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A HOPF BIFURCATION IN AN

ACTIVATOR-INHIBITOR SYSTEM DERIVED FROM

A VAN DER POL EQUATION

YoonMee Ham

Abstract. We are concerned with an activator-inhibitor system
proposed by Ohta [8]. The purpose of this paper is to study the
dynamics of interfaces in an interfacial problem which is reduced
from the system in order to examine how this problem is different
from an activator-inhibitor system [3, 7].

1. Introduction

Two-component activator-inhibitor system [8] is a model of develop-
mental biology, population ecology and also the appearance of propagat-
ing waves in excitable waves ([4, 5, 6]). The system defined for a band
shaped domain is

(1)

{
εσut − ε2uxx = f(u, v)− < u+ v >

vt −Dvxx = g(u, v), t > 0, x ∈ (−L/2, L/2)

where ε, σ, τ are all positive constant parameters. The nonlinear terms
f and g are van der Pol equation, f(u, v) = −u+Θ(u)−v and g(u, v) =
u− bv where b satisfy the bistable condition and Θ(u) = 1 for u > 0 and

−1 for u < 0. A spatial average of u+v is < u+v >= 1
L

∫ L/2

−L/2
(u+v)dx.

When the interface width tends to zero as ε → 0, we can extract
systematically from u the slow modes (called bulk variable) is a smooth
function in the entire space. For ε = 0, a free boundary problem with
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two interfaces is obtained :

(2)



vt = vxx − c2v +H(x− ζ)H(η − x)−H(x− η)H(ζ − x)

+ 1
L
(η − ζ)− 1

2
, (x, t) ∈ Ω+(t) ∪ Ω−(t)

vx(−L
2
, t) = 0 = vx(

L
2
, t), t > 0

ζ ′(t) = C(v(ζ(t)), t), t > 0

η′(t) = −C(v(η(t), t), t > 0

where c2 = b+ 1. The domains are Ω+(t) = {(x, t) : ζ(t) < x < η(t), t >
0} and Ω−(t) = {(x, t) : x < ζ(t), x > η(t), t > 0}. The spatial average
< u+v > is given by 1

L
(η− ζ)− 1

2
and H(·) is a Heaviside step function.

The velocity function

C(r) =
1

σ

−2r√
(r + L/2)(L/2− r)

of interfaces is continuously differentiable defined on I := (−L/2, L/2).
We shall prove the existence of periodic solutions and the bifurcation

of the interface problem. In order to do this, the regular setting of (2) is
adapted from [3] in the next section. In section 3, the steady states are
examined. We shall state the main theorems in section 4 and give the
proofs in section 5.

2. Abstract setting for a regularization

Let G : [−L/2, L/2]2 → R be a Green’s function of the differential

operator A := − d2

dx2 + c2 satisfying the boundary conditions. Let the
domain of A be

D(A) = {v ∈ H2,2((−L/2, L/2)) : vx(−L/2) = vx(L/2) = 0} .

We define a function g : [−L/2, L/2]2 −→ R by

g(x, s, η)
:= A−1(1

2
− 1

L
(η − s) +H(· − s)H(η − ·)−H(s− ·)H(· − η))(x)

= −1
2
− 1

L
(η − s) + 2

∫ η

s
G(x, y) dy

and γ : R × R −→ R by γ(s, η) := g(s, s, η) , ζ : R × R −→ R by
ζ(s, η) := g(η, s, η) . If we use a transformation

u(t)(x) := v(x, t)− g(x, s(t), η(t))
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then the problem (2) can be written by an abstract evolution equation

(3)


d

dt
(u, s, η) + Ã(u, s, η) = f(u, s, η)

(u, s, η)(0) = (u(0), s(0), η(0)) = (u0,−s0, η0)

where Ã is a 3 × 3 matrix whose (1,1)-entry is the operator A and all

the others are zero. The nonlinear forcing term f is

f(u, s , η ) =



(2G(x, s(t))− 1
L
)C

(
(u(t)(s(t)) + γ(s(t), η(t))

)
+(2G(x, η(t))− 1

L
)C

(
u(t)(η(t)) + ζ(s(t), η(t))

)
C

(
u(t)(s(t)) + γ(s(t), η(t))

)
−C

(
u(t)(η(t)) + ζ(s(t), η(t))

)


.

