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HEWITT REALCOMPACTIFICATIONS
OF MINIMAL QUASI-F COVERS

CuanG I Kim AND Kap HuN JuNG

ABSTRACT. Observing that a realcompactification Y of a space X is
Wallman if and only if for any non-empty zero-set Z in Y, ZNY # 0,
we will show that for any pseudo-Lindelof space X, the minimal
quasi-F QF (vX) of vX is Wallman and that if X is weakly Lindelof,
then QF(vX) = vQF(X).

1. Introduction.

All spaces in this paper are Tychonoff spaces and (56X, Bx), ((vX,vx),
resp.) denotes the Stone-Cech compactification (Hewitt realcompacti-
fication,resp.) of a space X. In [4],the minimal quasi-F' cover QF (vX)
of a compact space X is constucted as an inverse limit space and in [10],
Vermeer construct the minimal quasi-F' cover of arbitrary Tychonoff
spaces. Henriksen, Vermeer and Woods showed that for any weakly
Lindelof space X, SQF(X) and QF(SX) are homeomorphic([6]).

In this paper, we first show that a realcompactification Y of a space
X is Wallman if and only if for any non-empty zero-set Z in Y, ZNY #
() and show that if X is a pseudo-Lindelof space, then the minimal quasi-
F cover QF (vX) is a Wallman realcompactification of some cover of X.
Finally, we will show that if X is weakly Lindelof and pseudo-Lindelof,
then vQF(X) and QF (vX) are homeomorphic and QF(X) is pseudo-
Lindel6f. For the terminology, we refer to [5] and [8].

2. Wallman realcompactification.

Recall that a pair (Y,j) or simply Y is called a compactification
(realcompactification, resp.) of a space X if j: X — Y is a dence em-
bedding and Y is a compact ( realcompact, resp.) space. For any space
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X, let C(X)(C*(X),resp.) denote the ring of real-valued continuous
functions (bounded functions,resp.) on X. A subspace S of a space X

is said to be C-embedded (C* —embedded, resp.) in X if every function
in C(9)(C*(S),resp.) extends to a function in C'(X)(C*(X),resp.).

DEFINITION 2.1 ([9]). Let X be a space and F a family of closed
sets in X.Then F is called a separating nest generated intersection ring
on X if
(i) for each closed set H in X and x ¢ H ,there are disjoint sets in F,one
containing H and the other containing x;

(ii) it is closed under finite unions and countable intersections;

and

(iii) for any F € F, there are sequences (F,,) and (H,,) in F such that
for any n € N, X\H, 11 C Fj,41 C X\H,, C F,, and F = NF,.

For a space X, Z(X) denotes the set of zero-sets in X, £(X) the
set of seperating nest generated intersection rings on X and for any
subspaces S of X and F C 2Xlet Fg = {FNS : F € F}. For a
subspace S of a space X and F € L(X), Z(X) € L(X) and Fg € L(S)
([9])-

Let X be aspace and F € £(X). Then F is a normal base on X. Let
(w(X, F),wx) be the Wallman compactification of X associated with
F ([1]). Then F = Z(w(X,F))x and if (Y, j) is a compactification of X
such that 7 = Z(Y) x, then there is a continuous map f : w(X,F) = Y
with fowx =j ([9]).

Let v(X,F)={a : « is an F-ultrafilter on X with the countable
intersection property}.Then the topology on v(X,F), taking sets of
the form F*={a € v(X,F) : F € a } as a base for the the closed sets,
coincides with the subspace topology on v(X,F) of w(X,F),v(X,F)
is a realcompactification of X (called Wallman realcompactification)
([9]), v(X,F) = v(X,F!) and w(X,F!) = B(v(X,F")), where Ft =
Z((X, F))x (3)).

In a space (X, 7), the family of Gs-sets on X forms a base for a
topology 75 on X and for A € X, Ry — clx(A) denotes the closure of
Ain (X, 7'5).

