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HEWITT REALCOMPACTIFICATIONS
OF MINIMAL QUASI-F COVERS

Chang Il Kim And Kap Hun Jung

Abstract. Observing that a realcompactification Y of a space X is
Wallman if and only if for any non-empty zero-set Z in Y , Z∩Y 6= ∅,
we will show that for any pseudo-Lindelöf space X, the minimal
quasi-F QF (υX) of υX is Wallman and that if X is weakly Lindelöf,
then QF (υX) = υQF(X).

1. Introduction.
All spaces in this paper are Tychonoff spaces and (βX, βX), ((υX, υX),

resp.) denotes the Stone-Čech compactification (Hewitt realcompacti-
fication,resp.) of a space X. In [4],the minimal quasi-F cover QF (υX)
of a compact space X is constucted as an inverse limit space and in [10],
Vermeer construct the minimal quasi-F cover of arbitrary Tychonoff
spaces. Henriksen, Vermeer and Woods showed that for any weakly
Lindelöf space X, βQF(X) and QF (βX) are homeomorphic([6]).

In this paper, we first show that a realcompactification Y of a space
X is Wallman if and only if for any non-empty zero-set Z in Y , Z∩Y 6=
∅ and show that if X is a pseudo-Lindelöf space, then the minimal quasi-
F cover QF (υX) is a Wallman realcompactification of some cover of X.
Finally, we will show that if X is weakly Lindelöf and pseudo-Lindelöf,
then υQF(X) and QF (υX) are homeomorphic and QF (X) is pseudo-
Lindelöf. For the terminology, we refer to [5] and [8].

2. Wallman realcompactification.
Recall that a pair (Y, j) or simply Y is called a compactification

(realcompactification, resp.) of a space X if j : X ↪→ Y is a dence em-
bedding and Y is a compact ( realcompact, resp.) space. For any space
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X, let C(X)(C∗(X),resp.) denote the ring of real-valued continuous
functions (bounded functions,resp.) on X. A subspace S of a space X
is said to be C-embedded (C∗−embedded, resp.) in X if every function
in C(S)(C∗(S),resp.) extends to a function in C(X)(C∗(X),resp.).

Definition 2.1 ([9]). Let X be a space and F a family of closed
sets in X.Then F is called a separating nest generated intersection ring
on X if
(i) for each closed set H in X and x /∈ H,there are disjoint sets in F ,one
containing H and the other containing x;
(ii) it is closed under finite unions and countable intersections;
and
(iii) for any F ∈ F , there are sequences (Fn) and (Hn) in F such that
for any n ∈ N, X\Hn+1 ⊂ Fn+1 ⊂ X\Hn ⊂ Fn and F = ∩Fn.

For a space X, Z(X) denotes the set of zero-sets in X, L(X) the
set of seperating nest generated intersection rings on X and for any
subspaces S of X and F ⊂ 2X ,let FS = {F ∩ S : F ∈ F}. For a
subspace S of a space X and F ∈ L(X), Z(X) ∈ L(X) and FS ∈ L(S)
([9]).

Let X be a space and F ∈ L(X). Then F is a normal base on X. Let
(ω(X, F ), ωX) be the Wallman compactification of X associated with
F ([1]). Then F = Z(ω(X,F))X and if (Y, j) is a compactification of X
such that F = Z(Y )X , then there is a continuous map f : ω(X,F) → Y
with f ◦ ωX = j ([9]).

Let υ(X,F)={α : α is an F-ultrafilter on X with the countable
intersection property}.Then the topology on υ(X,F), taking sets of
the form F ∗={α ∈ υ(X,F) : F ∈ α } as a base for the the closed sets,
coincides with the subspace topology on υ(X,F) of ω(X,F),υ(X,F)
is a realcompactification of X (called Wallman realcompactification)
([9]), υ(X,F) = υ(X,F t) and ω(X,F t) = β(υ(X,F t)), where F t =
Z(υ(X,F))X ([3]).

In a space (X, τ), the family of Gδ-sets on X forms a base for a
topology τδ on X and for A ∈ X, ℵ1 − clX(A) denotes the closure of
A in (X, τδ).