In [3, 9] the authors proved the well posedness of solutions applying the
semigroup ([2]) theory using domains of fractional powers α ∈ (3/4, 1] of

A and Ã. They obtained that f is a continuously differentiable function

from W ∩ X̃α to X̃ where

W = {(u, s, η) ∈ C1([−L/2, L/2])× R× R : u(s) + γ(s, η) ∈ I,
u(η) + ζ(s, η) ∈ I} ⊂open C

1([0, 1])× R× R,

Xα := D(Aα) and X̃α := D(Ãα) = Xα × R × R.

3. Stationary solutions

We shall deal with the linearized eigenvalue problem for (3) which
can be obtained at the stationary solutions. The stationary problem,
corresponding to (3), is given by

Au∗ = (2G(·, s∗)− 1
L
)C(u∗(s∗) + γ(s∗, η∗) )

+(2G(·, η∗)− 1
L
)C(u∗(η∗) + ζ(s∗, η∗) )

0 = C(u∗(s∗) + γ(s∗, η∗) )

0 = −C(u∗(η∗) + ζ(s∗, η∗) )

u∗′(−L
2
) = 0 = u∗′(L

2
)



12 YoonMee Ham

for (u∗, s∗, η∗) ∈ D(Ã) ∩ W . This system is equivalent to the pair of
equations

(4) u∗ = 0, C(γ(s∗, η∗) ) = 0 and C(ζ(s∗, η∗) ) = 0.

Theorem 3.1. The stationary problem of (3) has the stationary so-
lutions (0, s∗, η∗) for all σ 6= 0 with η∗ = −s∗ or s∗ = −L/4, η∗ = L/4.
The linearization of f at (0, s∗, η∗) is

Df(0, s∗, η∗)(û, ŝ, η̂) = (2G(·, s∗)− 1
L
) f1(0, s

∗, η∗)(û, ŝ, η̂)

+(2G(·, η∗)− 1
L
) f2(0, s

∗, η∗)(û, ŝ, η̂)

where

f1(0, s
∗, η∗)(û, ŝ, η̂) = 4

σ

(
û(s∗) + γs(s

∗, η∗)ŝ+ γη(s
∗, η∗)η̂

)
f2(0, η

∗, η∗)(û, ŝ, η̂) = 4
σ

(
û(η∗) + ζs(s

∗, η∗)ŝ+ ζη(s
∗, η∗)η̂

)
.

The pair (0, s∗, η∗) corresponds to a unique steady state (v∗, s∗, η∗) of
(2) for σ 6= 0 with v∗(x) = g(x, s∗, η∗) .

Proof : From the system (4), s∗ and η∗ are solutions of{
γ(s, η) = −1

2
− 1

L
(η − s) + 2

∫ η

s
G(s, y) dy = 0

ζ(s, η) = −1
2
− 1

L
(η − s) + 2

∫ η

s
G(η, y) dy = 0.

Subtracting to each other, we have s∗ + η∗ = 0 or η∗ − s∗ = L/2.
Suppose s∗ + η∗ = 0 and let T (s) = −1

2
+ 2s

L
− 2

∫ s

−s
G(−s, y) dy. Then

T (0) = −1/2 < 0, T (−L/2) = −3/2 + 2 coshL > 0 and T ′(s) = 2
L
−

2 cosh(L/2−2s)
sinh(L/2)

< 0 for −L
2
< s < 0. Therefore, there is a unique solution

s∗ ∈ (−L/2, 0) and η∗ = −s∗. For η∗ − s∗ = L/2 , s∗ is a solution of the
following equation Y (s) = sinh(2s+ L

2
)− sinh(L+ s) cosh s+ sinh(L

2
−

s) cosh(L
2

+ s). Since Y (0) = sinh L
2
(1 − cosh L

2
) < 0 , Y (−L

2
) = −Y (0)

and Y ′(s) = 2 cosh(2s + L
2
) − cosh(2s + L) coshL < 0 for −L

2
< s < 0.

Hence there is a unique solution (s∗, η∗) with η∗−s∗ = L/2 (in this case,
s∗ = −L/4.)
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4. Main theorems for Hopf bifurcations

We now state the definition for the Hopf bifurcation theory.