THEOREM 2.2. A realcompactification (Y, j) of a space X is Wall-
man if and only if for non-empty zero-set Z inY, Z N X # (). In this
case, Y =v(X,F) and F = Z(Y)x.
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Proof. (=) Since Y is a Wallman realcompactification of X, Y =
v(X,G) forsome G € L(X). Thenv(X,G) = v(X,G") and B(v(X,G")) =
w(X,G"), where G' = Z(v(X,G))x ([3]).-Hence there is a continu-
ous map f : w(X,G") — w(X,G) with fol = ko h, where h :
v(X,G%) — v(X,G) is a homeomorphism and [ : v(X,G") — w(X,G")
and k : v(X,G) — w(X, G) are dense embeddings. Take any non-empty
zero-set Z in Y. Since h™1(Z) is a zero-set in v(X, G?), there is a zero-
set Ain B(v(X,G")) = w(X,G?) such that h~1(Z) = Anv(X,G?). Since
h=Y(Z) # 0,pick a € ANv(X,G?). Then there is a countable family
{Z, : n € N} of zero-set neighborhoods of a in w(X,G") such that
A=Z,. Forany n € N. Z, N X € G* and hence Z,, N X € a. Since
« has the countable intersection property, AN X = (" Z,) N X # 0.
Thus h='(Z) = ZN X # 0.

(<) Let F = Z(Y)x, then F € L(X). Note that Z(fY)x =
Z(Y)x = F. Hence,there is a continuous map g : w(X,F) — GY
with gowx = Y oj. Let A and B be zero-sets in w(X,F) with
ANBNX =, then AN X, BN X € F.Hence there are C',D inZ(Y)
with ANX =CNXand BNX =DNX. SinceCNDNX =1
and CND e Z(Y), CND = and hence clgy (C) Nclgy (D) = 0.
So clgy (AN X)Nelgy (BN X) = (. By Urysohn’s extension theorem,
there is a continuous map h : fY — w(X, F) such that wxy = hofy oj
and so h is a homeomorphism.

Note that N; — Clﬁy(X) C Ny — Clgy(Y). Let ¢ Ny — Cllgy(X).
Then there is a zero-set Z in 3Y such that x € Z and ZNX = (). Since
(SNY)NX =0, ZNY =0. Sox ¢ Ry —clgy (V). Hence 8y —clgy (X) =
Ny —clgy (Y). It is well-known that v(X, F) = Ry — cl,x,7)(X) ([1]).
Since w(X, F) and fY are homeomorphic, 8y —clgy (Y) = v(X, F) and
since Y is a realcompact space, Xy —clgy (Y) =Y. So Y = w(X, F).O

3. Quasi-F' covers of Hewitt realcompactifications.
Recall that a space X is called pseudocompact if v.X is compact.
The following definition is a generalization of pseudocompact spaces.

DEFINITION 3.1. A space X is called pseudo-Lindeldf if vX is Lin-
delof.

It is well-known that for a paracompact (or separable) space X,
X is pseudo-Lindelof if and only if every separating nest generated
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intersection ring on X is complete ([3]).

PROPOSITION 3.2. Let X be a space. Then X is pseudo-Lindel6f if
and only if every Wallman realcompactification of X is Lindel6f.

Proof. Suppose that X is pseudo-Lindel6f. Let (Y, ) be a Wallman
realcompactification of X and G a z-filter on Y with the countable
intersection property. Since Y is realcompact, there is a continuous
map h : vX — Y such that hovyxy = j. By Theorem 1.2, for any
GeG, GNX #0. Hence Gx = {GNX : G € G} is a zfilter on X
with the countable intersection property. For any G € G, cl,x (G N X)
is a zero-set in vX. So F = {cl,x(GNX) : G € G} is a z-filter on vX.
Since vX is Lindeldf, there is an o € vX such that o € (| F. Hence
for any G € G, cl,x(GNX) € o and

h(a) € h(cl,x(GN X))
Cely(h(GN X))
= cly (G N X)
C cy (G)
=G.

Thus (G # 0 and so Y is Lindelof. The convers is trivial, because
vX =v(X, Z(X)). O

DEFINITION 3.3. A space X is called a quasi-F space if for any
zero-sets A, B in X, clx (intx (ANB)) = clx (intx (A))Neclx (intx (B)),
equivalently, every dense cozero-set in X is C* — embdded in X.

