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NEWTON’S METHOD FOR EQUATIONS
RELATED TO EXPONENTIAL FUNCTION

Moonja Jeong

Abstract. For some equation related with exponential function,

we seek roots and find the properties of the roots. By using the
relation of the roots and attractors, we find a region in the basin

of attraction of the attractor at infinity for Newton’s method for

solving given equation.

1. Introduction

We often need to find the roots of an equation f(z) = 0. To be sure,
if f is a linear or quadratic polynomial, formulas for writing exact
solutions exist and are well known. For general f , Newton’s method
is a clever numerical procedure for solving equations f(z) = 0. For
Newton’s method we begin with a guess z0, for a root to the equation
f(z) = 0. We use the Newton iteration function, given by Nf (z) =
z − f(z)/f ′(z) to find a better approximation z1 = Nf (z0). Newton’s
method is to iterate the function Nf , by successively computing z2 =
Nf (z1) = Nf (Nf (z0)), z3 = Nf (z2) = Nf (Nf (Nf (z0))) and so on. It
is not always true that Newton’s method yields approximations that
converge to the root (see [7; p. 497]).

The simple roots of f(z) = 0 are fixed points of Nf (z) satisfying
Nf (z) = z and we call them attracting fixed points for Nf (z) or simply
attractors for Nf (z) since the derivative N ′

f (z) = f(z) f ′′(z)
(f ′(z)2) = 0 there

(see [1; p.214]). Hence, a Newton sequence {zk} given by Newton’s
method converges to a root of f(z) = 0 if z0 is a proper initial guess.
For a simple root z∗ satisfying f(z∗) = 0, the basin of attraction of z∗
is the set of all points whose orbits tend to z∗.

Received January 30, 2001.
1991 Mathematics Subject Classification: 30D05.

Key words and phrases: Newton’s method, Newton iteration function, attractor,

basin of attraction.



68 Moonja Jeong

The equation z3 − 1 = 0 has three roots and each of the roots
becomes an attractor for Newton’s method. The graphical image of
dynamics of Newton’s method for it is fractal in [5; p. 334] and one
of the interesting features of the figure is the boundaries between the
three regions and every boundary point is actually next to all three
regions. We can conjecture similar behavior for the equation which
has infinitely many roots. For example, the equation ez − 1 = 0 has
infinitely many roots z = 2kπi, where k is an integer. These roots
become attractors of Newton’s method for ez − 1 = 0.

Let

Mζ,α(z) = exp
(
−α

ζ + z

ζ − z

)
where α > 0 and |ζ| = 1. The equation Mζ,α(z) − 1 = 0 has all its
infinite number of roots on the unit circle (see [4]). More properties
including Denjoy-Wolff points of Mζ,α can be found in [2, 3].

In this note, a family of functions

EA,w0(z) = exp
(

i
zw̄0 −Aw0

z −A

)
where |A| = 1, w0 ∈ C with Imw0 > 0 is considered. The mapping
property of the function EA,w0 can be found in [6; p. 60] and it has
singularity at z = A. EA,w0 is a generalization of the form of Mζ,α.

In section 2, we check the behavior of the roots by comparing the
distances of the adjacent roots and by comparing the distances between
the roots and A. By using the relation of the roots and attractors,
we find a region in the basin of attraction of the attractor at ∞ for
Newton’s method for solving given equation.

This note has much importance in the sense that we characterize the
dynamical behavior of Newton’s method for solving EA,w0(z) − 1 = 0
with given condition and provide the basis for the graphical image.

2. Newton’s method for EA,w0(z)− 1 = 0

The roots of the equation EA,w0(z) − 1 = 0 are the attractors of
NEA,w0−1(z). First, we will check the location of them. If w0 = αi
where α > 0, then EA,w0 equals MA,α and then we locate the roots
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of EA,w0 as in [4]. Through this paper we assume that |A| = 1 and
w0 ∈ C with Imw0 > 0 without loss of generality.

The equation EA,w0(z)− 1 = 0 has the roots ζk where

ζkw̄0 −Aw0

ζk −A
= 2kπ

with an integer k. Hence, ζk = A(2kπ−w0)/(2kπ−w̄0). Since |ζk| = 1,
the roots ζk are located on the unit circle. Therefore, the equation
EA,w0(z) − 1 = 0 has infinitely many roots ζk and all of them lie on
the unit circle.

