly nonexpansive) if $\|x_{i+1} - x_{j+1}\| \leq \|x_i - x_j\|$ for all $i, j \geq 0$ (resp., if the function $f : [0, 1] \to [0, \infty)$ defined by $f(t) = \|(1-t)(x_i - x_j) + t(x_{i+1} - x_{j+1})\|$ is nonincreasing for all $i, j \geq 0$).
Firmly nonexpansive sequences are also characterized by the inequality
$$\|x_{i+1} - x_{j+1}\| \leq \|(1-t)(x_i - x_j) + t(x_{i+1} - x_{j+1})\|$$
for all $i, j \geq 0$, $t \in [0, 1]$.

Received May 30, 2000.
1991 Mathematics Subject Classification: Primary 47H09.
Key words and phrases: asymptotic behavior, nonexpansive and firmly nonexpansive sequences, weak convergence, strictly convex.
In 1971 A. Pazy proved that if T is nonexpansive in a Hilbert space, then sequence $\{T^n x/n\}$ always converges strongly. Since then the asymptotic behavior of nonexpansive mappings has been extended to a more general space and to the firmly nonexpansive mappings and to nonexpansive semigroups. (See, e.g., [4, 5]).

In this context B. Djafari Rouhani [1, 2] defined nonexpansive sequences and firmly nonexpansive sequences and studied their asymptotic behaviors.

The present paper concerns about Proposition 1 and Theorem 1,2 in [3] without reflexivity.

2. Asymptotic Behavior

We follow the notations in [3],

$$K_n = \overline{\text{conv}} \{(x_{i+1} - x_i)\}_{i \geq n}$$

$$K = \bigcap_{n=0}^{\infty} K_n$$

$$F_n = \overline{\text{conv}} \{(x_k - x_0)/k\}_{k \geq n}$$

$$F = \bigcap_{n=0}^{\infty} F_n$$

$$S_d = \{x \in X : \|x\| = d\}.$$

Remark 1 in [3] states that if $H_n := \overline{\text{conv}} \{(x_k - x_0)/k\}_{k \geq n}$ and $H = \bigcap_{n=1}^{\infty} H_n$, then $H = F$.

In analogy of Lemma 4 in [5] we can obtain the following lemma.

Lemma 1. Let $(x_n)_{n \geq 0}$ be a nonexpansive sequences in a Banach space X. And let $d = \lim_{n \to \infty} \|x_n\|$. Then there exists $x^* \in X^*$ such that

$$(x^*, x_m - x_0)/m \geq \|x^*\|^2 = d^2$$

for all $m \geq 1$.

Proof. The proof is similar to that of Lemma 4 in [5]. So it is omitted.
Theorem 1. Let X be a Banach space, $(x_n)_{n \geq 0}$ a nonexpansive sequence in X, and $d = \lim_{n \to \infty} \| \frac{x_n}{n} \|$. Then
\[
\omega_w(\{ \frac{x_n}{n} \}) \subseteq F \cap S_d.
\]

Proof. Suppose that $\{ \frac{x_{nk}}{n_k} \}$ converges weakly to $z \in \omega_w(\{ \frac{x_n}{n} \})$. Then
\[
\| z \| \leq \liminf_{n_k \to \infty} \| \frac{x_{nk}}{n_k} \| = d
\]
and by Lemma 1,
\[
(x^*, z) = \lim_{n_k \to \infty} (x^*, \frac{x_{nk}}{n_k}) \geq d^2.
\]
So $\| z \| \geq d$ and $z \in S_d$.

Since H_n is closed and convex, it is weakly closed and $z \in H_n$ for all $n \geq 1$. Therefore $\| z \| \in \cap_{n=1}^\infty H_n = H = F$. \qed

In [3] B. Djafari Rouhani and W.A. Kirk characterized the sets $F \cap S_d$, $K \cap S_d$. Without reflexivity of X, we prove the following theorem.

Theorem 2. Let $(x_n)_{n \geq 0}$ be a nonexpansive sequence in a Banach space X. Then $F_n \cap S_d$ is convex for all $n \geq 1$. In particular $F \cap S_d$ is convex.

Proof. It is sufficient to prove that for all $x, y \in F_n \cap S_d, 0 \leq \lambda \leq 1$,
\[
\| (1 - \lambda)x + \lambda y \| = d.
\]
By Lemma 1, for all $w \in F_n$
\[
(x^*, w) \geq d^2.
\]
So
\[
(x^*, (1 - \lambda)x + \lambda y) \geq d^2.
\]
Hence
\[
\| (1 - \lambda)x + \lambda y \| \geq d.
\]
On the other hand, since $x, y \in S_d$
\[
\| (1 - \lambda)x + \lambda y \| \leq d.
\]
Therefore
\[
\| (1 - \lambda)x + \lambda y \| = d.
\]
\qed
Being hinted by Corollary 2 of A.T. Plant and S. Reich [5], we obtain the following lemma which could be compared with Theorem 3.1 of [3]. We need Lemma 5 in [5] which characterizes the strict convexity as the duality map as follows:

A Banach space X is strictly convex iff its duality map is injective in the sense that $J(x) \cap J(y) \neq \emptyset$ implies $x = y$.