For any covering map (= compact, closed and irreducible) ®x :
QF(X) — X such that for any quasi-F space Y and covering map
f:Y — X, thereis acoveringmap g : Y — QF(X) with ®xog = f,
that is, (QF(X), ®x) is the minimal quasi-F cover of F' ([6]).

Recall that a space X is called weakly Lindeldf if for any open cover
U of X, there is a countable subfamily V of U, |JV is dense in X. It is
shown that for any weakly Lindel6f space X, SQF(X) and QF(5X)
are homeomorphic ([6]) and that (®~1(X),[) is the minimal quasi-F
cover of X, where (QF(vX),®) is the minimal quasi-F' cover of vX
and [ : ®71(X) — X is the restriction and corestriction of ® with
respect to ®~1(X) and X, respectively ([7]).
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THEOREM 3.4. Let X be a pseudo-Lindeldf space. Then QF (vX)
is a Wallman realcompactification of ®~1(X).

Proof. Consider the following commutative diagram ;

_t . x

Y
1w
QF(vX) —* L ux

where j is the inclusion map and ¥ = &~ }(X) = QF(X). Since
QF(vX) isrealcompact, there is a continuous map h : vY — QF(vX)
such that h o vy = j. Since QF (vX) is Lindelof, QF (vX) is weakly
Lindel6f and hence SQF (vX) and QF(5X) are homeomorphic. Hence
there is a continuous map g : fY — QF(SX) such that the following
diagram ;

vY — s QF (vX)

BUYl l BoF(vx)
BY —%— QF(BX)

commutes. Since g o ®gx : BY — X is onto and Pohly = [ is
perfect, h is onto ([9]). Take any non-empty zero-set Z in QF (vX).
Then h=1(Z) is non-empty zero-set in vY and hence ZNX = h=1(Z)N
X # (. By Theorem 1.2, QF (vX) is Wallman. O

COROLLARY 3.5. Let X be a weakly Lindelof and pseudo-Lindelof
space. Then QF(vX) and vQF(X) are homeomorphic.

Proof. Since QF(vX) is a realcompact space, there is a continuous
map h : vVQF(X) — QF(vX) such that h o vgpx) = j, where
Jj:QF(X) — QF(vX) is the inclusion map. Take any disjoint zero-
sets A, B in QF(X). Then there are disjoint zero-sets C, D in QF (X)
such that A Cintgpx)(C) and B C intgprx)(D). Since X is weakly
Lindeldf, clgrx)(intqrx)(C)) and clgrx)(intgrx)(D)) is weakly
Lindel6f. Hence there is a zero-set F in QF (vX) such that

CZQF(X) (intQF(X) (D)) C intQF(UX) (E)
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and
CZQF(X)(@.ntQF(X) (C)) N intQF(vX) (E) = ().

Since QF(X) is a quasi-F space,

clorx)(intgrx)(C)) Nclgrx)(intgrwx)(E) NQF (X)) = 0.

Similarly,there are a zero-set F' in QF (vX) such that

corx)(intqrx)(C)) C intgrwx)(F)

and

CZQF(X) (Z?’LtQF(vx)(E> N QF(X)) N thF(vX)(F) = (Z)

Since QF(X) is dense in QF (vX), intgrwx)(E) Nintgrwx)(F) = 0.
Hense

clorwx)(Intqrwx)(E)) N cgrwx) (intorwx) (F)) = 0.

and so A and B are completely separated in QF (vX). By Urysohn’s
extension theorem, QF(X) is C* — embedded in QF(vX). Take any
zero-set Z in QF(vX) such that Z N QF(X) = 0. By the above
theorem, Z = (). Hence Z and QF(X) are completely separated in
QF(vX) and so QF(X) is C — embedded in QF(vX) ([5]). Since
vQF(X) is the unique realcompactification of QF(X) which is C —
embedded in it, vQF(X) and QF(vX) are homeomorphic. O

By Corollary 3.5, we have the following :

COROLLARY 3.6. If X is a weakly Lindel6f pseudo-compact space,
then QF(X) is pseudo-Lindel6f.
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