Theorem 1. As k →∞, the roots ζk of the equation EA,w0(z)−1 =
0 approach to A in a counterclockwise direction and the roots ζ−k

approach to A in a clockwise direction. For any positive integer k, the
followings hold:

i) the roots ζk and ζ−k are symmetric about the ray of angle φ iff
Rew0 = 0

ii) the root ζ−k is closer to the singular point A than the root ζk is
to A iff Rew0 > 0.

Proof. As k → ∞, |ζk − A| = 2Imw0/|2kπ − w̄0| approaches to
0. Since ζk/A = 2kπ−w0

2kπ−w̄0
, we see that the roots ζk approach to A in

a counterclockwise direction and the roots ζ−k approach to A in a
clockwise direction as k →∞ by considering the Arg(ζk/A).

Since |ζk −A| = 2Imw0/|2kπ − w̄0|, we see that

|ζk −A| > |ζ−k −A| if |2kπ − w̄0| < | − 2kπ − w̄0|
if k(Rew0) > 0.

Hence the inequality |ζk−A| > |ζ−k−A| holds for any positive integer
k iff Rew0 > 0 and the equality |ζk − A| = |ζ−k − A| holds for any
integer k iff Rew0 = 0.

It means that for any positive integer k, the roots ζk and ζ−k are
symmetric about the ray of angle φ where A = eiφ iff Rew0 = 0 and
the root ζ−k is closer to the singular point A than the root ζk is to A
iff Rew0 > 0. �

Next, we study the behavior of the roots of the equation EA,w0(z)−
1 = 0 more carefully. To do this we need the following two lemmas.
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Lemma 2. Let ζk be the roots of the equation EA,w0(z) − 1 = 0.
If 2(k − 1)π < Rew0 < 2kπ, then |ζk − ζk−1| is the biggest among the
distance between the adjacent roots. If Rew0 = 2kπ, then |ζk−ζk−1| =
|ζk+1−ζk| is the biggest among the distance between the adjacent roots.

Proof. Since

|ζk − ζk−1| = |2kπ − w0

2kπ − w̄0
− 2(k − 1)π − w0

2(k − 1)π − w̄0
|,

we can compare the distances between two adjacent roots by calculat-
ing

|ζk − ζk−1|2 − |ζk+1 − ζk|2

= (4πImw0)2
8π(2kπ − Rew0)

|(2(k − 1)π − w̄0)(2kπ − w̄0)(2(k + 1)π − w̄0)|2
.

Hence, |ζk − ζk−1| > |ζk+1 − ζk| iff 2kπ > Rew0.
Therefore, if 2(k − 1)π < Rew0 ≤ 2kπ, then

· · · < |ζk−2 − ζk−3| < |ζk−1 − ζk−2| < |ζk − ζk−1|
and · · · < |ζk+2 − ζk+1| < |ζk+1 − ζk| ≤ |ζk − ζk−1|

hold and it induces the desired conclusion . �

Lemma 3. Let ζk be the roots of the equation EA,w0(z)− 1 = 0. If
(2k − 1)π < Rew0 < (2k + 1)π, then ζk is the farthest root from A. If
Rew0 = (2k − 1)π, then ζk and ζk−1 are the farthest roots from A.

Proof. Since

|ζk −A| = 2Imw0

|2kπ − w̄0|
,

we can compare the distances between the roots and A by calculating

|ζk −A|2 − |ζk−1 −A|2 = (2Imw0)2
(

−4π((2k − 1)π − Rew0)
|2kπ − w̄0|2 |2(k − 1)π − w̄0|2

)
.

Hence, |ζk −A| > |ζk−1 −A| iff (2k − 1)π < Rew0.
It means that if (2k − 1)π ≤ Rew0 < (2k + 1)π, then

|ζk −A| ≥ |ζk−1 −A| > |ζk−2 −A| > · · ·
and |ζk −A| > |ζk+1 −A| > |ζk+2 −A| > · · ·

hold and it leads to the conclusion. �

By combining Lemma 2 and Lemma 3, we conclude
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Theorem 4. Let ζk be the roots of the equation EA,w0(z)− 1 = 0.
If 2(k − 1)π < Rew0 < (2k − 1)π, then |ζk − ζk−1| is the biggest

among the distance between the adjacent roots and ζk−1 is the farthest
root from A.