Definition 4.1. Under the assumptions of Proposition 3.1, define

(for 3/4 < α ≤ 1) the operator B ∈ L(X̃α, X̃) as

B :=
σ

4
Df(0, s∗, η∗) .

We then define (0, s∗, η∗) to be a Hopf point for (3) if there exists an
ε0 > 0 and a C1-curve

(−ε0 + τ ∗, τ ∗ + ε0) 7→ (λ(τ), φ(τ)) ∈ C× X̃C

(YC denotes the complexification of the real space Y ) of eigendata for

−Ã+ τB such that

(i) (−Ã+ τB)(φ(τ)) = λ(τ)φ(τ), (−Ã+ τB)(φ(τ)) = λ(τ)φ(τ);
(ii) λ(τ ∗) = iβ with β > 0;

(iii) Re (λ) 6= 0 for all λ ∈ σ(−Ã+ τ ∗B) \ {±iβ};
(iv) Reλ′(τ ∗) 6= 0 (transversality).

The linearized eigenvalue problem is

−Ã(u, s, η) + τB(u, s, η) = λ(u, s, η)

which is equivalent to
(5)

(A+ λ)u = τ(2G(·, s∗)− 1
L
)
(
u(s∗) + γs(s

∗, η∗) s+ γη(s
∗, η∗) η

)
+τ(2G(·, η∗)− 1

L
)
(
u(η∗) + ζs(s

∗, η∗)s+ ζη(s
∗, η∗)η

)
λ s = τ

(
u(s∗) + γs(s

∗, η∗) s+ γη(s
∗, η∗) η

)
λ η = −τ

(
u(η∗) + ζs(s

∗, η∗) s+ ζη(s
∗, η∗) η

)
with τ = 4

σ
.

We state our main theorem:

Theorem 4.2. The problem (3), respectively (2), has stationary solu-
tions (u∗, s∗, η∗) where u∗ = 0, η∗ = −s∗ or u∗ = 0 , s∗ = −L/4, η∗ = L/4,
respectively (v∗, s∗, η∗) for all τ > 0. Then there exists a unique τ ∗ such

that the linearization −Ã + τ ∗B has a purely imaginary pair of eigen-
values. The point (0, s∗, η∗, τ ∗) is then a Hopf point for (3) and there
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exists a C0-curve of nontrivial periodic orbits for (3), respectively (2),
bifurcating from (0, s∗, η∗, τ ∗), respectively (v∗, s∗, η∗, τ ∗).

In order to prove the main theorem we shall show the next three
theorems.

Theorem 4.3. Suppose that for τ ∗ ∈ R \ {0} , the operator −Ã +
τ ∗B has a unique pair {±iβ} of purely imaginary eigenvalues. Then
(0, s∗, η∗, τ ∗) satisfy the condition (i), (ii), (iii) in Definition 4.1.

Theorem 4.4. Under the same condition as in Theorem 4.3, the
point (0, s∗, η∗, τ ∗) satisfies the transversality condition. Hence this is a
Hopf point for (3).

Theorem 4.5. There exists a unique, purely imaginary eigenvalue
λ = iβ of (5) with β > 0 for a unique critical point τ ∗ > 0 in order for
(0, s∗, η∗, τ ∗) to be a Hopf point.

5. Proofs of theorems

We shall prove Theorem 4.3 as follows:

Proof of Theorem 4.3 : We assume without loss of generality that β > 0,

and φ∗ is the (normalized) eigenfunction of −Ã + τ ∗B with eigenvalue
iβ. We have to show that (φ∗, iβ) can be extended to a C1-curve τ 7→
(φ(τ), λ(τ)) of eigendata for −Ã+ τB with Re(λ′(τ ∗)) 6= 0.