Theorem 2.2. A realcompactification (Y, j) of a space X is Wall-
man if and only if for non-empty zero-set Z in Y , Z ∩X 6= ∅. In this
case, Y = υ(X,F) and F = Z(Y )X .
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Proof. (⇒) Since Y is a Wallman realcompactification of X, Y =
υ(X,G) for some G ∈ L(X). Then υ(X,G) = υ(X,Gt) and β(υ(X,Gt)) =
ω(X,Gt), where Gt = Z(υ(X,G))X ([3]).Hence there is a continu-
ous map f : ω(X,Gt) → ω(X,G) with f ◦ l = k ◦ h, where h :
υ(X,Gt) → υ(X,G) is a homeomorphism and l : υ(X,Gt) ↪→ ω(X,Gt)
and k : υ(X,G) ↪→ ω(X,G) are dense embeddings. Take any non-empty
zero-set Z in Y . Since h−1(Z) is a zero-set in υ(X,Gt), there is a zero-
set A in β(υ(X,Gt)) = ω(X,Gt) such that h−1(Z) = A∩υ(X,Gt). Since
h−1(Z) 6= ∅,pick α ∈ A ∩ υ(X,Gt). Then there is a countable family
{Zn : n ∈ N} of zero-set neighborhoods of α in ω(X,Gt) such that
A =

⋂
Zn. For any n ∈ N. Zn ∩X ∈ Gt and hence Zn ∩X ∈ α. Since

α has the countable intersection property, A ∩ X = (
⋂

Zn) ∩ X 6= ∅.
Thus h−1(Z) = Z ∩X 6= ∅.

(⇐) Let F = Z(Y )X , then F ∈ L(X). Note that Z(βY )X =
Z(Y )X = F . Hence,there is a continuous map g : ω(X,F) → βY
with g ◦ ωX = βY ◦ j. Let A and B be zero-sets in ω(X,F) with
A ∩B ∩X = ∅, then A ∩X, B ∩X ∈ F .Hence there are C,D inZ(Y )
with A ∩ X = C ∩ X and B ∩ X = D ∩ X. Since C ∩ D ∩ X = ∅
and C ∩ D ∈ Z(Y ), C ∩ D = ∅ and hence clβY (C) ∩ clβY (D) = ∅.
So clβY (A ∩X) ∩ clβY (B ∩X) = ∅. By Urysohn’s extension theorem,
there is a continuous map h : βY → ω(X,F) such that ωX = h◦βY ◦ j
and so h is a homeomorphism.

Note that ℵ1 − clβY (X) ⊂ ℵ1 − clβY (Y ). Let x /∈ ℵ1 − clβY (X).
Then there is a zero-set Z in βY such that x ∈ Z and Z∩X = ∅. Since
(S∩Y )∩X = ∅, Z∩Y = ∅. So x /∈ ℵ1−clβY (Y ). Hence ℵ1−clβY (X) =
ℵ1 − clβY (Y ). It is well-known that υ(X,F) = ℵ1 − clω(X,F)(X) ([1]).
Since ω(X,F) and βY are homeomorphic, ℵ1−clβY (Y ) = υ(X,F) and
since Y is a realcompact space, ℵ1 − clβY (Y ) = Y . So Y = ω(X,F).¤

3. Quasi-F covers of Hewitt realcompactifications.
Recall that a space X is called pseudocompact if υX is compact.

The following definition is a generalization of pseudocompact spaces.

Definition 3.1. A space X is called pseudo-Lindelöf if υX is Lin-
delöf.

It is well-known that for a paracompact (or separable) space X,
X is pseudo-Lindelöf if and only if every separating nest generated
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intersection ring on X is complete ([3]).

Proposition 3.2. Let X be a space. Then X is pseudo-Lindelöf if
and only if every Wallman realcompactification of X is Lindelöf.

Proof. Suppose that X is pseudo-Lindelöf. Let (Y, j) be a Wallman
realcompactification of X and G a z-filter on Y with the countable
intersection property. Since Y is realcompact, there is a continuous
map h : υX → Y such that h ◦ υX = j. By Theorem 1.2, for any
G ∈ G, G ∩ X 6= ∅. Hence GX = {G ∩ X : G ∈ G} is a z-filter on X
with the countable intersection property. For any G ∈ G, clυX(G∩X)
is a zero-set in υX. So F = {clυX(G∩X) : G ∈ G} is a z-filter on υX.
Since υX is Lindelöf, there is an α ∈ υX such that α ∈ ⋂F . Hence
for any G ∈ G, clυX(G ∩X) ∈ α and

h(α) ∈ h(clυX(G ∩X))

⊆ clY (h(G ∩X))

= clY (G ∩X)

⊆ clY (G)
= G.

Thus
⋂G 6= ∅ and so Y is Lindelöf. The convers is trivial, because

υX = υ(X, Z(X)). ¤

Definition 3.3. A space X is called a quasi-F space if for any
zero-sets A, B in X, clX(intX(A∩B)) = clX(intX(A))∩clX(intX(B)),
equivalently, every dense cozero-set in X is C∗ − embdded in X.