If (2k−1)π < Rew0 < 2kπ, then |ζk−ζk−1| is the biggest among the
distance between the adjacent roots and ζk is the farthest root from A.

If Rew0 = (2k − 1)π, then |ζk − ζk−1| is the biggest among the
distance between the adjacent roots and ζk and ζk−1 are the farthest
roots from A.

If Rew0 = 2kπ, then |ζk − ζk−1| = |ζk+1 − ζk| is the biggest among
the distance between the adjacent roots and ζk is the farthest root from
A.

To understand the location of the roots, we consider the following
two examples.

Example 5. If w0 = i and A = 1, then ζ0 = −1 and ζk = 2kπ−i
2kπ+i =

(2kπ)2−1−4kπi
(2kπ)2+1 . Hence −π/2 < Arg ζk < 0 and 0 < Arg ζ−k < π/2

for any positive integer k. Also, Arg ζk → 0− and Arg ζ−k → 0+ as
k →∞. Note that ζ−k = ζ̄k in this case. By Theorem 4, |ζ0 − ζ−1| =
|ζ1 − ζ0| is the biggest among the distance between the adjacent roots
and ζ0 is the farthest root from A. �

Example 6. If w0 = 5(1 + i) and A = 1, then ζ0 = i and ζk =
(2kπ−5)2−52−10(2kπ−5)i

(2kπ−5)2+52 . Hence for k ≥ 2,−π/2 < Arg ζk < 0 and for
any k ≥ 1, 0 < Arg ζ−k < π/2. Also Arg ζk → 0− and Arg ζ−k → 0+

as k →∞. By Theorem 1, for any positive integer k |ζ−k−1| < |ζk−1|.
By Theorem 4, |ζ1 − ζ0| is the biggest among the distance between

the adjacent roots and ζ1 is the farthest root from A. �

In Theorem 7 we check the behavior of the Newton sequence near
∞.

Theorem 7. The region satisfying

(1) |z| > 2 +
4Imw0

1− e−Imw0/3

is in the basin of attraction of the attractor at infinity for Newton’s
method for the equation EA,w0(z)− 1 = 0.
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Proof. Newton iteration function is

NEA,w0−1(z) = z − EA,w0(z)− 1
E′

A,w0
(z)

= z +
(z −A)2

2AImw0

[
1− exp

(
−i

zw̄0 −Aw0

z −A

)]
.

By letting F (z) = 1/NEA,w0−1(1/z), we check that F (z) → 0 and
F ′(z) → 0 as z → 0. Hence z = 0 is an attracting fixed point for F (z)
and so z = ∞ is an attracting fixed point for NEA,w0−1(z).

Now, we prove the region satisfying (1) is in the basin of attraction
of the attractor at infinity for NEA,w0−1(z).

If

|z| > 2 +
4Imw0

1− e−Imw0/3
,

then |z| > 2. Since

Re
[
−i

zw̄0 −Aw0

z −A

]
= Im

[
(zw̄0 −Aw0)(z̄ − Ā)

|z −A|2

]
= − Imw0(|z|2 − 1)

|z −A|2
,

it holds

∣∣∣∣exp
(
−i

zw̄0 −Aw0

z −A

)∣∣∣∣ = exp
(

Re
[
−i

zw̄0 −Aw0

z −A

])
≤ exp

(
− Imw0(|z|2 − 1)

(|z|+ 1)2

)
< exp

(
− Imw0

3

)

when |z| > 2. Note that we assumed Imw0 > 0 through this paper.
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Therefore if (1) holds, then

|NEA,w0−1(z)| ≥ |z −A|2

2 Imw0

∣∣∣∣1− exp
(
−i

zw̄0 −Aw0

z −A

)∣∣∣∣− |z|

>
(|z| − 1)2

2 Imw0
(1− e−Imw0/3)− |z|

> |z|
(

1− e−Imw0/3

2 Imw0
|z| − 1− e−Imw0/3 + Imw0

Imw0

)
> |z|.

It implies that Newton sequence generated by an initial value z0 in
the region satisfying (1) diverges to ∞. So the region satisfying (1) is
contained in the basin of attraction of the attractor at ∞. �
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