For this let (ψ0, s0, η0) ∈ D(A) × R × R. First, we see that s0 6= 0
and η0 6= 0. For otherwise, by (5), (A + iβ)ψ0 = µ iβ (s0G(·, s∗ ) +
η0G(·, η∗ )) = 0, which is not possible because A is symmetric. Also, if
s0 or η0 are zero, the problem will be a single free boundary problem.
So without loss of generality, let s0 = 1. Then E(ψ0, η0, iβ, τ

∗) = 0 by
(5), where

E : D(A)C × R× C× R −→ XC × C ,

E(u, η , λ, τ) :=


(A+ λ)u− τ(u(s∗) + γs + γη η) · (2G(·, s∗)− 1

L
)

−τ(u(η∗)− γη − γs η)(2G(·, η∗)− 1
L
)

λ− τ(u(s∗)− γs + γηη)

λη + τ(u(η∗)− γη − γs η)
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since γs := γs(s
∗, η∗) = −ζη(s∗, η∗) and γη := γη(s

∗, η∗) = −ζs(s∗, η∗).
The equation E(u, η, λ, τ) = 0 is equivalent to λ being an eigenvalue of

−Ã+ τB with eigenfunction (u, 1, η).
We shall here apply the implicit function theorem to E, and therefore

have to check that E is C1 and that
(6)
D(u,η,λ)E(ψ0, η0, iβ, τ

∗) ∈ L(D(A)C × C, XC × C) is an isomorphism.

It is easy to see that E is C1 and in addition, the mapping

D(u,η,λ)E(ψ0, η0, iβ, τ
∗)(û, η̂, λ̂)

=


(A+ iβ)û− τ ∗ (û(s∗) + γη η̂) (2G(·, s∗)− 1

L
)

−τ ∗ (û(η∗)− γs η̂) (2G(·, η∗)− 1
L
)

λ̂− τ ∗ (û(s∗) + γηη̂ )

λ̂ η0 + iβ η̂ + τ ∗(û(η∗)− γs η̂ )


is a compact perturbation of the mapping

(û, η̂, λ̂) 7−→
(
(A+ iβ)û, η̂, λ̂

)
which is invertible. Thus D(u,η,λ)E(ψ0, η0, iβ, τ

∗) is a Fredholm operator
of index 0. Therefore in order to verify (6), it suffices to show that the
system

D(u,η,λ)E(ψ0, η0, iβ, τ
∗)(û, η̂, λ̂) = 0

which are

(7)



(A+ iβ)û+ λ̂ψ0 = τ ∗ (2G(·, s∗)− 1
L
)(û(s∗) + γηη̂)

+τ ∗ (2G(·, η∗)− 1
L
)(û(η∗)− γsη̂)

λ̂ = τ ∗ (û(s∗) + γη η̂)

λ̂η0 + iβ η̂ = −τ ∗ (û(η∗)− γs η̂)

necessarily implies that û = 0 , η̂ = 0 and λ̂ = 0. We define φ :=
ψ0 − (2G(·, s∗)− 1

L
) + (2G(·, η∗)− 1

L
) η0 then the first equation of (7) is

given by

(8) (A+ iβ)û+ λ̂φ = −iβ(2G(·, η∗)− 1
L
) η̂ .

Since (v, s, η, λ) = (ψ0, 1, η, iβ) solves (5), φ is a solution to the equation

(9) (A+ i β)φ = −(2δs∗ − 1
L
) + (2δη∗ − 1

L
) η0
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and
(10)

iβ = τ ∗
(
φ(s∗) + (2G(s∗, s∗)− 1

L
) + (2G(s∗, η∗)− 1

L
) + γs + γη η0

)
−iβη0 = τ ∗

(
ψ0(η

∗)− γη − γs η0

)
.

From this equation, we have

(11)
τ ∗ Im

(
φ(s∗)− φ(η∗) η0

)
= β(1 + η2

0)

Re
(
φ(s∗)− φ(η∗) η0

)
= −2(1 + η2

0)
∫ η∗

s∗
Gx(s

∗, y)dy.

Equation (9) implies that

||A1/2φ||2 − iβ||φ||2 = −2(φ(s∗)− φ(η∗)η0 ) +
1− η0

L

∫ L/2

−L/2

φ(x)dx

and from (11) we obtain

(12)

||A1/2φ||2 = −2Re(φ(s∗)− φ(η∗) η0 ) + 1−η0

L

∫ L/2

−L/2
Reφ(x)dx

= 4(1 + η2
0)

∫ η∗

s∗
Gx(s

∗, y)dy − (1−η0)2

L
c2

c4+β2

β||φ||2 = 2β
τ∗

(1 + η2
0)−

(1−η0)2

L
β

c4+β2

since
∫

(A+ iβ)φ(x)dx = −(1− η0 ). We denote that
∫ L/2

−L/2
|φ|2 := ||φ||2.