Lemma 2. If $(x_n)_{n \geq 0}$ is a nonexpansive sequence in a Banach space X with strictly convex dual X^* and let $d = \lim_{n \to \infty} \|x_n\|$, then there exists $z \in X^*$ such that

$$\left(z, \frac{x_{m+i} - x_i}{m} \right) \geq \|z\|^2 = d^2$$

for all $m \geq 1, i \geq 0$.

Proof. Since $\{x_n\}$ is bounded in X which is identified with its natural injection in X^{**}, let us choose one weak-star subsequential limit a of $\{x_n\}$. So

$$\|a\| \leq \liminf_{n \to \infty} \frac{x_n}{n} = d$$

And for any $i \geq 0$, the subsequence $(x_{n+i})_{n \geq 0}$ is also a nonexpansive sequence. So by Lemma 1 there exists $z(i) \in X^*$ such that

$$\left(z(i), \frac{x_{m+i} - x_i}{m} \right) \geq \|z(i)\|^2 = d^2 \ldots \ldots (\star)$$

for all $m \geq 1$. Here

$$\lim_{m \to \infty} \left| \frac{x_{m+i}}{m} \right| = \lim_{m \to \infty} \left| \left(\frac{m+i}{m} \right) \frac{x_{m+i}}{m+i} \right| = \lim_{n \to \infty} \frac{x_n}{n} = d.$$

Since some subsequence of $\{x_{m+i} = (\frac{m+i}{m}) \frac{x_{m+i}}{m+i}\}$ converges weak-star to $a \in X^{**}$, in (\star) we take the subsequential limit. Then

$$\left(z(i), a \right) \geq \|z(i)\|^2 = d^2.$$

And

$$d^2 \geq \|z(i)\| \|a\| \geq \left(z(i), a \right) \geq \|z(i)\|^2 = d^2.$$

Therefore

$$\left(z(i), a \right) = \|a\|^2 = \|z(i)\|^2.$$

for all $i \geq 0$. So for the usual duality map J^* on X^{**},

$$a \in J^*(z(i)) \cap J^*(z(j)).$$
for all \(i, j \geq 0 \). Since \(X^* \) is strictly convex, \(z \equiv z(i) \) for all \(i \geq 0 \). Hence
\[
(z, \frac{x_{m+i} - x_i}{m}) \geq \|z\|^2 = d^2
\]
for all \(m \geq 1, i \geq 0 \).

It is known in [2, 6] that for a firmly nonexpansive sequence \((x_n)_{n \geq 0}\),
\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = d = \lim_{n \to \infty} \|\frac{x_n}{n}\|.
\]

Theorem 3. Let \(X \) be a Banach space with a strictly convex dual \(X^* \), \((x_n)_{n \geq 0}\) a firmly nonexpansive sequence in \(X \), and \(d = \lim_{n \to \infty} \|\frac{x_n}{n}\| = \lim_{n \to \infty} \|x_{n+1} - x_n\| \). Then
\[
\omega_w(\{x_{n+1} - x_n\}) \subseteq K \cap S_d.
\]

Proof. Since a firmly nonexpansive sequence is a nonexpansive sequence, there exists \(z \in X^* \) such that
\[
(z, x_{i+1} - x_i) \geq \|z\|^2 = d^2
\]
for all \(i \geq 0 \). by Lemma 2 for \(m = 1 \). So by the definition of \(K_n \),
\[
(z, w) \geq \|z\|^2 = d^2
\]
for all \(w \in K_n, n \geq 0 \). If \(x_{n+1} - x_n \) converges weakly to \(w' \in X \), then
\[
\|w'\| \leq \liminf_{n \to \infty} \|x_{n+1} - x_n\| = d
\]
on the other hand since \(K_n \) is weakly closed, \(w' \in K_n \) for all \(n \geq 0 \) i.e.,
\[
w' \in \cap_{n=0}^{\infty} K_n = K \quad \text{and} \quad (z, w') \geq \|z\|^2 = d^2.
\]
So \(\|w'\| \leq d \). Therefore \(w' \in K \cap S_d \).

Theorem 4. Let \((x_n)_{n \geq 0}\) be a firmly nonexpansive sequence in a Banach space \(X \) with a strictly convex dual \(X^* \). Then \(K \cap S_d \) is convex for all \(n \geq 1 \). In particular \(K \cap S_d \) is convex.

Proof. The proof depends on Lemma 2 for \(m = 1 \). And its proof is similar to that of Theorem 2. So we omit it.

References

Department of Mathematics
Kangwon National University
Chunchon
Kangwondo, 200-701
KOREA
E-mail: jongan@kangwon.ac.kr