For any covering map (= compact, closed and irreducible) ΦX :
QF (X) −→ X such that for any quasi-F space Y and covering map
f : Y −→ X, there is a covering map g : Y −→ QF (X) with ΦX◦g = f ,
that is, (QF (X), ΦX) is the minimal quasi-F cover of F ([6]).

Recall that a space X is called weakly Lindelöf if for any open cover
U of X, there is a countable subfamily V of U ,

⋃V is dense in X. It is
shown that for any weakly Lindelöf space X, βQF (X) and QF (βX)
are homeomorphic ([6]) and that (Φ−1(X), l) is the minimal quasi-F
cover of X, where (QF (υX), Φ) is the minimal quasi-F cover of υX
and l : Φ−1(X) −→ X is the restriction and corestriction of Φ with
respect to Φ−1(X) and X, respectively ([7]).
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Theorem 3.4. Let X be a pseudo-Lindelöf space. Then QF (υX)
is a Wallman realcompactification of Φ−1(X).

Proof. Consider the following commutative diagram ;

Y
l−−−−→ X

j
y

y υX

QF (υX) Φ−−−−→ υX

where j is the inclusion map and Y = Φ−1(X) = QF (X). Since
QF (υX) is realcompact, there is a continuous map h : υY −→ QF (υX)
such that h ◦ υY = j. Since QF (υX) is Lindelöf, QF (υX) is weakly
Lindelöf and hence βQF (υX) and QF (βX) are homeomorphic. Hence
there is a continuous map g : βY −→ QF (βX) such that the following
diagram ;

υY
h−−−−→ QF (υX)

βυY

y
y βQF (υX)

βY
g−−−−→ QF (βX)

commutes. Since g ◦ ΦβX : βY −→ βX is onto and Φ ◦ h|Y = l is
perfect, h is onto ([9]). Take any non-empty zero-set Z in QF (υX).
Then h−1(Z) is non-empty zero-set in υY and hence Z∩X = h−1(Z)∩
X 6= ∅. By Theorem 1.2, QF (υX) is Wallman. ¤

Corollary 3.5. Let X be a weakly Lindelöf and pseudo-Lindelöf
space. Then QF (υX) and υQF (X) are homeomorphic.

Proof. Since QF (υX) is a realcompact space, there is a continuous
map h : υQF (X) −→ QF (υX) such that h ◦ υQF (X) = j, where
j : QF (X) −→ QF (υX) is the inclusion map. Take any disjoint zero-
sets A, B in QF (X). Then there are disjoint zero-sets C, D in QF (X)
such that A ⊆ intQF (X)(C) and B ⊆ intQF (X)(D). Since X is weakly
Lindelöf, clQF (X)(intQF (X)(C)) and clQF (X)(intQF (X)(D)) is weakly
Lindelöf. Hence there is a zero-set E in QF (υX) such that

clQF (X)(intQF (X)(D)) ⊆ intQF (υX)(E)
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and
clQF (X)(intQF (X)(C)) ∩ intQF (υX)(E) = ∅.

Since QF (X) is a quasi-F space,

clQF (X)(intQF (X)(C)) ∩ clQF (X)(intQF (υX)(E) ∩QF (X)) = ∅.

Similarly,there are a zero-set F in QF (υX) such that

clQF (X)(intQF (X)(C)) ⊆ intQF (υX)(F )

and

clQF (X)(intQF (υX)(E) ∩QF (X)) ∩ intQF (υX)(F ) = ∅.

Since QF (X) is dense in QF (υX), intQF (υX)(E)∩ intQF (υX)(F ) = ∅.
Hense

clQF (υX)(intQF (υX)(E)) ∩ clQF (υX)(intQF (υX)(F )) = ∅.

and so A and B are completely separated in QF (υX). By Urysohn’s
extension theorem, QF (X) is C∗ − embedded in QF (υX). Take any
zero-set Z in QF (υX) such that Z ∩ QF (X) = ∅. By the above
theorem, Z = ∅. Hence Z and QF (X) are completely separated in
QF (υX) and so QF (X) is C − embedded in QF (υX) ([5]). Since
υQF (X) is the unique realcompactification of QF (X) which is C −
embedded in it, υQF (X) and QF (υX) are homeomorphic. ¤

By Corollary 3.5, we have the following :

Corollary 3.6. If X is a weakly Lindelöf pseudo-compact space,
then QF (X) is pseudo-Lindelöf.
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