Multiplying φ by (8) and û by (9) and then integrating,
(13)

λ̂
∫
φ2 = −i β η̂

∫
(2G(x, η∗)− 1

L
)φ(x)dx+ 2(û(s∗)− û(η∗) η0 )

+1−η0

L

∫
û(x)dx

From the equations of (7), we obtain û(s∗)−û(η∗) η0 =
1+η2

0

τ∗
λ̂−ψ0(η

∗) η̂ ,

and from (8), (c2 + iβ)
∫
û(x)dx = λ̂

∫
φ̂(x)dx− iβη̂. Furthermore, from

(9) we have

iβ
∫
G(x, η∗)φ(x)dx

= −
∫
Aφ(x)G(x, η∗)dx− 2(G(s∗, η∗)− G(η∗, η∗) η0) + 1

L
(1− η0)

= −ψ0(η
∗)

is obtained. Hence the equation (13) implies that

λ̂
(
− 2(1 + η2

0)

τ ∗
+

1

L

( 1− η0

c2 + iβ

)2

+

∫
φ2

)
= 0.
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We suppose that λ̂ 6= 0, then

Re
∫
φ2 =

2(1 + η2
0)

τ ∗
− 1

L

c4 − β2

(c2 + β2)2
(1− η0)

2

Im
∫
φ2 =

1

L

2c2β

(c4 + β2)2
(1− η0)

2.

From the equation (9),

Im
∫
φ2 = − β

c4+β2

(2c2(1+η2
0)

τ∗
− 2c2β

L(c4+β2)2
(1− η0)

2 + 4(1 + η2
0)

∫
Gx(s

∗, y)dy
)

= 1
L

2c2β
(c4+β2)2

(1− η0)
2

which implies that

(1 + η2
0)(

2c2

τ ∗
+ 4

∫
Gx(s

∗, y)dy) = 0.

Since
∫
Gx(s

∗, y)dy > 0, this contracts to the assumption λ̂ 6= 0. Hence,

let λ̂ = 0 in (8) and multiply G(·, η∗) and then integrate, we have

(14) û(η∗) = −iβ
∫
G(x, η∗)û(x)dx− iβη̂(

∫
G2(x, η∗)dx− 1

L
).

Multiply û in (8) and integrate,

û(η∗) = i
2βη̂

(
||A1/2 û||2 − iβ||û||2

)
+ iβ η̂

L

(
2c2−iβ

2(c4+β2)
+ 1−

∫
2G2(x, η∗)dx

)
.

Compare with (14), then we obtain

Re (û(η∗)) =
1

2η̂
||û||2 +

β2 η̂

2L(c4 + β2)
= γs η̂

implies that

||û||2 +
( β2

L(c4 + β2)
− 2γs

)
η̂2 = 0.

Since γs(s
∗, η∗) < 0, this equation implies that η̂ = 0 and û = 0.

We shall show the stationary solution is a Hopf point.

Proof of Theorem 4.4 : By implicit differentiation

E(ψ0(τ), η(τ), λ(τ), τ) = 0,
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we have

D(u,η ,λ)E(ψ0, iβ, τ
∗)(ψ′0(τ

∗), η′ (τ), λ′(τ ∗))

=


(2G(·, s∗)− 1/L)(ψ0(s

∗) + γs + γη η0)
+(2G(·, η∗)− 1/L)(ψ0(η

∗)− γη − γsη0)

ψ0(s
∗) + γs + γη η0

−(ψ0(η
∗)− γη − γsη0)

 .

This means that the function ũ := ψ′0(τ
∗), η̃ := η′(τ ∗) and λ̃ := λ′(τ ∗)

satisfy the equations

(15)


(A+ iβ)ũ+ λ̃φ = −i β η̃ (2G(·, η∗)− 1/L)

λ̃− τ ∗(ũ(s∗) + γη η̃ ) = ψ0(s
∗) + γs + γη η0

λ̃ η0 + i β η̃ + τ ∗(ũ(η∗)− γs η̃) = −(ψ0(η
∗)− γη − γs η0)

where φ := ψ0 − (2G(·, s∗)− 1
L
) + (2G(·, η∗)− 1

L
) η0. The equations (15)

and (9) imply that

(16)
ũ(s∗) = −γη η̃ + λ̃

τ∗
− iβ

τ∗2

ũ(η∗) = γs η̃ −
(

λ̃
τ∗
− iβ

τ∗2

)
η0 − iβ

τ∗
η̃.

Multiplying ũ by (9) and integrating, and then comparing with (15), we
obtain
(17)

2( ũ(s∗)− ũ(η∗) η0 )

= λ̃
∫
φ2 + i β η̃

∫
(2G(x, η∗)− 1/L)φ(x) dx+ 1−η0

L

∫
ũ(x)dx

= λ̃
∫
φ2 − 2ψ0(η

∗) η̃ + 1
L

(
i β η̃

∫
φ(x) dx− (1− η0)

∫
ũ(x)dx

)
.

From (16), ũ(s∗)− ũ(η∗) η0 =
(

λ̃
τ∗
− iβ

τ∗2

)
(1+η2

0)− (γη +γs η0 − iβ
τ∗
η0) η̃.

Applying (10), then we obtain

(18) λ̃
( ∫

φ2 − 2(1+η2
0)

τ∗
+ (1−η0)2

L
c4−β2−2c2β i

(c4+β2)2

)
= − 2i β

(τ∗)2
(1 + η2

0)

which implies that

(19) Reλ̃(a2 + b2) =
2 β(1 + η2

0)
2

τ ∗(c4 + β2)

(2c2

τ ∗
+ 4

∫
Gx(s

∗, y)dy
)
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where a and b are the real and the imaginary part of
∫
φ2 − 2(1+η2

0)

τ∗
+

(1−η0)2

L
c4−β2

(c4+β2)2
. Therefore, Reλ̃ = Reλ′(τ ∗) > 0. Hence the transversality

condition holds for all τ ∗ > 0. Therefore, by the Hopf-bifurcation the-
orem in [3], there exists a family of periodic solutions which bifurcates
from the stationary solution as τ passes τ ∗.

The existence and uniqueness of the Hopf critical point are shown.

Proof of Theorem 4.5 : We only need to show that the function (u, β, τ)7→
E(u, η, iβ, τ) has a unique zero with β > 0 and τ > 0. This means solving
the system (5) with λ = iβ and u = v+(2G(·, s∗)− 1

L
)−(2G(·, η∗)− 1

L
) η ,

(20)

(A+ iβ)v = −(2δs∗ − 1
L
) + (2δη∗ − 1

L
) η

iβ = τ ∗
(
v(s∗) + (2G(·, s∗)− 1

L
)− (2G(·, η∗)− 1

L
) η + γs + γη η

)
= τ ∗

(
v(s∗) + 2

∫
Gx(s

∗, y)dy)

−iβ η = τ ∗
(
v(η∗)− 2η

∫
Gx(s

∗, y)dy
)
.

Thus, we have
iβ
τ∗

(1− η) = v(s∗) + v(η∗)
+

(
(2G(s∗, s∗)− 1

L
) + (2G(s∗, η∗)− 1

L
) + γs − γη

)
(1− η)

and thus

iβ

τ ∗
= −2(Gβ(s∗, s∗)−G(s∗, s∗))− 2(Gβ(s∗, η∗)−G(s∗, η∗)) + (γs − γη)

where Gβ is a Green’s function of the differential operator A+ iβ . The
real and imaginary part of this above equation are given by

β = −τ ∗ (ImGβ(s∗, s∗) + ImGβ(s∗, η∗))

0 = −2Re(Gβ(s∗, s∗) +Gβ(s∗, η∗)) + 2(G(s∗, s∗)−G(s∗, η∗)) + γs − γη.

We let

F (β) := −2Re(Gβ(s∗, s∗)+Gβ(s∗, η∗))+2(G(s∗, s∗)+G(s∗, η∗))+γs−γη

then F ′(β) > 0 and F (0) = γs − γη = 2
L
− 2

sinh L
(coshL + 1) < 0. The

existence of β is guaranteed since limβ→∞ F (β) = 2
L
− 2

sinh(L/2)
sinh(L/2−

s∗) sinh s∗ > 0.
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